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University, 60 bd St Michel, 75272, France, (e-mail:
nicolas.petit@mines-paristech.fr)

Abstract This paper presents a methodology to optimize the physical layout of microfluidic
components, a key step in the design of custom microfluidic instruments that can be used in
various process applications. A mathematical formulation is proposed under the form of a Mixed
Integer Linear Problem allowing to treat non overlapping constraints for the multi-objective
optimization of layout footprint and connectivity lengths. The method is numerically tested
using randomly generated scenarios. Then, a real testcase serves as illustration.
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1. INTRODUCTION

Microfluidics is the science of manipulating and controlling
fluids at Reynolds numbers lower than 1.0, in very small
amounts (microliters to picoliters), in networks of channels
with dimensions significantly below 1 mm (from tens to
hundreds of micrometers). Microfluidic systems are used
in process engineering, chemistry and biotechnology where
their ability to handle small volumes with high accuracy
is a key asset. Microfluidics is an enabling technology for
many lab-on-chip applications such as molecular analysis,
clinical diagnostic testing, virus detection and manipula-
tion (including COVID-19, see Berkenbrock et al. (2020);
Basiri et al. (2020)), DNA analysis, pathogen detection,
and also in the field of synthetic chemistry and mate-
rials engineering as vast numbers of microreactors and
micromixers can be created by microfluidic droplets gen-
eration (see e.g. Shallan and Priest (2019); Zhang et al.
(2016); Hegab et al. (2013); Nguyen et al. (2019); Dittrich
and Manz (2006); Chabert and Viovy (2008); Riche et al.
(2016); Bayareh (2020); Maddala and Rengaswamy (2013);
Paulson et al. (2015)).

For each considered application listed above, specific mi-
crofluidic instruments have to be designed and built. A
typical microfluidic instrument is presented in Figure 1.
The instruments are usually built using ideas and concepts
very similar to those found in the electronic integrated
circuits industry. Often, microfluidic instruments are rela-
tively bulky and complex systems as they include a non-
negligible number of macroscopic components, ranging
from pumps, cells, tanks and switches, each having input
and outputs ports, connected according to a flow-diagram.
For the most part, the components are placed on a single
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Figure 1. A microfluidic DNA purification chip Hong et al.
(2004).

layer and the instruments are boxed in a rectangular en-
closure.

Designing a microfluidic instrument requires to define a
physical two-dimensional layout of the various compo-
nents. This tasks is usually performed in a holistic way,
often by referring to previously considered templates that
are gradually improved through trial-and-error processes.
This tedious task is very time-consuming and often results
in vastly sub-optimal designs.

With the advent of the microfluidics technology and
its generalized use in numerous laboratories and indus-
tries, worldwide, it has gradually become necessary to re-
place the trial-and-error practices by more systematic ap-
proaches. A microfluidic instrument being similar in spirit
to a (micro) chemical plant, this trend is to be related to
mathematical methodologies developed for optimal design,
process intensification and integration that are common
practices in the chemical process industry (see e.g. Swartz
and Kawajiri (2019); Baldea (2015)). Following the vast
literature on optimization of layout in chemical plants



(see e.g. Papageorgiou and Rotstein (1998) and references
therein), a natural idea is to formulate the layout problem
under the form of a mathematical programming problem.
This is the approach we explore in this article.

Besides their geometry, which can be approximated by
rectangles without too much loss of generality, an im-
portant feature of each component is its list of input
and output ports (also referred to as sockets). A flow-
diagram describes the inter-components connections. The
connections between the sockets are done by microfluidic
tubings. As will appear, the connectivity requires special
care in the mathematical treatment.

The paper is organized as follows. In Section 2, the prob-
lem under consideration is defined, which allows to stress
the similarities and differences with works from the litera-
ture. In Section 3, a mathematical formulation is presented
under the form of a mixed-integer linear programming
(MILP) problem. Section 4 reports numerical results and a
test-case application. Finally, conclusions and perspectives
are given in Section 5.

2. PROBLEM STATEMENT

2.1 Description of the WRPMP: Wired Rectangle Packing
Minimization Problem

In words, the layout design consist in choosing the loca-
tions of rectangles in a plane in an optimal way, favoring
the layout compactness, under the constraint that they
should not overlap and that the required connections be-
tween them should be optimized. Physically, the connec-
tions between the rectangles consists of capillary tubings
which are actually distributed in 3 dimensions, allowing
crossing of their planar projections when necessary. To
minimize holdups and hydraulic delays, their lengths mat-
ter.

