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Abstract: End-point composition is an important quality standard for the converter steelmaking process, 
which consists of multiple elements, including C, Si, Mn, etc. However, it is hard to measure the element 
composition online. Real-time and precise prediction for element composition is essential for the 
optimization of alloy addition so as to bring economic profits. Nevertheless, most conventional models 
neglect the correlations among element compositions and predict each element composition without the 
information from other elements. In this paper, a new multi-channel graph convolutional network is 
proposed to integrate these correlations with the process variables together for a more accurate prediction 
model. The proposed model uses graph structure to describe the correlations among element 
compositions. Specifically, through the multi-channel design, each element composition can be learned 
based on process variables in an independent channel. Element compositions and correlations among 
them are respectively described by nodes and edges in graph. With the constructed graph, the graph 
convolution across channels can fuse the features of correlated elements to explicitly exploit the 
correlation information for performance improvement. Besides, compared with conventional methods 
which learn relations among nodes based on distances, we take sparse representation learned by sparse 
coding as edges to describe the correlations among nodes. As strong correlations exist among element 
compositions, the consideration of correlation information can integrate the learning of correlated 
elements and bring performance improvement. Experiments based on the real converter steelmaking 
process demonstrate the superiority and effectiveness of the proposed model. 
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1. INTRODUCTION 

Converter steelmaking is an essential production process in 
industry. Liquid iron, scrap steel and iron alloy are the main 
production materials and they chemically react in the 
converter without heating. Meanwhile, oxygen lance needs to 
blow oxygen into the converter to regulate the reaction. 
When the reaction reaches the end-point, the converter rotates 
and pours out the liquid steel into steel ladles. Element 
compositions at end-point are main quality standards closely 
related to the quality of steel. When the element compositions 
in steel ladles deviate from standards, specific alloys are 
added into steel ladles to adjust element compositions at end-
point. With the precise predictions for the end-point element 
compositions, the amount of alloy addition can be optimized 
rather than be decided manually. Thus, huge economic 
benefits can be made from the cost saving of alloy addition 
for steel factories. 

In recent years, soft sensor has been extensively researched 
for the prediction of hard-to-measure quality variables in 
process industry (Feng et al., 2020, Wang et al., 2020, Qin et 
al., 2019, Zhao et al., 2018, Zhao et al., 2014, Zhao et al., 
2013), as well as the end-point element composition. They 
can be categorized into three classes, namely, the first-
principle method, the data-driven method and the mixed 

method (Yan et al., 2016). Due to the complexity of 
converter steelmaking process, model accuracy and huge 
computation burden are limitations of the first-principle 
method. Compared with the first-principle method, data-
driven method only requires little mechanism knowledge 
about complex process and develops rapidly. In general, 
various data can be used to construct data-driven prediction 
model, including indexes of production materials, process 
variables, manipulated variables and flame images. Classic 
data-driven methods like principal component regression 
(PCR), partial least squares (PLS), support vector regression 
(SVR) and artificial neural network (ANN) have been applied 
to predict the end-point element composition of converter 
steelmaking. He et al. (2018) used the dimension-reduction 
property of principal component analysis (PCA) to extract 
latent variables first. Then back propagation neural network 
(BP) was constructed to predict phosphorus content. But this 
two-step pattern neglects the correlation between latent 
variables and predicted variables. To take the correlation into 
consideration while extracting latent variables, Liu et al. 
(2007) adopted PLS to analyse the influence factors on 
phosphorus content and established prediction model based 
on PLS to prove its effectiveness. As a powerful machine 
learning model, SVR can easily implement nonlinear fitting 
by kernel trick. Xu et al. (2011) applied SVR to predict 



 
 

 

 

carbon content based on furnace flame images. With massive 
learnable parameters, ANN is more suitable for complex 
process than other prediction models. Li et al. (2011) 
proposed a BP neural network based on Levenberg-
Marquardt (LM) algorithm to predict phosphorus content and 
the hitting rate proved to be high. Due to the strong fitting 
ability of radial basis function (RBF) neural network, Dong et 
al. (2014) constructed a RBF neural network to learn the 
nonlinear and complex relationship between process 
variables and end-point carbon content. In addition, Han et al. 
(2014) proposed an evolving membrane algorithm optimized 
extreme learning machine (ELM) to predict end-point carbon 
content, which can avoid overfitting and find the global 
optimal model. 

