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Abstract: Chemical process optimization and control often require satisfaction of constraints
for safe operation. Reinforcement learning (RL) has been shown to be a powerful control
technique that can handle nonlinear stochastic optimal control problems. Despite this promise,
RL has yet to see significant translation to industrial practice due to its inability to satisfy
state constraints. This work aims to address this challenge. We propose an “oracle”-assisted
constrained Q-learning algorithm that guarantees the satisfaction of joint chance constraints
with high probability, which is required for safety critical tasks. To that end, constraint
tightening (backoffs) are introduced, which are adjusted using Broyden’s method, hence making
the backoffs self-tuned. This results in a general methodology that can be integrated into
approximate dynamic programming-based algorithms to guarantee constraint satisfaction with
high probability. Finally, a case study is presented to compare the performance of the proposed
approach with that of model predictive control (MPC). The superior performance of the
proposed algorithm, in terms of constraint handling, signifies a step toward the use of RL
in real world optimization and control of systems, where constraints are critical in ensuring
safety.
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1. INTRODUCTION

The online optimization and control of chemical and bio-
chemical processes, provides significant improvements in
operative sustainability. Currently, the optimization of
nonlinear stochastic processes poses a challenge for con-
ventional control schemes given the requirement of an
accurate process model and method to simultaneously
handle process stochasticity and satisfy state and safety
constraints. Recent works have explored the application
of model-free reinforcement learning (RL) methods for
online dynamic optimization of batch processes within
the chemical and biochemical industries (Singh and Ko-
damana (2020); Petsagkourakis et al. (2020b)). Many of
these works demonstrate the capability of RL algorithms
to learn a control law independently of a nominal process
model, but negate proper satisfaction of state and safety
constraints (Treloar et al. (2020)). In this work, we use
constrained Q learning, a model-free algorithm to meet
the operational and safety requirements of constraint sat-
isfaction with high probability.

Despite the interest of the academic community in the
application of RL for data-driven control, there exists

relative inertia in practical and industrial implementation.
Specifically, in the chemical and biochemical process in-
dustries, the development of methods to guarantee safe
process operation and constraint satisfaction would en-
hance prospective deployment of RL-based systems (Shin
et al. (2019)). The literature documents a number of ap-
proaches to constraint satisfaction, which typically either
add penalty to the original reward function for constraint
violation (Lee and Lee (2005); Tessler et al. (2018)) or aug-
ment the original MDP to take the form of a constrained
MDP (CMDP) (Altman (1999); Liu et al. (2019)). The
former approach introduces a number of hyperparmeters,
which are typically chosen on the basis of heuristics and
have bearing on policy optimality. This is also discussed by
Achiam et al. (2017) and Engstrom et al. (2020). The latter
approach is underpinned by the learning of surrogate cost
functions for each individual constraint combined with
appropriate adaptation of the policy (Achiam et al. (2017);
Liu et al. (2019)) or value learning rule (Ge et al. (2019)).
Both approaches ensure constraint satisfaction only in ex-
pectation, which is insufficient for control and optimization
of (bio)chemical processes. As most engineering systems



are safety critical, satisfaction of constraints with high
probability is a necessity (Petsagkourakis et al. (2020a)).

To our knowledge, no method has been proposed which
achieves such constraint satisfaction for pure action-value
based methods. In this work, we propose a Q-learning
method, which guarantees constraint satisfaction with
high probability. Here, we learn an unconstrained actor
and surrogate constraint action-value functions. We then
subsequently construct a constrained actor action-value
function as a superimposition of the unconstrained actor
with the surrogate constraints. The constrained actor is it-
eratively tuned, as learning proceeds, via localised backoffs
(Bradford et al. (2020)) to penalize constraint violation.
Conceptually, backoffs provide a policy variant shaping
mechanism to ensure high probability satisfaction (Ng
et al. (1999)). Tuning comprises a Monte Carlo method to
estimate the probability of constraint violation under the
policy combined with Broyden’s root finding method. The
optimal greedy constrained policy is optimized through
an evolutionary strategy (Slowik and Kwasnicka (2020))
given its nonconvex nature. The work is arranged as fol-
lows; the problem description is formalised in section 2,
the methodology proposed in section 3 and demonstrated
empirically in section 4 via a benchmark case study.
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Fig. 1. Schematic representation of RL for chemical process
optimization

