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Abstract: In this paper we investigate a novel tuning methodology for a patient-individualized
selection of the parameters of a proportional-integral-derivative (PID) controller that regulates
the maintenance phase of general anesthesia. In particular, the knowledge of demographic data
is exploited to determine the values of the parameters for each specific patient. The proposed
approach is focused on the closed-loop administration of propofol by using the Bispectral Index
Scale as controlled variable. Simulation results suggest that, with respect to a previously devised
population-based PID tuning approach, the new methodology is more robust with respect to
both intra-patient and inter-patient variability, at the cost of a slight decrement in the controller
bandwidth.
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1. INTRODUCTION

General anesthesia is a fundamental aspect in modern
medicine as it allows invasive surgical procedures to be
carried out without causing anxiety and pain to the pa-
tient. Thanks to the administration of specific hypnotic
drugs, the activity of patient’s central nervous system
(CNS) is reduced to a level that induces unconsciousness
and amnesia. Moreover, by administering analgesic drugs,
the perception of painful stimuli is blocked and, in some
cases, the administration of neuromuscular-blocking drugs
is used to obtain paralysis of the skeletal muscles. In the
practice of total intravenous anesthesia (TIVA), propofol is
the most common hypnotic drug thanks to its fast redistri-
bution and metabolism (Bibian et al., 2005) and relatively
few side effects, if properly dosed (Tramer et al., 1997).
Traditionally, the anesthesiologist decides the dosage of
the initial bolus and the infusion rate during the main-
tenance phase depending on the physical characteristics
of the patient, and by monitoring clinical indicators of
the depth of hypnosis (DoH). DoH monitoring systems
have been developed to provide the anesthesiologist with
a quantitative measure of the clinical effect of hypnotic
drugs on the CNS. The Bispectral Index Scale (BIS, As-
pect Medical Systems, Norwood, USA) (Rampil, 1998) is
one of the most widely employed measure of DoH in the
clinical practice, and its effectiveness has been proven in

numerous clinical studies (Struys et al., 1998). The BIS
provides an estimate of the DoH through dimensionless
number which varies from 0 (EEG silence) to 100 (patient
fully awake). During anesthesia, this index should be kept
in the range 40-60 for most kinds of surgeries (Rosow
and Manberg, 2001). The availability of DoH indices has
encouraged the development of closed-loop systems for au-
tomated drug delivery. Several control strategies have been
proposed such as proportional-integral-derivative (PID)
control (Dumont et al., 2009; Padula et al., 2017; Schiavo
et al., 2021), event-based control (Merigo et al., 2017),
model predictive control (Ionescu et al., 2008), fractional
control (Dumont et al., 2009) and fuzzy control (Mendez
et al., 2018). The relationship between propofol infusion
and its clinical effect on DoH is traditionally modeled by a
linear pharmacokinetic model, which describes the drug
absorption and distribution, connected in series with a
nonlinear pharmacodynamic model, which describes the
relationship between the propofol blood concentration and
its clinical effect. The nominal coefficients of the linear
part depend on the patient’s demographic parameters. The
knowledge of these parameters helps to reduce model un-
certainty. Conversely, the coefficients of the nonlinear part
do not depend on any demographic parameter and show a
great uncertainty that negatively affects the performance
of closed-loop control systems. In order to deal with this is-
sue, robust PID control strategies have been proposed, and



their feasibility has been demonstrated (Dumont et al.,
2011; West et al., 2013; Padula et al., 2017; West et al.,
2018). An alternative approach to handle uncertainty is
the individualization of the controller design, which relies
on using a specific controller for each individual, or for
groups of patients who exhibit similar characteristics in
response to drug administration. Large uncertainty limits
the benefits of using complex control solution. Hence,
reducing the effect of uncertainty is critical and provides a
better alternative than implementing more complex con-
trol solutions, as highlighted in (van Heusden et al., 2018).

In this work we investigate a novel optimization-based PID
tuning methodology that exploits the covariates of the
Schnider’s pharmacokinetic model for propofol (Schnider
et al., 1998), i.e., the demographic data of the patient,
to obtain a patient-individualized tuning. The proposed
approach provides an optimal set of tuning parameters
for each combination of covariates, thus providing an
individualization of the controller dynamics based on the
demographic data of the patient. The advantages of our
approach in reducing the effects due to inter-patient and
intra-patient variability are analyzed. In particular, we are
interested in understanding whether a tuning of the PID
controller that takes into account the covariates of the
pharmacokinetic model can lead to some advantage despite
the presence of the nonlinear pharmacodynamics. To this
end, the results obtained in simulation with the new
individualized tuning are compared with those obtained
using an optimized population-based tuning (Padula et al.,
2017).