These aforementioned methods mainly focus on how to 
enhance the fitting ability from process variables to element 
compositions by different models and optimization 
techniques while neglecting the correlations among element 
compositions. Generally, multiple elements are involved in 
the same reaction, so the variations of their compositions will 
be highly correlated and coupled. Thus, correlations among 
element compositions can describe the process property and 
it is reasonable to predict each element composition with the 
information of correlated elements. With the correlation 
information taken into consideration, the cooperative learning 
among element compositions can be conducted to improve 
the end-point element composition prediction. 

As for the consideration of correlation information, graph 
convolutional network (GCN) is a machine learning model 
designed for mining relation described by graph. The 
relations among nodes are depicted by edges in graph, and 
graph convolution can learn feature representation based on 
this relation information. Graph convolution defines the 
weighted average of neighbouring nodes rather than pixels in 
receptive field as the operation result. Thus, convolutional 
neural network (CNN) can be seen as a special case of GCN 
in Euclidean space. According to the form of graph 
convolution, GCN can be categorized into two classes, 
spectral-based and spatial-based (Wu et al., 2021). Bruna et 
al. (2014) first proposed graph convolution based on spectral 
graph theory. But the computational complexity of eigen-
decomposition problem limits the application of spectral-
based GCN on large graphs. Thus, Defferrard et al. (2016) 
proposed ChebNet which made several approximations and 
simplifications to alleviate the complex computation. Then, 
Kipf et al. (2017) introduced a first-order approximation of 
ChebNet to improve computational efficiency further. The 
concise computing formula can implement semi-supervised 
node learning and can be considered as aggregating feature 
information from neighbouring nodes in a spatial-based 
perspective. Due to high computing efficiency and 
interpretability, it has been widely applied as a popular GCN 
model in social relationship analysis, document classification, 
etc. Compared with spectral-based GCN, spatial-based GCN 
propagates node information along edges to extract 
representation of a graph (Atwood et al., 2016). Micheli 
(2009) first proposed a spatial-based GCN named neural 
network for graphs (NN4G) which also applied residual 
connections and skip connections to memorize information 

over each layer. But the unnormalized adjacency matrix used 
in NN4G may cause hidden node states in extremely different 
scales. 

To the authors’ knowledge, GCN model has not been 
developed for industrial quality prediction application. 
Besides, these models mentioned above generally take 
samples as nodes to mine the relations among samples 
instead of output variables. Thus, each output variable is 
modelled in the same way without the consideration of 
correlations among them. In addition, the relations among 
nodes are generally defined based on distances among nodes 
which fail to describe correlations among variables. For the 
prediction task of end-point element composition, 
correlations among element compositions are helpful for 
performance improvement and the conventional GCN models 
cannot be directly applied to integrate these correlations into 
prediction model. Therefore, new network structure needs to 
be designed to take the correlations among element 
compositions into consideration. 

In this paper, a new multi-channel GCN model is proposed to 
integrate correlations among element compositions for the 
end-point prediction task of converter steelmaking. The 
relation-mining property of GCN is applied to represent the 
correlations among element compositions through graph 
structure. Specifically, in multi-channel network structure, 
each element composition can be learned based on process 
variables independently in each channel. Element 
compositions are also taken as nodes in graph where edges 
represent the correlations among them. With the constructed 
graph, correlated channels are connected and share their 
features through graph convolution across channels. Besides, 
we adopt sparse coding to learn sparse representation among 
element compositions, so edges will be able to describe the 
correlations among nodes. Thus, through sparse coding for 
graph structure learning and the design of multi-channel 
network, the proposed model integrates the correlations 
among element compositions with the process variables 
together for overall performance improvement. 

The contributions of this paper are summarized as below: 

 Based on a new multi-channel structure design, GCN is 
first introduced into the industrial application for the end-
point composition prediction task of converter steelmaking 
process, which exploits the correlations among element 
compositions for performance improvement. 

 The proposed method proposes sparse coding instead of 
distance index to learn element composition graph so that 
the correlations among element compositions can be well 
represented by graph structure. 