2. REINFORCEMENT LEARNING
2.1 RL in process engineering

Using RL directly on an industrial plant to construct an
accurate controller would require prohibitive amounts of
data. As such, process models must be used for the initial
part of the training. The workflow shown in Fig. 1 starts
with either a randomly initialized policy or a policy that is
warm-started by an existing controller and apprenticeship
learning (Abbeel and Ng (2004)). Preliminary training is
performed using closed-loop simulations from the offline
process model. Here, the resulting control policy is a good
approximation of the optimal policy, which is subsequently
deployed in the real plant for further training online.
Importantly, system stochasticity is accounted for and the
controller will continue to adapt and learn to better control
and optimize the process, hence addressing plant-model
mismatch (Spielberg et al. (2019); Wang et al. (2019)).

2.2 Problem statement

We assume that the stochastic dynamic system in question
follows a Markov process and transitions are given by

Xpp1 ~ P (Xep1 | Xp,u) (1)

where p(x;+1) is the probability density function of future
state x;41 given a current state x, € R"* and control
u; € R™ at discrete time ¢, and the initial state is given
by X ~ px, (-). Without loss of generality we can write (1)
as:

Xt+1 = f(Xtautadt7p>7 (2)
where p € R are the uncertain parameters of the system
and d; € R™ are the stochastic disturbances. In this work,
the goal is to maximize a predefined economic metric via
an optimal policy subject to constraints. Consequently,
this problem can be framed as an optimal control problem:

Hl(aiiE{J(wa-w ’utf)}

s.t.

X0 ~ Pxo (X0)

X1 ~ P (Xer1 | X, W)

u = 7 (%) (3)
u; € U

P(h{xtext}> =1l-w
VEe {0, 15}

where J is the objective function, U is the set of hard
constraints for the controls and X; denotes constraints for
states that must be satisfied. In other words,

Xe={xt €R"™ [ gje(x¢) <0,j=1,....n5}, (4)
with n, being the total number of constraints to be
satisfied, and g; being the jth constraint to be satisfied
at time t. Joint constraint satisfaction must occur at high
probability of 1 — w where w € [0, 1]. Herein, we present
a Q-learning algorithm that allows to obtain the optimal
policy which satisfies joint chance constraints.

th,uO,...

2.8 Q-learning

Q-learning is a model-free reinforcement learning algo-
rithm which trains an agent to behave optimally in a
Markov process (Watkins and Dayan (1992)). The agent
performs actions to maximize some expected reward given
an objective function J(-), which can be defined as

tr
T = 'R (xe,m), (5)
t=0
where v € [0,1] is the discount factor and R; represents
the reward at time t given values x; and u;. In the context
of process control, the agent is akin to the controller, which
uses a policy 7(-) to maximize the expected future reward
through a feedback loop. Interaction between the agent
(or controller) and system (in this case, a simulator) at
each sampling time returns a value for the reward R that
represents the performance of the policy.

In Q-learning, for a policy 7 an action-value function can
be defined as

Qﬂ—(xt» ut) = Rt+1 + v Z pXtXt+l [W(Xt)]vﬂ(xﬂrl)v (6)

Xt+1

with V™ (x;41) being the expected sum of all the future
rewards the agent receives in the resultant state x;;1. Im-
portantly, the @-value is the expected discounted reward
for a given state and action, and therefore the optimal pol-
icy 7* can found using iterative updates with the Bellman



equation. Upon convergence, the optimal Q-value Q* is
defined as:

Q" (x¢,uy)
(7)

Q (x¢,1;) can be represented by function approximators
such as neural networks (Mnih et al. (2013)), Gaussian
process (Chowdhary et al. (2014)) and tree-based regres-
sors (Pyeatt et al. (2001)). In this work, the Q-function is
approximated with a deep Q-network (DQN) Qg parame-
terized by weights 6. Here, the inputs specifically include
the state x;, the corresponding time step ¢ and control uy.
The DQN is trained with the use of a replay buffer that
addresses the issue of correlated sequential samples (Lin
(1993)). Huber loss is used as the error function. Initial
exploration is encouraged using an e-greedy policy starting
with high e values, which is decayed over the course of
training to ensure eventual exploitation and convergence
to the optimal policy.