Formally, the criteria to minimize define a multi-objective
function consisting of the size of the rectangle encompass-
ing the components and the length of the microfluidic con-
nections. We will refer to this problem as “Wired Rectan-
gle Packing Minimization Problem” (WRPMP). Figure 2
shows an optimal solution for an example problem.

Figure 2. Solution to an example WRPMP. The reservoirs
(3 top left squares) are constrained to be aligned.

2.2 Related problems from the literature

In optimization and operations research, several classic
packing problems are closely related to ours. The Rect-
angle Packing Area Minimization Problem (RPAMP) Wu
et al. (2018) treats rectangular objects of the type consid-
ered here, but ignores the connection between the compo-
nents. The 2-Dimensional Bin Packing Problem (2DBPP)
considers the packing without overlapping of a given set
of small rectangles into the minimum number of identical
large rectangles, called “bins”, with the edges of the items
parallel to those of the bins. It can not be employed here
for the same reason as the RPAMP.

Besides, there are several domains of process engineering
where similar packing problems appear, see e.g. Wu et al.
(2017). The chemical process industry has a long history
of solving process plant layout (PPL) problems, see e.g.
Kusiak and Heragu (1987); Papageorgiou and Rotstein
(1998); Westerlund et al. (2005). The PPL shares many
properties and mathematical formulations with the prob-
lem at stake in this paper. While PPL problems focus on
connectivity costs, and production organization through
the accommodation of manufacturing patterns taking the
form of bins (or production sections), the focus is not on
minimizing the size of the layout, which is usually not a
decision variable but a constraint. Other typical features
such as safety requirements (minimum distance between
some equipments) or space restrictions especially in the
case of retrofit of existing plants are not found in the
considered microfluidic instrument design applications.

In another area, namely microelectronics and integrated
circuit, packing problems are ubiquitous. Minimization
of the interconnect fabrics area is obtained by repetitive
arrangement of rectangular blocks which are connected
using wiring by abutment. Compared to these works, our
problem has relaxed wiring constraints, as connections
can be made out of the plane, allowing “jumps” and
crossing of connections across the board 1 . For these
reasons, our problem is more general and, therefore, has
a higher mathematical complexity (for a same number of
components).

3. MATHEMATICAL FORMULATION

3.1 Notations

In what follows, a microfluidic component is represented
as a two-dimensional object in the xy-plane equipped with
a reference axis. Its rectangular shape is defined by two
strictly positive parameters Lx and Ly, and its position is
defined by the coordinates (x, y) of its bottom-left point
(origin of the component) 2 . Its orientation corresponds to
any of the 90 degree rotation w.r.t. the reference axis.

The microfluidic component has several input and output
ports, referred to as sockets. Each component has at least
one socket. Each socket j = 1, ...,mi ≥ 1 of the component
i = 1, ..., N has a relative position defined w.r.t. the origin
1 Note than in future applications, optimizing the number and the
locations of crossings could be of interest, especially in the context
of integration of tubings into manifolds.
2 See e.g. Papageorgiou and Rotstein (1998) for an alternative
representation



Figure 3. Representation of rectangle rotation with connectors

of the component, with two parameters Cxij and Cyij ,
see Figure 3. Finally, B is the set of Boolean variables,
i.e. {0, 1}.

3.2 Non-overlapping constraints

The non-overlapping of two rectangles i and j is a dis-
junctive constraint. It is well-known it can be recast into
a mixed-integer linear form, see e.g. Papageorgiou and
Rotstein (1998). We follow this approach. To avoid over-
lapping, the two rectangles should have their bottom-left
points sufficiently far away from each-other in the x or
the y direction. Mathematically, this can be recast as
follows. Consider gij and bij two Boolean variables defining
the horizontal and vertical relative positions of the two
rectangles:

gij ,
{

1 if xi + Lxi ≤ xj
0 otherwise

bij ,
{

1 if yi + Lyi ≤ yj
0 otherwise

Then, the non-overlapping constraint is satisfied if and
only if

gij + gji + bij + bji ≥ 1
Using the classic big-M method (see e.g. Papageorgiou
and Rotstein (1998); Grossmann (2002)), all the non-
overlapping constraints (for every i 6= j) can be accounted
for under the form

xj − xi +Mx(1− gij) ≥ Lxi
yj − yi +My(1− bij) ≥ Lyi

where Mx and My are two large positive parameters. In
the applications of this article, Mx and My are set to:

(1 + ε)
∑
i=1,...,N (Lxi) and (1 + ε)

∑
i=1,...,N (Lyi)

with ε = 5e− 2.