2. RELATED WORK 

The most classic GCN model is proposed by Kipf et al. 
(2016). A graph consists of multiple nodes and edges. 
Generally, samples are taken as nodes and each node has 
multiple features. Thus, the features of all the nodes can be 
denoted by feature matrix, m nX . m and n respectively 
denote the number of nodes and features. To describe the 



 
 

 

 

specific connection relations among nodes, adjacency matrix 
m mA  is defined that Aij equals to 1 if node i and node j 

are directly connected, otherwise the value equals to 0. 
m mD  is the degree matrix of A. It is a diagonal matrix 

and its entry Dii equals to 1
m
j ij A . The computing formula 

of graph convolutional layer is defined in (1). 

 ( ) 1/2 1/ 2 ( -1) ( )( )l l l    H D AD H W  (1) 

H(l) is the hidden features of lth layer and H(0) = X. m= A A I  

represents the adjacency matrix with added self-connections 
where m m

m
I  denotes identity matrix. The multiplication 

of 1/2D  is to perform normalization for A . W(l) denotes the 
learnable weight. σ(ꞏ) is the activation function. This formula 
is similar to the computing formula in fully connected neural 
networks that the added term 1/ 2 1/2  D AD  can help integrate 
the hidden features of different nodes based on connection 
relation in graph. Through multiple stacked graph 
convolutional layers, feature representation can be extracted 
based on relations among nodes for downstream tasks. 

3. THE PROPOSED MULTI-CHANNEL GRAPH 
CONVOLUTIONAL NETWORK 

In this section, it is necessary to clarify the problem setting 
for end-point composition prediction of converter 
steelmaking first. Then, the proposed multi-channel GCN 
model will be described in details. There are two steps for the 
construction of the proposed model, namely sparse coding for 
graph structure learning and multi-channel network design. 

3.1 The Problem Setting for End-point Composition 
Prediction of Converter Steelmaking 

In this paper, with multiple process variables, the prediction 
of end-point element composition is concerned as the target 
of the proposed model. We use m nX  and m pY  to 
respectively denote the data matrix of process variables and 
end-point element compositions where m, n and p are 
respectively the number of samples, process variables and 
element compositions. The proposed model aims to learn a 
mapping f : X→Y so that the end-point element compositions 
can be predicted without direct measurement. 

3.2 Sparse Coding for Graph Structure Learning 

The first step of the proposed model is to construct a graph 
representing the correlations among element compositions. 
Because correlations among element compositions are 
considered in the proposed model, element compositions, 
rather than samples, should be taken as nodes to construct 
graph. With the relations among nodes previously unknown, 
Euclidean distance or kernel function has been used to 
calculate adjacency matrix to represent graph structure (Yan 
et al., 2016). In this way, general methods construct graph 
based on the distances among nodes rather than correlations, 
which may fail to explore some correlated variables far away 
from each other under distance index. Thus, we adopt sparse 
coding to explore the correlations among nodes. 

Sparse coding aims at learning a dictionary and a sparse 
representation to sparsely represent data. Equation (2) is the 
mathematical form of the sparse coding objective function. 
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xi and αi are the original feature vector and sparse 
representation of sample i, and m is the number of samples. 

n kB  is the dictionary matrix where n and k respectively 
denote the number of features and vocabulary. λ is the trade-
off coefficient. ‖ꞏ‖1 and ‖ꞏ‖2 respectively denote L1-norm and 
L2-norm. The first term in the objective function makes the 
sparse representation able to reconstruct the original feature 
vector as similarly as possible. The second term is used to 
suppress small entries to zero by L1-norm. 

Motivated by the idea of sparse coding, the matrix form of 
modified objective function and constraints are shown in (3). 
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Compared with the objective function in (2), the original 
feature vector and dictionary matrix are replaced by label 
matrix of element compositions in training set. The purpose 
of the replacement is to reconstruct the label matrix by itself. 
In addition to the constraint that all diagonal entries in A are 
zero, the entries of each column in A represent the 
constructional relation of each element by other elements. 
Thus, the solution for the objective function can well 
represent the correlations among element compositions and 
can be taken as the adjacency matrix of graph. Besides, to 
avoid the offset of positive and negative correlations which 
may influence normalization effect, it is supposed that the 
correlations should be equivalent and nonnegative. The 
constrained minimization problem can be solved by convex 
optimization method. 

