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Abstract: Discrepancy-based control (DBC) represents an elegant direct control design concept
for infinite-dimensional systems, which is frequently used to control particle formation processes,
an important class of operations in chemical engineering. So far, DBC has been applied to
continuous layering growth and agglomeration, which have been accounted for by partial
differential equations. In this contribution we develop control laws for infinite systems of ordinary
differential equations, inspired by DBC. The results are visualized by the application to a
continuous agglomeration process involving additional particle breakage. We show how a two-
dimensional controller is able to control the industrially relevant Sauter mean diameter of the
product particles, resulting in improved performance of the closed-loop system compared to a
single control loop.
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1. INTRODUCTION

Particle formation processes such as granulation, polymer-
ization, and crystallization are widespread unit operations
in industrial processes, producing versatile goods, such
as pharmaceuticals, fertilizers, synthetics, food powders
and many more. Those formation processes have the same
mechanistic subprocesses in common, such as nucleation,
growth, agglomeration (or aggregation, coagulation) and
breakage (or fragmentation) and can therefore be treated
similarly from an engineering perspective. The resulting
particle collectives are characterized by distributions of
relevant particle properties such as size and shape as
well as composition for polymers, porosity for granules
and crystallinity for crystals. The production of particles
with desired product properties is a common goal of the
processes, since these properties define the quality of the
manufactured product, which also explains the high re-
search interest in this direction (Litster and Ennis, 2013;
Crowley et al., 2000; Ramkrishna and Mahoney, 2002).

A powerful tool to ensure the desired product quality on
the one hand and to optimize the production process on
the other hand is model-based process control. In order to
implement advanced control strategies, suitable dynamical
process models are required. An established framework is
population balance modelling (Ramkrishna, 2000), where
the process dynamics are usually expressed by nonlinear
partial differential equations (PDEs) or less often by high-
dimensional systems of ordinary differential equations
(ODEs). The formulation as PDEs makes control tasks
challenging, since there are no standard feedback control
methods available for such nonlinear infinite-dimensional
problems. Nevertheless, a variety of approaches is pre-
sented in the literature. Since this contribution focuses

on the particle size as one of the most important particle
properties, the following overview will be restricted to
control of particle size distributions. However, most of
the methods can be applied to any distributed particle
property.

The aim of this contribution is to design a control law for
an infinite system of ODEs, inspired by the discrepancy-
based control approach and to apply it to a particle
formation process. An extended and discrete version of
the population balance example from Otto et al. (2021) is
used as an example process. Finally, it is shown that the
control methodology can be used to control an industrially
relevant particle property.

The remainder of this paper is structured as follows: In the
second section, the population balance equation (PBE) for
the agglomeration and breakage process is presented and
the control design procedure is introduced briefly. In the
third section, the control laws are derived and verified by
simulation. The last section summarizes the results and
gives an overview of further possible research directions.

2. METHODS

In this section a simple process model, including particle
agglomeration and breakage, is presented. Furthermore,
the control design procedure based on the discrepancy-
based control approach is reviewed briefly.

2.1 Process Model

As an example for a particle process a continuous ag-
glomeration process is chosen. It is an industrial process
commonly used to increase the size of particles. During
an agglomeration process, which is often performed in a



drum (Walker, 2007) or a fluidized bed (Peglow et al.,
2007), particles can form agglomerates after collision. The
aggregation can have multiple causes, e.g. binder induced
formation of liquid or solid bridges between particles or
different kinds of interparticle forces. Usually, binary ag-
gregation is considered, i.e. particles of volume u and v−u
form a particle of volume v. Another typical sub-process
occurring is binary particle breakage. Due to external
forces on the particle, e.g. collision with another parti-
cle, an agglomerate of volume v breaks into two smaller
particles.

These processes can be described mathematically using the
population balance framework (Ramkrishna, 2000). Here,
particle properties are represented by internal coordinates
that can be either continuous or discrete. In this contribu-
tion, the particle volume v is considered, as characteristic
particle property. It is assumed that all agglomerates are
composed of a number of equally sized primary particles
with volume v0

vi = i v0 , i ∈ N (1)

The particle ensemble can be described by the corre-
sponding number density distribution n(t, v), which char-
acterizes the number of particles with volume v at time
t. The number of particles with size vi is consequently
given by n(t, vi) and will be abbreviated with ni(t) in
the remainder of this manuscript. The evolution of n (and
ni) is characterized by aggregation (A) and breakage (B)
as well as a primary particle feed (F) and a product
particle withdrawal (O) in the continuous operation mode.
A schematic presentation of the process is given in Fig.
1. The resulting PBE is given by an infinite-dimensional
system of ODEs

dni
dt

= Fi(t) +Ai(t) +Bi(t)−Oi(t) ,

i ∈ N (2)

The four terms on the right-hand-side, representing the
sub-processes described above, are explained briefly in the
following.
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Fig. 1. Schematic representation of the process.