The big-M method could be advantageously replaced by a
convex-hull method, see e.g. Grossmann and Lee (2003)
to avoid overly large relaxation of actual feasible sets
which can be troublesome and costly for subsequent MILP
solvers.

3.3 First objective function: encompassing perimeter

It is desired to promote compactness of the layout of a set
of microfluidic components. Several natural choices could

be considered to mathematically formulate this goal. All
are related to the rectangle encompassing the components.
The restriction to an encompassing rectangle is motivated
by practical considerations, as all microfluidic instruments
are eventually boxed in rectangular enclosures. For in-
stance, the rectangle could be measured in two ways,
through its area or its perimeter. The perimeter is a
relevant choice as it naturally avoids extreme aspect ratios
which could be generated as artifacts by minimizing the
area. Mathematically, considering the perimeter is appeal-
ing as it yields a linear formulation. For example, ignoring
the non-overlapping constraint for sake of clarity, the least
perimeter encompassing a set of microfluidic components
is defined by the following linear program:

min
zx, zy

zx + zy

s.t.

zx ≥ xi + Lxi, i = 1, . . . , N,

zy ≥ yi + Lyi, i = 1, . . . , N

The minimum encompassing perimeter problem being
translationally invariant, the coordinates of the various
components must be bounded in both x and y directions.
Then, with the non-overlapping constraints, the minimum
encompassing perimeter problem writes

min
zx,zy,(xi),(yi),
(bij∈B),(gij∈B)

zx + zy

s.t.

zx ≥ xi + Lxi, i = 1, . . . , N,

zy ≥ yi + Lyi, i = 1, . . . , N,

xj − xi +Mx(1− gij) ≥ Lxi, i 6= j,

yj − yi +My(1− bij) ≥ Lyi, i 6= j,

gij + gji + bij + bji ≥ 1, i < j,

xi ≥ 0, yi ≥ 0

(1)

3.4 Second objective function: connection lengths

The sockets of all the microfluidic components can be
listed in a single array. A connectivity (adjacency) matrix
defines point-to-point connectivity between the sockets.
From this matrix, a cost can be defined. For each con-
nection, the Manhattan distance between the sockets is
computed, which corresponds to the tubing lengths under
the assumption that the microfluidic tubings are aligned



with the axis of the xy-plane 3 . The Manhattan distance
between two points A and B in the plane is |xA − xB | +
|yA − yB |. In this expression, the absolute value function
can be reformulated using an additional variables dx and
the constraints dx ≥ (xA−xB), dx ≥ (xB−xA). It suffices
to minimize dx to minimize |xA − xB |. This yields the
generic formulation

min
dx, dy

dx + dy

s.t.

dx ≥ xA − xB , dx ≥ xB − xA,
dy ≥ yA − yB , dy ≥ yB − yA

Gathering the two objectives From the derivations above,
one can now formulate an optimization problem, where,
for now, the two cost objectives are simply added. This
gives (2). For brevity of mathematical expressions, a
Diljk ∈ B is introduced. It is equal to 1 if and only if
the l socket of component i is connected to the k socket of
component j.

min
L,P,zx,zy,(xi),(yi),(bij∈B),
(gij∈B),(dxiljk),(dyiljk)

L+ P

s.t.

L =

N∑
i=1

mi∑
l=1

N∑
j=1

mj∑
k=1

(dxiljk + dyiljk)Diljk,

P = zx + zy,

zx ≥ xi + Lxi, i = 1, . . . , N,

zy ≥ yi + Lyi, i = 1, . . . , N,

xj − xi +Mx(1− gij) ≥ Lxi, i 6= j,

yj − yi +My(1− bij) ≥ Lyi, i 6= j,

gij + gji + bij + bji ≥ 1, i < j,

dxiljk ≥ (xi + Cxil)− (xj + Cxjk) l = 1, ...,mi,

dxiljk ≥ (xj + Cxjk)− (xi + Cxil) k = 1, ...,mj ,

dyiljk ≥ (yi + Cyil)− (yj + Cyjk),

dyiljk ≥ (yj + Cyjk)− (yi + Cyil),

xi ≥ 0, yi ≥ 0
(2)