Thus, with element compositions taken as nodes, it is feasible 
to apply sparse coding to learn the correlations among nodes 
and present the correlations into graph structure through 
adjacency matrix. With the learned adjacency matrix A, to 
integrate this correlation information into the modelling 
through graph convolution, it is essential to design an 
appropriate network structure in the next step. 

3.3 Multi-channel Network Design 

Most GCN models take samples as nodes in graph, so the 
formula (1) can easily integrate features among samples. 
Now that element compositions are taken as nodes in our 
model, the correlations among them cannot be integrated by 
(1) directly. Thus, a multi-channel network is designed to 
help integrate the correlations among element compositions. 

The multi-channel network structure is shown in Fig. 1. The 
input data are composed of process variables, and p element 
compositions are the outputs of the network. The network 
consists of four stacked layers, including three fully 
connected layers (FC) and one graph convolutional layer 
(GC). Firstly, input data separately enter p independent 



 
 

 

 

channels which represent different element compositions. 
The first FC can help learn feature representation in different 
channels separately. Then, with the adjacency matrix learned 
by sparse coding, the GC treats each channel as a node in 
graph and can fuse the features of correlated channels to 
integrate the correlations among element compositions. 
Through two following FC, features for different element 
compositions can be extracted in separate channels once 
again. After that, each channel will output the predictions for 
each kind of element composition. Through the alternate 
structure of FC and GC, the features will not only maintain 
independency in different channels, but also possess 
integrativeness from correlated channels. Thus, the design of 
this multi-channel network implements the integration of 
correlation information implied by adjacency matrix. 

The fully connected layer is defined in (4). 

 ( ) ( -1) ( ) ( )( )l l l l H H W b  (4) 

H(l) is the hidden features of lth layer and H(0) = X. W(l) and 
b(l) respectively denote learnable weight and bias. In our 
model, ReLU function is selected as activation function σ(ꞏ). 
Besides, the graph convolutional layer is defined in (1) while 
the only difference is that we need to compute graph 
convolution across channels instead of samples. 

The loss function of multi-channel GCN is defined in (5).  
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Then the learnable parameters in fully connected layers and 
graph convolutional layers can be trained by mini-batch 
gradient descent. ˆ, m pY Y  respectively denote the ground 
truth and prediction of label matrix. To avoid overfitting, 
regularization term for graph convolutional layer is 
introduced into loss function with coefficient γ. 

Through the sparse coding for graph structure learning and 
the design of multi-channel network, the correlations among 
element compositions can be integrated into multi-channel 
GCN prediction model for overall performance improvement. 

Sparse coding helps to explore the correlations among 
element compositions and present the correlation information 
into graph through adjacency matrix. Then, the design of 
multi-channel network can effectively utilize the correlation 
information in graph and share the feature representation of 
correlated elements through graph convolution across 
channels. Therefore, the proposed soft sensor model is able to 
capture the correlations among element compositions. 

4. ILLUSTRATION RESULTS 

In this section, the proposed multi-channel GCN model is 
applied for the end-point element composition prediction of 
converter steelmaking. An experiment is performed based on 
a dataset from a real steelmaking process to validate its 
effectiveness. Table 1 is an overview of the dataset. 

Table 1. An overview of the dataset 

Sample size 2613 

Process variables 
(35 variables) 

 The element compositions before alloy 
addition (12 variables) 

 The amount of different kinds of alloy 
addition (14 variables) 

 The temperature and weight of liquid 
steel (2 variables) 

 Other data information about liquid steel 
(7 variables) 

Element compositions 
(12 variables) 