The particle feed Fi is given by

Fi(t) = f(t)ñi,f (3)

where f is the time-dependent (and size-independent) feed
rate and ñi,f is the i-th element of the normalized primary
particle distribution.

The agglomeration term is given by

Ai(t) =
1

2

i−1∑
j=1

aj,i−jnj(t)ni−j(t)− ni(t)
∞∑
j=1

ai,jnj(t) (4)

where ai,j is the agglomeration kernel which represents
the rate of agglomeration for particle pairs with volume vi
and vj . For more information regarding the agglomeration
term the readers are referred to Narni et al. (2012).

The rate of breakage for a particle with volume vi is given
by

Bi =

∞∑
j=i+1

bi,jsjnj − sini. (5)

Here, sj denotes the selection rate, which describes the
rate at which a particle of volume vj breaks into smaller
fragments. The breakage kernel bi,j denotes the probability
that a particle of volume vj breaks into a particle of volume
vi. Since breakage is assumed to be binary and volume-
conserving, the second particle has volume vj−i. Since it is
desirable to only withdraw particles from the process that
exceed a specified volume, the particle outlet is assumed
to be classifying with a separation function Ti := T (vi).
Here, we choose T to be a cumulative Gaussian function
with mean value µs and variance σs. The outlet term is
then given by

Oi(t) = K(t)Tini (6)

with the withdrawal rate K(t). It is assumed that K is a
plant parameter that can be manipulated freely.

It is worth mentioning that the presented process model
represents the discrete version of the continuous one pro-
posed in (Otto et al., 2021).

2.2 Control Design Method

Discrepancy-based control is a stability-based control ap-
proach for PDEs (Movtschan, 1960; Sirazetdinov, 1967). It
relies on a stability notion where the “distance” between
the state of a process and its equilibrium is not measured
using metrics but a generalized distance measure, the so-
called discrepancy. In the finite dimensional case, the dis-
crepancy can be interpreted simply as system output and
can be stabilized (asymptotically) using control Lyapunov
functions. The distribution is then (asymptotically) stable
if the zero-dynamics are (asymptotically) stable.

In Palis and Kienle (2012); Geyyer et al. (2017) and
Otto et al. (2021), moments of particle size distributions
have been shown to be useful control variables. The k-th
moment of a particle size distribution is defined as

µk(t) =

∫ ∞
0

xkn(t, x) dx (7)

for continuous variables x. If x is the particle volume v,
the zeroth moment is proportional to the total number
of particles Ntot, the first moment is proportional to the
total particle volume Vtot and the moment with k = 2/3
is proportional to the total particle surface Atot. In Otto
et al. (2021), for example, the discrepancy

ρ(n, t) = (µ0,d − µ0(t))
2

(8)

is utilized, where µ0,d is the desired steady state value of
the zeroth moment. In order to apply the DBC-concept to



the discrete PBE formulation, we simply use the discrete
moments

µk(t) =

∞∑
i=1

xki ni(t) (9)

as system outputs and control variables. Then the control
design effort is reduced to finding suitable Lyapunov
functions and, if possible, showing stability of the zero-
dynamics.

3. RESULTS

In the following, a two-dimensional control law for the
PBE (Equ. 2) is derived. Afterwards the control law is
tested in a simulation scenario and discussed in terms of
dynamics and convergence.