2. MATERIALS AND METHODS

2.1 Patient model

As mentioned above, the tuning procedure presented
hereafter is based on the simulation of patient response
to propofol administration, hence an appropriate math-
ematical model is required. Although several models
are available for propofol, in this work we have de-
cided to rely on the so-called Schnider pharmacoki-
netic/pharmacodynamic (PK/PD) model (Schnider et al.,
1998, 1999), since it has already been widely and success-
fully used in the design of closed-loop control systems
(Schiavo et al., 2020). The dynamics of the patient is
described by a fourth-order compartmental model which
links the infusion rate of propofol to the effect-site con-
centration. The relationship between the effect-site con-
centration of propofol and the BIS is described by means
of a nonlinear sigmoid, referred to as Hill function. The
average parameters values presented in (Vanluchene et al.,
2004) are used in this work. It is worth stressing that
the parameters of the Hill function do not depend on the
patient’s demographics and are subjected to a large vari-
ability. Hence, the Hill function is a significant source of
uncertainty in the model, and thus limits the performance
achievable by closed-loop control systems.

2.2 Control system architecture

In this paper, we consider the control scheme shown in
Figure 1. The feedback controller is a PID controller in

Fig. 1. Control scheme for the automatic administration
of propofol during general anesthesia.

standard ideal form with filtered derivative term:

PID(s) =
U(s)

E(s)
= Kp

1 +
1

Tis
+

Tds

1 +
Td
N
s

 , (1)

where Kp is the proportional gain, Ti is the integral
time constant and Td is the derivative time constant. The
derivative action is filtered with N = 5 in order to obtain a
proper controller. Note that E(s) is the Laplace transform
of the error signal e(t), which is calculated as the difference
between the desired BIS value r(t) and the actual BIS
value BIS(t), while U(s) is the Laplace transform of the
propofol infusion rate u(t), which represents the control
variable. The saturation block represents the lower and
upper bounds of achievable infusion rates, which are 0
mg/s and 6.67 mg/s, respectively (Merigo et al., 2017).
A conditional integration anti-windup strategy has been
implemented (Visioli, 2006). The effect on DoH due to
the surgical stimulation is modeled as an additive distur-
bance acting on the BIS signal. Here we use the model of
disturbance proposed in (Soltesz, 2013), which consists of
a step signal of amplitude 10 on the BIS, that simulates
the arousal due to surgical stimulation, followed after 10
minutes by another step of amplitude -10, that brings the
disturbance back to zero thus simulating the cessation of
surgical stimulation. The control task consists in main-
taining BIS(t) as close as possible to r(t) (which is set to
50) by rejecting disturbances while avoiding undershoots
of the BIS below the value of 40 and raises of the BIS over
the value of 60, since these situations could be harmful for
patient’s health.

2.3 Controller tuning

The proposed tuning methodology allows the PID pa-
rameters to be adjusted according to the patient’s demo-
graphic data. In other words, the knowledge of patient’s
demographic data provides information about the system’s
dynamics which can be explicitly exploited in the tuning
of the controller. Since the presence of nonlinearities pre-
vents the use of analytical tuning methodologies, a heuris-
tic method has been employed. In particular, a Particle
Swarm Optimization (PSO) algorithm (Kennedy, 2011)
has been used in order to find the set of values of Kp, Ti
and Td that minimizes the integral absolute error, defined
as

IAE =

∫ ∞
0

|e(t)|dt. (2)

This performance index has been selected as, in general,
it guarantees short settling times without large under-
shoots. Once the patient’s age, weight, height and gender
are known, the PK/PD model is constructed. As already
mentioned, the average parameters values presented in