3.5 Allowing rotations of the components

Generally, only 4 rotations of 90 degrees are allowed, as
illustrated in Figure 3. Therefore the abscissa and ordinate
of the l socket of component i can be any one of the
following four

xi + Cxil, yi + Cyil
xi + Lxi − Cxil, yi + Lyi − Cyil

xi + Cyil, yi + Lxil − Cxil
xi + Lyi − Cyil, yi + Cxil

Conveniently, for each component i, four Boolean variables
are introduced, such that

θ1i + θ2i + θ3i + θ4i = 1

3 As an alternative, the Euclidean distance could be considered,
yielding another convex problem, of quadratic nature. Tests have
shown that the obtained solutions are not particularly appealing
from the application point of view and do not justify the increase
in computational load.

The coordinates of the l socket of component i are

xi + θ1iCxil + θ2i (Lxi − Cxil) + θ3iCyil + θ4i (Lyi − Cyil)
yi + θ1iCyil + θ2i (Lyi − Cyil) + θ3i (Lxi − Cxil) + θ4iCxil

These new coordinates can simply replace the expressions
xi + Cxil and yi + Cil in (2) (these latter corresponding
to θ1i = 1). It is handy to introduce another Boolean
variable ri to account for the fact than Lxi and Lyi should
be exchanged only if the rotation is 90 or 270 degrees. This
is simply achieved with

ri = θ3i + θ4i , 1− ri = θ1i + θ2i
As a final remark, it is important to note that the whole
problem being invariant by a 90 degrees rotation, it is
useful to set the orientation of one (and only one) of
components. This proves critical to prevent the solver from
oscillating between artificially created iso-cost solutions.

3.6 Comprehensive problem formulation

Gathering all the derivations above, the general MILP
model is formulated in (3).

3.7 Pareto front

Instead of the simple addition considered to formulate (3),
it is much more natural to consider the multi-objective
optimization problem, and therefore to consider the Pareto
front of the cost functions L and P .

To compute the Pareto front given in Figure 4, we proceed
as usual, see e.g. Ehrgott (2005). First a single objective
problem is solved, by considering the problem (3) formu-
lation at the exception of the objective function which is
L instead of L + P . This optimum has a perimeter value
P̄ . Then, another problem is solved, considering again L
as objective function and the additional constraint that
P ≤ P̄ −p, where p is a step change. Gradually, the Pareto
front is thus estimated as a collection of optima.

An example of the obtained Pareto front along with two
solutions along the front are pictured in Figure 4. The
extreme points of the Pareto front are not satisfactory from
the application viewpoint. Some trade-off has to be found.
A selection along the Pareto front is made.

Figure 4. Pareto front and two solutions. P is the perimeter
and L the total length of the wires.



min
L,P,zx,zy,(xi),(yi),(bij∈B),(gij∈B),

(dxiljk),(dyiljk),(θ
1...4
i ∈B)

L+ P

s.t.

L =

N∑
i=1

mi∑
l=1

N∑
j=1

mj∑
k=1

(dxiljk + dyiljk)Diljk,

P = zx + zy,

zx ≥ xi + (θ1i + θ2i )Lxi + (θ3i + θ4i )Lyi, i = 1, . . . , N,

zy ≥ yi + (θ1i + θ2i )Lyi + (θ3i + θ4i )Lxi, i = 1, . . . , N,

xj − xi +Mx(1− gij) ≥ (θ1i + θ2i )Lxi + (θ3i + θ4i )Lyi, i 6= j,

yj − yi +My(1− bij) ≥ (θ1i + θ2i )Lxi + (θ3i + θ4i )Lyi, i 6= j,

gij + gji + bij + bji ≥ 1, i < j,

dxiljk ≥ xi + θ1iCxil + θ2i (Lxi − Cxil) + θ3iCyil + θ4i (Lyi − Cyil),
− xj + θ1jCxjl + θ2j (Lxj − Cxjl) + θ3jCyjl + θ4j (Lyj − Cyjl) l = 1, ...,mi,

dxiljk ≥ xj + θ1jCxjl + θ2j (Lxj − Cxjl) + θ3jCyjl + θ4j (Lyj − Cyjl),
− xi + θ1iCxil + θ2i (Lxi − Cxil) + θ3iCyil + θ4i (Lyi − Cyil),