3.1 Derivation of the Control Law

Particle size distributions are often represented by mean
values. In particular the Sauter mean diameter d32 is
frequently used in industrial applications. It represents the
mean diameter of a collection of particles of different sizes
that is equal to the diameter of equisized spherical objects
forming a collection with same total volume and same total
surface. For the discrete particle size distribution, it can
be defined as

d32(t) = 6
Vtot
Atot

= 65/3π2/3 µ1(t)

µ2/3(t)
= 65/3π2/3

∞∑
i=1

vini(t)

∞∑
i=1

v
2
3
i ni(t)

(10)

and therefore represents the ratio of the first moment
µ1 to the 2/3th moment µ2/3. Controlling the Sauter
mean diameter as a measure of product quality therefore
requires controlling both moments and a two-dimensional
control law. It is derived using two commonly accessible
parameters as manipulated variables: the withdrawal rate
K(t) is used to control µ1 and the feed rate f(t) to control
µ2/3. It is intuitively clear that the total particle surface
is highly sensitive to the rate at which particles with low
diameter and high relative surface are fed to the process.
Likewise, the total particle volume is more sensitive to
the rate at which large particles are withdrawn, since a
fixed number of large particles has a higher volume than
a fixed number of smaller particles. The control errors are
therefore defined by

e2/3(t) =

∞∑
i=1

v
2
3
i (nd,i(t)− ni(t)) (11)

e1(t) =

∞∑
i=1

vi(nd,i(t)− ni(t)) (12)

where nd denotes the desired number distribution, which is
assumed to be constant with respect to time. The following
control design procedure consists of two steps: At first,
a controller for µ2/3 is derived. Afterwards, the resulting
closed-loop system is used to calculate the controller for
µ1. The final control structure is shown schematically in
Fig. 2.

Fig. 2. Two-dimensional control scheme.

Now the following Lyapunov-functional is used to derive
the first stabilizing controller:

V2/3 =
1

2
e22/3. (13)

Calculating its time derivative yields

V̇2/3 = −e2/3
(
f(t)w +

∞∑
i=1

v
2
3
i (Ai +Bi −KTini)

)
where w is defined as

w =

∞∑
i=1

v
2
3
i ñi,f . (14)

By choosing

f(t) =
1

w

(
c2/3e2/3 −

∞∑
i=1

v
2
3
i (Ai +Bi −KTini)

)
(15)

the time derivative of the Lyapunov-functional results in

V̇2/3 = −2 c2/3V2/3, (16)

which shows that the controller exponentially stabilizes
µ2/3. The positive constant c2/3 is a tuning parameter for
the convergence speed of control loop. Now the second
control law for µ1 is derived using the following Lyapunov-
functional

V =
1

2
(e22/3 + e21). (17)

Calculating the time derivative of V and introducing
equations (2) and (15) yields

V̇ =− c2/3e22/3 − e1

[ ∞∑
i=1

vi

(
ñi,f
w

(
c2/3e2/3

−
∞∑
j=1

v
2
3
j (Aj +Bj)

)
+Ai +Bi

)
+

K

∞∑
i=1

vi

(
− Tini +

ñi,f
w

∞∑
j=1

v
2
3
j Tjnj

)]
. (18)

The choice

K =

 ∞∑
i=1

vi

−Tini +
ñi,f
w

∞∑
j=1

v
2
3
j Tjnj

−1
[
c1e1 −

∞∑
i=1

vi

(
ñi,f
w

(
c2/3e2/3 −

∞∑
j=1

v
2
3
j (Aj +Bj)

)
+Ai +Bi

)]
(19)

results in
V̇ = −c2/3e22/3 − c1e

2
1 (20)

and therefore asymptotic stability of the closed-loop sys-
tem. The positive parameter c1 is used again as tuning
constant.



The presented control law derivation results in a decoupled
control system, which is shown by the final control error
dynamics

ė2/3 = −c2/3e2/3 (21)

ė1 = −c1e1, (22)

which are obtained by differentiating Equ. (12) and (11),
and introducing equations (2), (15) and (19). In addition,
the derivation is independent of the agglomeration and
breakage kernel and can therefore be applied to a wide
spectrum of particle population balance models.

3.2 Simulation

The control law is now applied to the process described
in section 2.1. Before the simulation results are presented,
the rate constants as well as the feed distribution and the
separation function for the example process are given.

The normalized primary particle distribution is chosen as
a decaying exponential function:

ñi,f =
exp(−vi)
∞∑
i=1

exp(−vi)
, i ∈ N. (23)

For the agglomeration kernel ai,j , the discrete formulation
of the well-known Kapur-kernel (Kapur and Fuerstenau,
1969)

ai,j := a(vi, vj) = α0
(vi + vj)

α1

(vivj)α2
, (i, j) ∈ N2 (24)

with the agglomeration efficiency α0 and two empirical
parameters α1 and α2 is chosen.