(Vanluchene et al., 2004) are used for the Hill function.
This model is then used to run the PSO by simulating the
response to the disturbance profile described in Section
2.2, eventually obtaining the set of optimal PID parame-
ters that minimizes the IAE.
In order to verify how the PID parameters change ac-
cording to patient demographics, a sample population has
been generated, and for each individual, the optimal PID
parameters have been calculated. For each gender, an indi-
vidual of the population is characterized by the quadruple
(A,H,W,G), where A stands for age, H for height W for
weight and G for gender, and the entire population is the
set {(A,H,W,G) |A = 20 + 10i;H = 150 + 5j;W = 50 +
5k; i, j, k ∈ N0; i ≤ 7; j, k ≤ 8;G ∈ {F,M}} where F and
M stand for female and male, respectively. The population
covariates cover the following ranges, age ∈ [20, 90] in
steps of 10 years, height ∈ [150, 190] cm in steps of 5
cm and weight ∈ [50, 90] kg in steps of 5 kg, and for each
combination of the above, there are both a female and
a male individual. The optimal PID parameters obtained
for each individual of the sample population are shown
in Figure 2 where it is possible to observe that the op-
timal tuning parameters change significantly across the
considered domain. To quantify the amount of change,
we calculate the coefficient of variation (CV) for each
parameter. For the given population/sample, CV is defined
as (Brown, 1998):

CV =
σ

|µ|
· 100[%], (3)

where σ is the standard deviation and µ is the average.
For males we have CVKp

= 22.40%, CVTi
= 15.44%

and CVTd
= 20.86%, while for females we have CVKp

=
25.28%, CVTi

= 15.28% and CVTd
= 20.02%. The CVs

are similar for both genders and the tuning parameter
that shows the largest variability is the proportional gain
Kp. Further, we notice that all the parameters show a
monotonic behavior with respect to age (with the ex-
ception of Td which shows a slight overlap for 80 and
90 years old individuals), see Figure 2. In particular, Kp

and Ti decrease as age increases, while Td increases as
age increases. Note that Kp also shows a clear increasing
trend with respect to height and weight. Finally, Ti and
Td show less noticeable trends with respect to weight and
height, and they decrease slightly as the weight increases
and remain almost unchanged as the height varies. The
same considerations apply to both males and females.

3. SIMULATION RESULTS

In this section the results obtained by testing the indi-
vidualized tuning in simulation are reported. These re-
sults are compared with those obtained by employing the
population-based PID tuning methodology proposed in
(Padula et al., 2017) in order to understand the improve-
ments that an individualized tuning brings with respect
to a population-based approach. The tuning procedure
proposed in (Padula et al., 2017) has been applied to the
control structure described in Section 2.2 and the following
population-based tuning parameters have been obtained:
Kp = 0.2013, Ti = 385.8701, Td = 13.7577. The simulation
has been performed by simulating the maintenance phase
of anesthesia in order to obtain a tuning suitable to reject
disturbances, and therefore a fair comparison. The refer-

Fig. 2. Trends of the PID parameters for the sample
population. The parameters for males are shown in
the left column while the parameters for females are
shown in the right column.

ence signal r(t) is initially set equal to 50, the input and
the states of the system are initialized as the equilibrium
input and the corresponding equilibrium states such that
BIS(t) = 50. Further, the integrator of the PID con-
troller is preloaded to a value such that the control action
in absence of tracking error equals the above-mentioned
equilibrium input. Then, the disturbance profile described
in Section 2.2 is applied. In order to evaluate the control
performance, we use the following indices (Ionescu et al.,
2008; Merigo et al., 2017):

• TT: observed time to target, which is the time taken
to the controller to bring the BIS back in the interval
45-55 after the disturbance occurred. It is calculated
separately for the positive and for the negative dis-
turbance step, and it is referred to TTp and TTn,
respectively.

• BIS-NADIRp: the lowest observed BIS value caused
by the controller as a consequence of the disturbance
rejection.

• BIS-NADIRn: the highest observed BIS value after
the disturbance stops.
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Fig. 3. Comparison of mean, minimum and maximum
values of performance indices for the 13 patients of
the test population obtained with the individualized
tuning (I: green line) and with the population-based
tuning (P: black line). : mean value, : minimum
value, : maximum value.