dyiljk ≥ yi + θ1iCyil + θ2i (Lyi − Cyil) + θ3i (Lxi − Cxil) + θ4iCxil,

− yj + θ1jCyjl + θ2j (Lyj − Cyjl) + θ3j (Lxj − Cxjl) + θ4jCxjl,

dyiljk ≥ yj + θ1jCyjl + θ2j (Lyj − Cyjl) + θ3j (Lxj − Cxjl) + θ4jCxjl,

− yi + θ1iCyil + θ2i (Lyi − Cyil) + θ3i (Lxi − Cxil) + θ4iCxil,

xi ≥ 0, yi ≥ 0,

θ11 = 1, θ1i + θ2i + θ3i + θ4i = 1

(3)

4. RESULTS

4.1 Testing the method on random cases

Creation of relevant test cases by randomization The
methodology developed in this article is implemented un-
der the form of a software package. To assess its numerical
performance (in view of generalized use), some tests must
be performed to determine what is the size N that can be
treated in a given time.

The performance assessment is achieved by using ran-
domly generated cases. The randomly generated instances
must have some degree of realism. Consequently, all
rectangles dimensions, number and sizes of sockets cor-
respond to real microfluidic components found off-the-
shelves. Then, the connectivity graph must be randomly
generated, having a prescribed degree of connection. For
this, several methods can be employed, see Viger and
Latapy (2005); Erdös and Rényi (1959); Molloy and Reed
(1995).

A graph is a diagram of points (vertices) and lines (edges)
connected to the points. The points represent the compo-
nents. When two vertices are directly connected by a line,
they are said to be adjacent. The degree of a vertex is the
number of vertices adjacent to this vertex.

The Molloy and Reed Molloy and Reed (1995) method
generates a random graph with prescribed degree sequence
in linear time. However, this model produces graphs that
are neither simple nor connected. A simple graph is a graph
having neither multiple edges (the case of several edges
binding the same pair of vertices is forbidden), nor loops,
i.e. edges binding a vertex to itself. To circumvent this,

one generally simply removes multiple edges and loops,
and then keeps only the largest connected component. The
merits of such an approach is to handle very large networks
(i.e. very large N) which is out-of-the-scope of our study.

The Watts–Strogatz (WS) model Watts and Strogatz
(1998) is a random graph generation model that produces
graphs with small-world properties 4 , including short av-
erage path lengths (meaning that the average number of
steps needed to relate two components is small) and high
clustering (measure of the degree to which components in a
graph tend to cluster together). This method is well-suited
for our study.

To be representative of the microfluidic instruments
treated in our applications, the WS model shall be used
with parameters that promote short (but not too short)
average path and limit clustering. The two parameters
at stake are 0 ≤ β ≤ 1 use as a probability in the WS
model to create a connection and K the mean degree of the
graph. Following, the results of Barrat and Weigt (2000),
to reduce clustering β should be close to 1. The degree
K can be set close to the maximum of connection of the
components. To avoid reducing the average path too much,
β should be kept relatively small.

In practice, the WS model is run with β = 0.7. If the
graph is not connected, then it is discarded. Typical results
obtained with the WS method are pictured in Figure 5.

Then, the sockets locations are chosen. Each vertex of
the graph is a component. It has as many connected
edges as it has sockets. The two dimensional parameters,

4 This property is of interest for asymptotics when the number of
components N is large, which is not of interest here



N av. t std t min t max t av. a std a min a max a av. d std d min d max d

3 0.14 0.024 0.08 0.20 60.58 27.5 9 121 7.69 2.9 2.09 13.79

4 0.36 0.077 0.18 0.52 91.05 31.39 30.23 165 8.13 2.85 1.86 15.44

5 0.93 0.41 0.37 2.14 138.31 49.9 39.56 246.1 10.35 4.3 3.34 24.09

6 2.39 1.64 0.57 7.47 170.85 58.5 54.34 328 10.84 3.84 4.7 19.38

7 5.11 2.16 1.59 12.6 190.76 56.48 106.82 333.6 12.03 4.12 3.71 21.4

8 10.41 7.88 1.2 42.34 258.14 79.93 66.25 436.94 14.16 5.27 3.6 27.95

9 31.44 20.96 5.09 90.61 292.64 84.14 140.16 539 15.31 5.53 4.38 32.33

10 112.16 113.56 8.52 595.66 364.17 83.77 171.6 537.94 18.71 5.33 7.2 29.67

Table 1. Benchmark results on 50 random instances.
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Figure 5. Left: graph of the testcase treated in Figure 4.
Right: a randomly generated graph.

and the locations of its sockets can be randomly chosen
consistently with the database of microfluidic component
found off-the-shelves discussed earlier.