Regarding particle breakage the selection function and
breakage kernel are chosen as

sj = β0v
2/3
j , j ∈ N (25)

and
bi,j = δi,1 + δi,j−1, (i, j) ∈ N2 (26)

respectively. Here, δi,j denotes the Kronecker delta. Equ.
(26) reflects the fact that a particle of volume vj breaks
into two fragments of volumes v1 and vj−1.

The system of ODEs given by Equ. (2) is solved using the
ODE-solver ode15s within the MATLAB environment. For
the simulation, N = 300 particle volumes are assumed. In
the following a shift of the operating point is simulated
both in open- and closed-loop operation. In the first case,
the nominal withdrawal rate Knom is increased to 10Knom

at t = 1 while fnom stays constant. In the latter case,
the inputs are determined by the controller and limited
by fmax and Kmax from above and by zero from below in
order to establish typical practical constraints for such a
control scenario. The initial particle size distribution for
both scenarios is given by the steady state distribution for
fnom and Knom. The tuning parameters c1 and c2/3 were
determined iteratively. The complete set of simulation
parameters is given in Tab. 1. Note that all parameters and
the process time are unitless, since the simulation example
does not represent a specific process plant.

Tab. 1. Simulation parameters

Parameter Value Parameter Value

µs 255 σs 30
fnom 1 · 107 Knom 2
fmax 2 · fnom Kmax 15 ·Knom

β0 1 · 10�5 α0 9 · 10�8

α1 1 α2 0.1
c2/3 1 · 101 c1 1 · 105
v0 1
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Fig. 3. Time evolution of the first moment of the open-loop
(black dashed line) and closed-loop system (blue solid
line) for an operating point change
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Fig. 4. Time evolution of the 2/3th moment of the open-
loop (black dashed line) and closed-loop system (blue
solid line) for an operating point change.

Fig. 3 and Fig. 4 present the evolution of the first and
the 2/3th moment for both scenarios. The controller
eliminates oscillations and reaches the desired set point
faster. The normalized control inputs are shown in Fig. 5.
Note that, while the moments are already in steady state
at around t = 1.5, the manipulated variables, especially
K, are not. This is due to the fact that while stabilizing
the outputs, the control law does not guarantee stability of
the distribution with respect to a norm. It follows, among
other things, that K and n still change while the moments
are already in the steady state. From a mathematical
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Fig. 5. Normalized control inputs: f(t) (dashed) and K(t)
(solid).
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Fig. 6. Convergence in the weighted L2,w norm of the open-
loop (black dashed line) and closed-loop system (blue
solid line) for an operating point change.

perspective this is rooted in the fact that a finite number
of moments does not determine a distribution uniquely.

In order to further investigate this, the volume weighted
L2 norm of the error distribution

L2
2,w =

∞∑
i=1

(
vi(nd,i − ni)

)2
(27)

is computed and presented in Fig. 6. It can be seen that
the closed-loop process converges also with respect to this
norm, i.e. the zero-dynamics of the closed-loop system
are asymptotically stable for this example, however the
speed of convergence is smaller for the distribution than
for the moments. Finally, the d32 is analyzed as it was
our motivation to introduce a two dimensional control
law. In Fig. 7, the closed-loop is compared to the open-
loop scenario. Clearly, the Sauter mean diameter converges
faster with control. In order to show that the introduction
of a second control loop improves the performance, the
evolution of d32 where only the µ2/3-control-loop is closed
is presented. The two-dimensional controller achieves bet-
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Fig. 7. Time evolution of the Sauter mean diameter for an
operating point change. The open-loop system (black
dashed line) is compared to a single controller (red dot
dashed line) and the derived (blue solid line) control
system.

ter results then the one-dimensional controller with respect
to convergence speed.

4. CONCLUSION

This contribution was concerned with control of particle
formation processes that are modelled mathematically
by infinite-dimensional systems of ODEs. The control
strategy was inspired by discrepancy-based control and is
based on the choice of moments as control variables. It has
been shown that an industrially relevant particle property
can be controlled by introducing a two-dimensional control
law. Furthermore, numerical simulation results show that
the particle size distribution is stabilized and that the time
of convergence is improved significantly compared to the
open-loop case.

Future research should be concerned with further anal-
ysis of the zero-dynamics of the system and the practi-
cal implementation of the proposed control algorithm at
an actual plant. This includes investigation of controller
performance under model-plant mismatch. Furthermore,
the control approach can be generalized to process models
which account for more than one particle properties, e.g.
particle porosity.
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