3.1 Test on a sample dataset

Initially the PID tunings have been tested on the dataset
of patients presented in (Struys et al., 2004; Ionescu
et al., 2008; Nascu et al., 2014; Padula et al., 2017). It
represents a valid benchmark as it has been created on
the basis of clinical studies in order to represent a wide
range of population with significantly diverse responses
to propofol administration. The dataset consists in 12
patients plus a thirteenth individual which is obtained
by averaging the parameters of the other patients. Note
that the population-based PID tuning used for the sake of
comparison in this work has been obtained by minimizing
the worst-case scenario over the above-mentioned dataset,
while the individualized tuning is obtained by considering
the values of the parameters of the Hill function described
in Section 2.1. In order to better highlight the differ-
ences in the responses to the positive step disturbance
obtained with the two different tunings, a comparison be-
tween the mean, minimum and maximum values of perfor-
mance indices TTp and BIS-NADIRp is shown in Figure
3. Note that the TTp obtained with the individualized
tuning is slightly longer than the one obtained with the
population-based tuning. In particular, the individualized
tuning shows a mean TTp of 17.8 s while the population
based tuning shows a mean TTp of 14.1 s. Nevertheless,
the TTp obtained with the individualized tuning remains
clinically acceptable as the maximum value is 23.3 s.
Furthermore, the higher TTp values obtained with the
individualized tuning are counterbalanced by a reduction
in the BIS-NADIRp. In particular, the population-based
tuning shows a mean BIS-NADIRp value of 47.5 against
the 48.9 obtained with the individualized tuning. This
difference is even more evident if the minimum values are
considered. Indeed, with the individualized tuning, a min-
imum BIS of 48.3 is reached against the minimum BIS of
45.8 obtained with the population-based tuning. The indi-
vidualized tuning also shows a reduction in the variability
of the BIS-NADIRp. Indeed, with the population-based
tuning, a range of 3.0 is obtained among the 13 patients
against a range of 1.0 obtained with the individualized
tuning.

3.2 Test on a dataset subject to intra-patient variability

The behavior of the two different tuning approaches has
been tested with respect to intra-patient variability, hence
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Fig. 4. Comparison of mean, minimum and maximum
values of performance indices for each of the 13
patients of the test dataset subjected to intra-patient
variability obtained with the individualized tuning
(green line) and with the population-based tuning
(black line). : mean value, : minimum value,
: maximum value.

against the variability within a group of patients with the
same demographics. In order to simulate this variability,
for each of the 13 patients of the considered dataset, a
set of 500 perturbed models has been generated by a
Monte Carlo method based on the statistical properties
of the PK model given in (Schnider et al., 1998), and
for each of these perturbed models the response to dis-
turbance has been simulated. It is worth stressing that
the individualized tuning procedure is still performed on
the nominal model of the 13 patient, hence the tuning
parameters are the same employed in Section 3.1, and the
same set of parameters is employed for each one of the
500 perturbed models. The mean value, minimum value,
maximum value and range for each of the thirteen patients
of the dataset are shown in Figure 4. Even in the presence
of intra-patient variability, the results obtained with the
perturbed population shows similarity with those achieved
on the dataset of the 13 nominal patients. In particular,
the individualized tuning achieves higher values of the BIS-
NADIRp, thus reducing the undershoot, at the cost of an
increased value of the TTp with respect to the population-
based tuning. As regards TTn and BIS-NADIRn, the
same considerations made for the dataset of 13 nominal
patients remain valid also for this more general case. Note
that the individualized tuning achieves a reduction in the
variability of BIS-NADIRp.

3.3 Test on a wide population

The behavior of the two different tuning approaches with
respect to inter-patient variability has finally been as-
sessed. A random population of 500 patients has been
generated using a Monte Carlo method and the response
to disturbance has been simulated for every individual.
The patients have been generated by randomly selecting
gender, by considering a uniform distribution of age be-
tween 20 and 90, of the Body Mass Index (BMI) between
18.5 kg/m2 and 29.9 kg/m2, and of the height between
165 cm and 190 cm for males and between 150 cm and
175 cm for females. For each patient, the weight has been
calculated according to the selected height and BMI in
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Fig. 5. Comparison of mean, minimum and maximum
values of performance indices for the population of
500 patients used in order to simulate inter-patient
variability obtained with the individualized tuning (I:
green line) and with the population-based tuning (P:
black line). : mean value, : minimum value, :
maximum value.

order to consider sensible height and weight combinations.
The parameters of the Hill function have been generated
by considering the statistical distribution given in (Van-
luchene et al., 2004). The individualized tuning has been
performed for each one of the 500 generated patients by
considering the nominal model of the Hill function. As
expected, even for a wider random population the same
considerations made on the dataset of 13 patients apply.
In particular, with the individualized tuning, we obtain an
increase of the BIS-NADIRp index simultaneously reduc-
ing its variability, at the cost of an increased TTp index.
Also in this case the TTn and BIS-NADIRn indices do
not show significant differences between the two different
tunings. The TTp and BIS-NADIRp indices obtained with
both tuning methods are also shown in Figure 5 in order
to facilitate the comparison. In particular, the minimum
value of the BIS-NADIRp obtained with the population
based tuning is 39.2 while a value of 45.6 is achieved with
the individualized tuning. Conversely, the maximum value
of the TTp index goes from 17.8 s with the population-
based tuning to 28.9 s with the individualized tuning.
However, with both tunings, the responses obtained meet
the control specifications and are acceptable in clinical
practice, even in the presence of inter-patient variability.