Figure 6. Optimization of the microfluidic manifold, min-
imizing fluidic paths (top: initial layout, bottom: op-
timal layout).

Numerical performance For establishing the numeri-
cal performance, all test were performed on a Intel(R)
Xeon(R) E-2236 CPU @ 3.40GHz (6 cores). The following
software packages were used: MILP solver is Cbc 2.10.5,
see Forrest et al. (2020), which is run with Python 3.8.1
using Pyomo 5.6.8, see Hart et al. (2017). The reported
computation time is the wall clock-time.

Table 1 reports the descriptive statistics obtained with
50 random instances of systems ranging from 3 to 10
connected components. Information provided are average
(av.), standard deviation (std), max and min of t wall-

clock time, a total area defined as a = zx × zy and d sum
of all connection lengths.

4.2 A real test-case

We report results obtained for a real microfluidic instru-
ment. The instrument consists of N=30 components that
are 9 reservoirs connected to 2 pressure controllers, 2
electronic boards, 1 microfluidic chip, and in the middle
a group of microfluidic elements containing 2 11-ports
valves, 2 3-ports valves, 1 flow sensor and 11 connectors
(Figure 7). This latter group allows to inject, recirculate,
flush fluids into the chip and is to be integrated into a
microfluidic manifold.

First, the optimization method is run on the manifold
assigning the 11 connectors to given positions chosen by
the designer. The optimal solution minimizing microfluidic
paths, and so internal volumes, is explored (Figure 6). Af-
ter integration with the manifold card, all the components
are optimized considering this time the manifold group
and the reservoirs locations as given (i.e. 25 components)
(Figure 8). The software pipeline is automated so that the
designer can manipulate any of the 25 elements (if needed)
and run optimization in few minutes.

For the first run with N=5 (and 11 fixed components), a
Pareto front is computed using a total of 10 runs. The total
computation time is about 3 seconds. An optimal trade-
off is manually selected by considering number of crossings
(the obtained number is zero in this case), covering, aspect
ratio and sum of connection lengths. The second run N=5
(and 25 fixed components) is run in less than 3 seconds.
This yields the optimal layout presented in Figure 8.

5. CONCLUSION

The main contribution of the article is a methodology
to optimize the layout of microfluidic instruments by
considering the two objective of minimum encompassing
perimeter and total connection lengths. Following results
from the literature, the mathematical formulation results
in a MILP. It is shown that for typical applications
of microfluidic instrument design, implementation with
commonly available software packages yields satisfactory
numerical results, allowing to compute the Pareto front
with a good level of accuracy and a limited computation
time. Having the possibility to estimate the Pareto front
is a valuable asset for design engineers which can then
easily determine a practical solution to the multi-objective
problem. We have mentioned that our current problem
does not have to account for the locations and numbers



Figure 7. Real test-case schematic circuit. Two regions are defined: the fluidic manifold part and the external layout
part.

Figure 8. Final optimized layout of the microfluidic instru-
ment schematized in Figure 7.

of tube crossings a system can present. However, in future
applications, optimizing the number and the locations of
crossings could be of interest, especially in the context of
integration of tubing into manifolds. This integration could
be done by adding some intersection constraints, disabling
any crossing of two connections based on their connector
positions.

For very large systems (more that 20 components) the
methods scale poorly. However, it is often possible to
decompose the system into sub-blocks of smaller sizes.
The methodology allows to start with subsystems and
then consider their optimized versions as new components
for the next stage of the optimization procedure. This
multi-stage procedure has been illustrated on a real-test
case. If subsystems can not be identified, it is possible
to restrict the computational time. Besides the simple
strategy consisting of returning the solution after a time-
out, it is possible to develop alternative methods, such as
heuristics (see e.g. Bottlik (2017)), e.g. random pairwise
exchange, simulated annealing (under the form of relaxing
spaces between components of locally optimal solutions),

Monte-Carlo methods for initialization, or meta-heuristics,
e.g. based on successive inclusion of components in the
problem.

To assess the relevance of such sub-optimal strategies, in-
tense testing on random cases can be used. The description
of the random cases generator is a second contribution of
the article.
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