3. METHODOLOGY
3.1 Oracle-assisted constrained @Q-learning

Q-learning, when unconstrained, may offer little practical
utility in process optimization due to unbounded explo-
ration by the RL agent. For instance, an unconstrained
policy may often result in a thermal runaway leading to a
safety hazard in the process. As such, herein constraints
gj,¢ are incorporated through the use of an “oracle”, where
constraints are formulated as

gjt = max(gjp),t' > 1 (8)
with g;: being the jth constraint to be satisfied at time
t, and is determined by the maximum level of violation to

occur in all current and future time steps ¢’ in the process
realization.

The intuition behind this framework is as follows: Imagine
a car (agent) accelerating towards the wall with the goal of
minimizing the time it takes to reach some distance from
the wall (objective) without actually crashing into the wall
(constraint). Accelerating the car without foresight causes
it to go so fast that it cannot brake and stop in time,
causing it to crash into the wall (constraint violated). As
such, there is a need for foresight to ensure constraint
satisfaction.

Effectively, the framework shown in (8) is akin to an oracle
(or fortune-teller peeking into a crystal ball) advising
the agent on the worst (or maximum) violation that a
specific action can cause in the future given the current
state. These values are easily obtained using Monte-Carlo
(MC) simulations of the system. Analogous to a how a
Q-function that gives the sum of all future rewards, the
oracle provides the worst violation in all future states if
a certain action is taken by the agent, hence imbuing in
the agent a sense of foresight to avoid future constraint
violation.

Similar to the Q-function, constraint values are repre-
sented by neural networks G;g¢ with state and action as
input features. However, the subtle difference between the
two is that the state representation of the input for Gj g
involves time-to-termination ¢ — ¢ instead of time t.

Algorithm 1: Oracle-assisted constrained Q-learning

1. Initialize replay buffer D of size sp and constraint

=Ex  1~p [ Rig1 —|—'ymaxQ (X415 Wpg1) ‘ Xt, Ut | buffers G; of size sg, j =1,...,n4

2. Initialize Q-network Qg and constraint networks
G with random weights, j =1,...,n,

3. Initialize € and backoffs b; ;

for training iteration = 1, , M do

for episode = 1, , N do

Initialize state xog ~ px, (Xo) and episode £

for ¢t = 0, ,ty do

1. Wlth probablhty € select random control
u

otherwise select
u; = maxy Qo (X4, ur) | Gjo (X4, uz) +
bj+ <0,5=1,...,n4 (Sub-problem*)

2. Execute control u; and observe reward
R; and new state x¢41

3. Store transition (x¢, u;, Ry, X¢4+1) in &

end

1. Extract Q-values from & and store
datapoint (x¢, uy, Q¢) in D

2. Extract oracle-constraint values from &
using: ¢;; = max(g;¢),t' >t,j=1,...,n4

3. Store datapoint (x, uy, g;+) in
gj,j = 17...,7’Lg

end

1. Sample random minibatch of datapoints of size
G (x¢, ug, Q) from D

2. Sample random minibatch of datapoints of size
Hj (Xt, Uy, gj,t) from gj

3. Perform gradient descent on (Qp and G ¢ using
Adam optimizer ** with step size of 1073

4. Decay € using € = D€

5. Decay backoffs using b;; = Dab; ¢

end
Output: Optimal Q-network ); and constraint
networks G 9,7 =1,...,n4

* Sub-problem: An evolutionary algorithm is used to optimize the
constrained Q-function using fitness function f(u) = Qg(u) +
Zj Cj min (0, —(gj,¢(u) + b;¢)) where g;; is the jth constraint
violation at time ¢, and b;; is the corresponding backoff. C; are
large values to ensure large negative fitness values for controls that
lead to constraint violation.