Als, C, Cr, Cu, Mn, Mo, Nb, Ni, P, S, Si, V 

Because all of the variables are nonnegative and great scale 
difference exists among them, min-max normalization is 
performed. 80% of the samples are taken as training set and 
the rest are taken as test set. Experiments are repeated three 
times on different random splitting of dataset. The coefficient 
of determination (R2) and root mean square error (RMSE) are 
taken as the evaluation criteria, and their computing formulas 
are shown in (6) and (7). m is the number of test samples. yi 
and ˆiy  respectively denote the ground truth and prediction of 

sample i. y  is the average of the ground truth in test set. R2 
is a performance index smaller than 1 and represents the 
fraction of the total variation that is explained by the 
regression. RMSE represents the averaged deviation level 
between prediction and ground truth. The closer R2 is to 1 
and the smaller RMSE is, the better the model performs. 
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The trade-off coefficient λ in (3) and γ in (5) are set as 0.05 
and 10, and the adjacency matrix is shown in Fig. 2. From 
input to output, the number of hidden neurons in four layers 
are respectively set as 1024, 256, 256 and 256. The batch size 
for training is set as 64 and Adam optimizer is used for 
parameter optimization while the learning rate is initially set 
as 0.001 and decays by half every 50 epochs. In experiment, 
the network trains for 200 epochs, and the loss curve in Fig. 3 
shows the fast convergence during training. 

 
Fig. 1. The multi-channel network structure. Data flow 
are represented by horizontal purple arrows. The input 
data composed of process variables enter p independent 
channels where p is the number of element compositions. 
“IN_FC” and “OUT_FC” respectively denote input and 
output fully connected layer, and “GC” denotes graph 
convolutional layer. 



 
 

 

 

 
Fig. 2. The adjacency matrix. It is symmetrical and larger 
value represents stronger correlation. Values lower than 0.1 
are set to zero in order to neglect some weak correlations. 

 

Fig. 3. The loss curve on training set. 

In addition, PLS, SVR, fully connected neural network(FCN), 
ELM and GCN are taken as contrast experiments. In SVR, 
RBF kernel function is used and tolerance margin is set as 
0.05 while the penalty parameter C is optimized among [10-

3,10-2,…,103] by grid search. As for FCN, we construct a 
network composed of 2 hidden layers both with 256 neurons. 
ELM is single-hidden-layer structure and the number of 
hidden neurons are optimized among [25,26,…,210] by grid 
search as well. Because standard GCN also uses test samples 
during training, for a fair comparison, we respectively use 
training samples and test samples to construct graph for 
training and testing. RBF kernel function are used to learn 
sample graph and the GCN uses the same structure as FCN. 

The averaged results over three times on test set are shown in 
Table 2 and the best performance is shown in bold. The 
averaged results over element compositions and averaged 
rankings (No.1 means the best and No.6 means the worst) 
among six models are shown in last two rows of the table. 

From experiment results, it is obvious to find that multi-
channel GCN outperforms other five models on half of the 
element compositions and performs best in average. 
Although other models perform better on some element 
compositions, their differences are pretty small so that multi-
channel GCN has pretty prominent performance in ranking. 
Besides, the performance of different models shows some 
similarities that most models perform quite well on element 
C, Cr, Cu, Mn, Mo, Nb, Ni, S and Si while performing badly 
on element Als, P and V. The former ones are called as easy-
to-predict elements, because even the linear PLS can give a 
decent performance, while the latter ones are named as hard-
to-predict elements, on which the complex networks also 
perform poorly. It can be seen that multi-channel GCN 
performs much better than other models on these hard-to-
predict elements, especially on element V. Because of the 
integration of correlation information in multi-channel GCN, 
the learning for different element compositions can cooperate 
with correlated element compositions so that the performance 
on hard-to-predict elements will improve. But not all element 
compositions are correlated with others. From the adjacency 
matrix in Fig. 2, element Als is an isolated node without 
connection to other element compositions in graph. Thus, the 
learning for element Als is independent from others which 
also reveals in the poor performance on element Als. 
However, some hard-to-predict elements correlated with 
others will perform better with the help of correlation 
information which shows the advantage of proposed model. 
As for other contrast models, PLS performs close to SVR, 
and FCN performs close to ELM. They perform comparably 
on easy-to-predict elements while differences mainly lie on 
hard-to-predict ones. But GCN performs poorly even on 
some easy-to-predict elements because the sample graph is 
different between training and testing. 

