Bayer, F., Lorenzen, M., Muller, M., and Allgower, F. (2016). Robust economic model predictive control using stochastic information. Automatica, 74, 151{ 161. Carlson, D., Haurie, A., and Leizarowitz, A. (1991). In nite Horizon Optimal Control: Deterministic and Stochastic Systems. Springer Verlag. Damm, T., Grune, L., Stieler, M., and Worthmann, K. (2014). An exponential turnpike theorem for dissipative optimal control problems. SIAM Journal on Control and Optimization, 52(3), 1935{1957. Dorfman, R., Samuelson, P., and Solow, R. (1958). Linear Programming and Economic Analysis. McGraw-Hill, New York. Farina, M., Giulioni, L., Magni, L., and Scattolini, R. (2013). A probabilistic approach to model predictive control. In 52nd IEEE Conference on Decision and Control, 7734{7739. IEEE. Faulwasser, T. and Grune, L. (2021). Turnpike properties in optimal control: An overview of discrete-time and continuous-time results. In E. Zuazua and E. Trelat (eds.), Handbook of Numerical Analysis. Elsevier. Arxiv: 2011.13670. In press. Faulwasser, T., Grune, L., and Muller, M. (2018). Economic nonlinear model predictive control: Stability, optimality and performance. Foundations and Trends in Systems and Control, 5(1), 1{98. doi:10.1561/2600000014. Faulwasser, T., Korda, M., Jones, C., and Bonvin, D. (2017). On turnpike and dissipativity properties of continuous-time optimal control problems. Automatica, 81, 297{304. doi:10.1016/j.automatica.2017.03.012. Fristedt, B. and Gray, L. (2013). A modern approach to probability theory. Springer Science & Business Media. Gerster, S., Herty, M., Chertkov, M., Vu ray, M., and Zlotnik, A. (2019). Polynomial chaos approach to describe the propagation of uncertainties through gas networks. In Progress in Industrial Mathematics at ECMI 2018, 59{65. Springer. Grune, L. (2013). Economic receding horizon control without terminal constraints. Automatica, 49(3), 725{734. Grune, L. and Muller, M. (2016). On the relation between strict dissipativity and turnpike properties. Sys. Contr. Lett., 90, 45 { 53. Kim, K., Shen, D., Nagy, Z., and Braatz, R. (2013). Wiener's polynomial chaos for the analysis and control of nonlinear dynamical systems with probabilistic uncertainties. IEEE Control Systems, 33(5), 58{67. Kolokoltsov, V. and Yang, W. (2012). Turnpike theorems for Markov games. Dyn. Games Appl., 2(3), 294{312. Marimon, R. (1989). Stochastic turnpike property and stationary equilibrium. J. Econom. Theory, 47(2), 282{306. McKenzie, L. (1976). Turnpike theory. Econometrica: Journal of the Economet- ric Society, 44(5), 841{865. Mesbah, A. and Streif, S. (2015). A probabilistic approach to robust optimal experiment design with chance constraints. IFAC-PapersOnLine, 48(8), 100{ 105. Muhlpfordt, T., Faulwasser, T., Roald, L., and Hagenmeyer, V. (2017). Solving optimal power ow with non-gaussian uncertainties via polynomial chaos expansion. In Proc. of 56th IEEE Conference on Decision and Control, 4490{ 4496. Melbourne, Australia. doi:10.1109/CDC.2017.8264321. Muhlpfordt, T., Findeisen, R., Hagenmeyer, V., and Faulwasser, T. (2018). Comments on quantifying truncation errors for polynomial chaos expansions. IEEE Control Systems Letters, 2(1), 169{174. doi: 10.1109/LCSYS.2017.2778138. Muhlpfordt, T., Zahn, F., Hagenmeyer, V., and Faulwasser, T. (2020). Poly- Chaos.jl { a julia package for polynomial chaos in systems and control. In Proceedings of the 21. IFAC World Congress. Paulson, J., Mesbah, A., Streif, S., Findeisen, R., and Braatz, R. (2014). Fast stochastic model predictive control of high-dimensional systems. In 53rd IEEE Conference on decision and Control, 2802{2809. IEEE. Sullivan, T.J. (2015). Introduction to uncertainty quanti cation, volume 63. Springer. Trelat, E. and Zuazua, E. (2015). The turnpike property in nite-dimensional nonlinear optimal control. Journal of Di erential Equations, 258(1), 81{114. Wiener, N. (1938). The homogeneous chaos. American Journal of Mathematics, 897{936. Xiu, D. and Karniadakis, G.E. (2002). The Wiener-Askey polynomial chaos for stochastic di erential equations. SIAM Journal on Scienti c Computing, 24(2), 619{644. Zanon, M. and Faulwasser, T. (2018). Economic MPC without terminal constraints: Gradient-correcting end penalties enforce stability. Journal of Process Control, 63, 1{14. doi:10.1016/j.jprocont.2017.12.005.