4. DISCUSSION

The proposed individualized tuning provided satisfactory
control performance on the considered benchmark dataset.
The individualized-tuning performed well in both the cases
of intra-patient variability and inter-patient variability,
always guaranteeing the fulfillment of the control specifi-
cations. In order to better understand the advantages and
disadvantages that an individualized tuning can provide,
the results obtained have been compared with those ob-
tained with a population-based tuning. This comparison
showed that the individualized tuning can effectively re-
duce the undershoot resulting from the rejection of a posi-
tive step disturbance, by reducing also its variability. This
is consistently observed in all the tests carried out, and it is
particularly evident especially in the case of inter-patient
variability. Indeed, the minimum value of BIS-NADIRp
reached with the population-based tuning is equal to 39.2,
hence slightly below the lower BIS bound imposed by the
control specification, while with the individualized tuning
this value is equal to 45.6, hence well above the lower

limit. Also the variability of BIS-NADIRp is significantly
reduced, with the amplitude of the range of observed
values dropping from 9.8 with the population based tuning
to 3.7 with the individualized tuning. The reduction of the
effect of variability achieved with the individualized tuning
gives greater robustness with respect to BIS undershoot.
However, this increase in robustness is paid for with a
reduction in the controller bandwidth, which translates in
an increase of the TTp index. As for the reduction of the
undershoot, this is consistently observed in all tests, and it
is especially evident in the case of inter-patient variability,
with the maximum observed TTp values increasing from
17.8 s with the population-based tuning to 28.9 s with
the individualized tuning. Also the variability in the TTp
index increases with the individualized tuning, and the
amplitude of the range of observed values increases from
8.6 s with the population-based tuning to 17.5 s with the
individualized tuning. Hence, the population-based tuning
is less sensitive to the effect of variability with respect to
the time to target. It is worth stressing that, despite these
different behaviors, both tunings guarantee the fulfillment
of the control specifications, thus constituting two valid
alternatives. The lower undershoot achieved with the in-
dividualized tuning makes it preferable in those situations
and for those individuals where even slight overdosing
should be avoided, for example, for patients with a high
tendency to hypotension. On the other hand, the fastest
disturbance rejection provided by the population-based
tuning could be more suitable to reduce the risk of in-
traoperative awareness in situations where the patient is
subject to strong surgical stimulation. In this work the
individualization of the controller has been considered
only for the maintenance phase of anesthesia since the
induction phase of anesthesia is highly influenced by the
presence of the Hill function, which introduces a strong
nonlinear behavior. The individualization of the param-
eters relies on the knowledge of patient’s demographic
data that, as pointed out in Section 2.1, are not related
to the parameters of the Hill function, but only affects
the dynamics of the linear PK model. The Hill function
shows strong nonlinearity for BIS values lower than 40
or greater than 60, while, in the range from 40 to 60,
the Hill function behaves approximately like a constant
gain. Hence, during the maintenance phase when the BIS
remains mostly inside the range from 40 to 60, the dynamic
behavior of the patient is less affected by the nonlinearity,
and the proposed individualized tuning could provide more
benefits.

5. CONCLUSIONS

In this work a novel PID tuning methodology which al-
lows the controller parameters to be individualized on
the basis of the patient’s demographic data has been
presented. The proposed approach allows the knowledge
of all the patient’s measurable covariates to be exploited
and it is straightforwardly implementable in the clinical
practice since covariates are easily measurable. The main-
tenance phase of anesthesia has been considered in order
to minimize the effect of the nonlinearity introduced by
the Hill function, which is particularly significant in the
induction phase, since its parameters do not depend on
patient’s demographic data. The individualized tuning has
been tested in simulation on a sample dataset and its



behavior with respect to intra-patient and inter-patient
variability has been investigated. The controller has given
satisfying results always guaranteeing the fulfillment of
the control specifications. The results obtained in simu-
lation with the individualized controller have been com-
pared with those obtained with a PID controller tuned
with a population-based methodology. The individualized
controller has shown better robustness with respect to
intra-patient and inter-patient variability, at the cost of a
slight decrement of the bandwidth. This translates into an
increase in the amount of time required to reject positive
disturbances, which however remains within acceptable
limits. Both tunings perform well in simulation and rep-
resent therefore viable alternatives for the tuning of PID
controllers to be employed in the clinical practice.
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