** Any other full optimization step can be used here

3.2 Constraint tightening

To satisfy the constraints with high probability, it is
required that the constraints are tightened with backoffs
(Bradford et al. (2020); Rafiei and Ricardez-Sandoval
(2018)) bj; as:

Xe={xt €R™ [ gjt (%) + b <0,j=1,...,mn5} (9)
where b; ;+ are the backoffs which tighten the former feasible
set X; stated in (4). The result of this would be the
reduction of the perceived feasible space by the agent,
which consequently allows for the satisfaction of con-
straints. Notice that the value of the backoffs necessarily
imply a trade-off: large backoff values ensure constraint
satisfaction, but renders the policy over-conservative hence
sacrificing performance. Conversely, smaller backoff values
afford solutions with higher rewards, but may not guar-
antee constraint satisfaction. Therefore, the values of b; ;
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Fig. 2. Constraints g1, (a) and g2, (b) when backoffs are
applied (green), and when they are absent (red) with
probabilities of violation P, within the parentheses.
Inset: Zoomed-in region where violation of constraints
occur. Shaded areas represent the 99th to 1st per-
centiles.

are the minimum value needed to guarantee satisfaction of
constraints, such that:

Pi_u(gjt) +bjr =0 (10)
where Py _,(gj,¢) is the 100(1—w)th percentile of g; ;. Here,
w is a tunable parameter depending on the case study, such
that constraint satisfaction occurs with high probability
1 — w as shown in (3). Pi_,(g;¢) can be computed using
sample approximation by S MC simulations. Here, we
solve a root-finding problem in (10) using the Broyden’s
method to find the desired backoffs b,; (Kelley (1995)).
This way the constraints are satisfied with a desired
probability and the policy is also trained to maximize the
reward.

4. CASE STUDY

This case study pertains to the photoproduction of phyco-
cyanin synthesized by cyanobacterium Arthrospira platen-
sis. Phycocyanin is a high-value bioproduct, and serves its
biological role by increasing the photosynthetic efficiency
of cyanobacteria and red algae. In addition, it is used as a
natural colorant to substitute toxic synthetic pigments in
cosmetic and food manufacturing. Moreover, it possesses
antioxidant, and anti-inflammatory properties.

The dynamic system comprises a system of ODEs from
Bradford et al. (2020) that describes the evolution of
concentration (c) of biomass (), nitrate (N) and product
(¢) under parametric uncertainty. The model is based on
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Fig. 3. Constraints g1 (a) and g2 (b) when backoffs
are applied (green), and for MPC (blue) with prob-
abilities of violation P, within the parentheses. In-
set: Zoomed-in region where violation of constraints
occur. Shaded areas represent the 99th to 1st per-
centiles.

Monod kinetics, which describes the growth of microor-
ganism in nutrient-sufficient cultures, where intracellular
nutrient concentration is kept constant because of rapid
replenishment. Here, a fixed volume fed-batch is assumed.
The controls are light intensity (u; = I) and inflow rate
(UQ =F N)~

This case study and parameter values are adopted from
Bradford et al. (2020). Uncertainty in the system is
two-fold: First, the initial concentration adopts a Gaus-
sian distribution, where [cg0,¢n0] ~ N([1.0,150.0],
diag(1073,22.5)) and ¢,(0) = 0. Second, parametric un-
certainty is assumed to be: (umolk/m ~ N(178.9,07 ),
G~ NM4T1,07), ety ~ N(393.1,07,)
where the variance 0? = 10% of its corresponding mean
value. This type of uncertainty is common in engineering
settings, as the parameters are experimentally determined,
and therefore subject to confidence intervals after being
extracted using regression techniques. The objective func-
tion is to maximize the product concentration (cq) at the
end of the batch, hence the reward is defined as:

Rtf = Cq,ty (11)
where t; is the terminal time step. The two path con-
straints are as follows: Nitrate concentration (cy) is to
remain below 800 mg/L, and the ratio of bioproduct
concentration (c¢;) to biomass concentration (c,) cannot
exceed 11.0 mg/g for high density biomass cultivation.
These constraints can be formulated as:



g1 =cn —800<0 Vte{0,... ts} (12)

gon =g —0.011c, <0 Vte{0,...,t}  (13)

The control inputs are subject to hard constraints to be
in the interval 0 < Fy < 40 and 120 < I < 400. The
time horizon was set to 12 with an overall batch time of
240 h, and hence giving a sampling time of 20 h. The
Q-network Qg consists 2 fully connected hidden layers,
each consisting of 200 neurons with a leaky rectified linear
unit (LeakyReLU) as activation function. The parameters
used for training the agent are: e = 0.99, b;; = —500,
bay = —0.05, sp = 3000, sg = 30000, M = 2000,
N = 100, G = 100, H; = 500, Hy, = 1000, D; = 0.99
and Dy = 0.995.