Table 2. Experiment results of different models 

 Evaluation Criterion: R2 Evaluation Criterion: RMSE 

Elements PLS SVR FCN ELM GCN Multi-channel GCN PLS SVR FCN ELM GCN Multi-channel GCN 

Als 0.121  0.314  0.156  -0.239  -0.951  0.331  0.0438  0.0387  0.0420  0.0495  0.0605  0.0382  
C 0.830  0.890  0.878  0.826  0.759  0.880  0.0202  0.0165  0.0174  0.0203  0.0244  0.0173  
Cr 0.929  0.900  0.914  0.949  0.625  0.938  0.0194  0.0236  0.0214  0.0167  0.0454  0.0185  
Cu 0.966  0.925  0.947  0.932  0.792  0.952  0.0046  0.0069  0.0058  0.0059  0.0105  0.0055  
Mn 0.903  0.943  0.783  0.949  0.515  0.935  0.1303  0.0996  0.1683  0.0947  0.2902  0.1067  
Mo 0.964  0.816  0.927  0.931  0.873  0.970  0.0060  0.0139  0.0085  0.0075  0.0114  0.0056  
Nb 0.904  0.917  0.920  0.901  0.641  0.911  0.0041  0.0038  0.0037  0.0041  0.0079  0.0039  
Ni 0.966  0.946  0.973  0.935  0.844  0.979  0.0040  0.0051  0.0036  0.0048  0.0085  0.0031  
P 0.728  0.622  0.280  0.620  -0.132  0.729  0.0019  0.0022  0.0028  0.0022  0.0038  0.0019  
S 0.796  0.806  0.771  0.855  0.083  0.871  0.0030  0.0031  0.0032  0.0026  0.0067  0.0025  
Si 0.873  0.897  0.795  0.893  0.603  0.875  0.0331  0.0298  0.0392  0.0302  0.0581  0.0325  
V 0.223  0.374  0.400  0.104  0.262  0.531  0.0115  0.0103  0.0101  0.0121  0.0112  0.0088  

Mean 0.767  0.779  0.729  0.721  0.410  0.825  0.0235  0.0211  0.0272  0.0209  0.0449  0.0204  
Ranking 3.33  3.08  3.50  3.58  5.75  1.75  3.25  3.33  3.50  3.42  5.75  1.75  

To prove the effectiveness of sparse coding for correlation 
description, we compare it with Pearson correlation 
coefficient and RBF kernel function, and the averaged results 
are shown in Table 3. RBF kernel function learns the graph 
structure based on the distances among nodes, so the 
correlations among element compositions are not involved 

and the poor performance proves it. Pearson correlation 
coefficient is an index describing linear correlation strength, 
while these coefficients cannot reconstruct node features 
through linear combination of others, which is the property of 
convolution calculation. Thus, sparse coding learns the 



 
 

 

 

constructional correlations among nodes, and combines with 
GCN best. 

Table 3. Different methods for graph structure learning 

Methods for graph structure learning R2 RMSE 
Sparse coding 0.825 0.0204 

Pearson correlation coefficient 0.799 0.0209 
RBF kernel function 0.778 0.0224 

These experiment results show that the performance of multi-
channel GCN featuring the integration of correlations among 
element compositions is pretty effective. Compared with 
other general prediction models, multi-channel GCN adopts 
graph structure to describe the correlations among element 
compositions and uses graph convolution across channels to 
integrate these correlations. While other general models can 
get comparable performance on easy-to-predict elements, the 
superiority of multi-channel GCN mainly reveals on those 
hard-to-predict elements and the outstanding comprehensive 
performance. Besides, we show the excellent performance of 
sparse coding and its suitability with GCN. 

5. CONCLUSIONS 

In this study, a multi-channel GCN model is proposed for the 
end-point element composition prediction of converter 
steelmaking which can effectively integrate correlations 
among element compositions. Through two modelling steps, 
the correlations among element compositions can be first 
described in graph structure by sparse coding and then 
integrate into the model by multi-channel network design. 
Experiment results based on real dataset in converter 
steelmaking demonstrate the effectiveness and superiority of 
the proposed model. It is the first time that the GCN model is 
successfully reported for soft sensing in industrial field. 
Future work will focus on how to effectively improve the 
performance of prediction model on hard-to-predict elements 
when there are weak variable correlations. 
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