Baldea, M. (2015). From process integration to process intensification. Computers & Chemical Engineering, 81, 104–114. Barrat, A. and Weigt, M. (2000). On the properties of small-world network models. The European Physical Journal B-Condensed Matter and Complex Systems, 13(3), 547–560. Basiri, A., Heidari, A., Nadi, M.F., Fallahy, M.T.P., Nezamabadi, S.S., Sedighi, M., Saghazadeh, A., and Rezaei, N. (2020). Microfluidic devices for detection of RNA viruses. Reviews in medical virology, e2154. Bayareh, M. (2020). An updated review on particle separation in passive microfluidic devices. Chemical Engineering and Processing - Process Intensification, 153, 107984. Berkenbrock, J.A., Grecco-Machado, R., and Achenbach, S. (2020). Arsenal of microfluidic testing devices may combat COVID-19 pandemic. MRS Bulletin, Cambridge University Press, 45(7), 511–514. Bottlik, G. (2017). An Introduction to the Mathematics of Planning and Scheduling. Taylor & Francis. Chabert, M. and Viovy, J.L. (2008). Microfluidic high-throughput encapsulation and hydrodynamic self- sorting of single cells. Proceedings of the National Academy of Sciences, 105(9), 3191–3196. Dittrich, P.S. and Manz, A. (2006). Lab-on-a-chip: mi- crofluidics in drug discovery. Nature reviews Drug dis- covery, 5(3), 210–218. Ehrgott, M. (2005). Multicriteria optimization, volume 491. Springer Science & Business Media. Erdös, P. and R´ enyi, A. (1959). On random graphs I. Publ. Math. Debrecen, 6. Forrest, J.J., Vigerske, S., Santos, H.G., Ralphs, T., Hafer, L., Kristjansson, B., Fasano, J.P., Straver, E., Lubin, M., Lougee, R., Goncal, J.P., Gassmann, H.I., and Saltzman, M. (2020). coin-or/cbc: Version 2.10.5. URL https://doi.org/10.5281/zenodo.3700700. Grossmann, I.E. (2002). Review of nonlinear mixed-integer and disjunctive programming techniques. Optimization and engineering, 3(3), 227–252. Grossmann, I.E. and Lee, S. (2003). Generalized convex disjunctive programming: Nonlinear convex hull relax- ation. Computational optimization and applications, 26(1), 83–100. Hart, W.E., Laird, C.D., Watson, J.P., Woodruff, D.L., Hackebeil, G.A., Nicholson, B.L., and Siirola, J.D. (2017). Pyomo–optimization modeling in python, vol- ume 67. Springer Science & Business Media, second edition. Hegab, H.M., ElMekawy, A., and Stakenborg, T. (2013). Review of microfluidic microbioreactor technology for high-throughput submerged microbiological cultivation. Biomicrofluidics, 7(2), 021502. Hong, J.W., Studer, V., Hang, G., Anderson, W.F., and Quake, S.R. (2004). A nanoliter-scale nucleic acid pro- cessor with parallel architecture. Nature biotechnology, 22(4), 435–439. Kusiak, A. and Heragu, S.S. (1987). The facility layout problem. European Journal of operational research, 29(3), 229–251. Maddala, J. and Rengaswamy, R. (2013). Droplet digital signal generation in microfluidic networks using model predictive control. Journal of Process Control, 23(2), 132 – 139. IFAC World Congress Special Issue. Molloy, M. and Reed, B. (1995). A critical point for random graphs with a given degree sequence. Random structures & algorithms, 6(2-3), 161–180. Nguyen, N.T., Wereley, S.T., and Shaegh, S.A.M. (2019). Fundamentals and applications of microfluidics. Artech house Papageorgiou, L.G. and Rotstein, G.E. (1998). Continuous-domain mathematical models for optimal process plant layout. Industrial & engineering chemistry research, 37(9), 3631–3639. Paulson, J.A., Mesbah, A., Zhu, X., Molaro, M.C., and Braatz, R.D. (2015). Control of self-assembly in micro- and nano-scale systems. Journal of Process Control, 27, 38 – 49. Riche, C.T., Roberts, E.J., Gupta, M., Brutchey, R.L., and Malmstadt, N. (2016). Flow invariant droplet formation for stable parallel microreactors. Nature communications, 7(1), 1–7. Shallan, A.I. and Priest, C. (2019). Microfluidic process intensification for synthesis and formulation in the phar- maceutical industry. Chemical Engineering and Process- ing - Process Intensification, 142, 107559. Swartz, C.L. and Kawajiri, Y. (2019). Design for dynamic operation-a review and new perspectives for an increas- ingly dynamic plant operating environment. Computers & Chemical Engineering, 128, 329–339. Viger, F. and Latapy, M. (2005). Efficient and simple generation of random simple connected graphs with prescribed degree sequence. In International Computing and Combinatorics Conference, 440–449. Springer. Watts, D.J. and Strogatz, S.H. (1998). Collective dynamics of small-world networks. nature, 393(6684), 440–442. Westerlund, J., Papageorgiou, L.G., and Westerlund, T. (2005). A problem formulation for optimal mixed-sized box packing. In Computer Aided Chemical Engineering, volume 20, 913–918. Elsevier. Wu, L., Liu, Q., Wang, F., Xiao, W., and Yang, Y. (2018). Heuristic algorithm for RPAMP with central rectangle and its application to solve oil-gas treatment facility layout problem. Eng. Appl. Artif. Intell., 72, 294–309. Wu, L., Tian, X., Zhang, J., Liu, Q., Xiao, W., and Yang, Y. (2017). An improved heuristic algorithm for 2d rectangle packing area minimization problems with central rectangles. Engineering Applications of Artificial Intelligence, 66, 1–16. Zhang, J., Yan, S., Yuan, D., Alici, G., Nguyen, N.T., Warkiani, M.E., and Li, W. (2016). Fundamentals and applications of inertial microfluidics: a review. Lab on a Chip, 16(1), 10–34.