After completion of training using Algorithm 1, the back-
offs are adjusted to satisfy (10), with backoffs at all time-
steps t being constant. For simplicity, these backoffs are
adjusted to ensure satisfaction of individual constraints,
but it is worth noting that methods to satisfy joint chance
constraints can also be implemented as shown in Pet-
sagkourakis et al. (2020a) and Bradford et al. (2020).
The constraint satisfaction is shown in Fig. 2, where the
shaded areas represent the 99th to 1st percentiles. Here,
we elucidate the importance of applying backoffs to the
policy: As shown in Fig. 2 (a), even though it may seem at
face value that g; ; values for both methods are similar, the
zoomed-in region (in the inset) clearly shows that oracle
Q-learning without backoffs (red) results in a high prob-
ability of constraint violation (P, = 0.77). The violation
probabilities P, in Fig. 2 and 3 correspond to the fraction
of 400 MC trajectories that violate a certain constraint.
Gratifying, when backoffs are applied (green) in Fig. 2 (a),
all constraints are satisfied (P, = 0).

In the same vein, in Fig. 2 (b), applying backofs resulted in
a drastic reduction of constraint violation from P, = 0.24
to 0.01. This is expected since the backoffs are adjusted us-
ing the 99th percentile of g, ; values as shown in (10) where
w is set to 0.01. The objective value, represented by the
final concentration of product ¢4, are 0.166 and 0.169 for
oracle Q-learning with and without backoffs, respectively.
Consequently, this indicates that a small compromise in
objective value can result in high probability of constraint
satisfaction, where violation probability is reduced from
0.82 to 0.01 (in boldface) upon applying backoffs as shown
in Table 1.

In addition, the performance of the oracle Q-learning
algorithm with backoffs has been compared with that of
MPC, which is one of the main process control techniques
used in chemical process optimization and hence serves
as an important benchmark. Although MPC achieves a
slightly higher objective value (Table 1), it fares poorly in
terms of constraint satisfaction as shown in blue Fig. 3 (a)
and (b) where probabilities of violation are 12 and 53 % for
g1 and go, respectively. This is unsurprising, since MPC is
only able to satisfy constraints in expectation, which means
that in a stochastic system, loosely speaking, violation
occurs 50 % of the time. On the other hand, oracle Q-
learning with backoffs violated a constraint only 1 % of
the time (boldface in Table 1). Clearly, compared to MPC,
oracle Q-learning offers a more effective means of not only
satisfying constraints in expectation (green lines in Fig.
2), but more importantly with high probability (all green

shaded areas below zero), which is crucial in safety critical
engineering applications.

Table 1. Comparison of probabilities of con-
straint violation P, and objective values of
different algorithms

Algorithm Violation probability P,  Objective (cq,t,)

Oracle Q-learning

with backoffs 0.01 0.166

Oracle Q-learning
without backoffs 0.82 0.169
MPC 0.53 0.168

5. CONCLUSIONS

In this paper we propose a new RL methodology for finding
a controller policy that can satisfy constraints with high
probability in stochastic and complex bioprocess systems.
The proposed algorithm - oracle-assisted constrained Q-
learning - uses constraint tightening by applying backoffs
to the original feasible set. Backoffs restrict the perceived
feasible space by the controller, hence allowing guarantees
on the satisfaction of chance constraints. Here, we find the
smallest backoffs (least conservative) that still guarantee
the desired probability of satisfaction by solving a root-
finding problem using Broyden’s method. Results show
that our proposed methodology is superior compared to
model predictive control (MPC), a benchmark control
technique commonly used in the industry, in terms of
constraint handling. This is expected since MPC guar-
antees constraint satisfaction only in ezpectation (loosely
speaking constraints are satisfied only 50% of the time),
while our algorithm ensures constraint satisfaction with
probabilities as high as 99% as shown in the case studies.
Being able to solve constraint policy optimization prob-
lems with high probability constraint satisfaction has been
one of the main hurdles of the widespread use of RL in
engineering applications. The promising performance of
this algorithm is an encouraging step towards applying
RL to the real world, where constraints on policies are
absolutely critical due to safety reasons.
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