Bryson, A. and Ho, Y.C. (1975). Applied Optimal Control: Optimization, Estimation, and Control. CRC Press, New York. Chen, W., Ballance, D.J., and O’Reilly, J. (2000). Model predictive control of nonlinear systems: computational burden and stability. IEE Proceedings - Control Theory and Applications, 147(4), 387–394. Diehl, M., Findeisen, R., Allgower, F., Bock, H.G., and Schloder, J.P. (2005). Nominal stability of real-time iteration scheme for nonlinear model predictive control. IEE Proceedings - Control Theory and Applications, 152(3), 296–308. Duff, I.S. (2004). MA57 – a code for the solution of sparse symmetric definite and indefinite systems. ACM Transactions on Mathematical Software, 30(2), 118–144. Fiacco, A.V. (1976). Sensitivity analysis for nonlinear programming using penalty methods. Mathematical Programming, 10(1), 287–311. Fiacco, A.V. (1983). Introduction to sensitivity and stability analysis in nonlinear programming. Academic Press. Findeisen, R. and Allgoewer, F. (2004). Computational delay in nonlinear model predictive control. IFAC Proceedings Volumes, 37(1), 427–432. Hart, W.E., Watson, J.P., and Woodruff, D.L. (2011). Pyomo: modeling and solving mathematical programs in python. Mathematical Programming Computation, 3, 219–260. Haseltine, E.L. and Rawlings, J.B. (2005). Critical evalua- tion of extended kalman filtering and moving-horizon es- timation. Industrial & Engineering Chemistry Research, 44(8), 2451–2460. Hicks, G.A. and Ray, W.H. (1971). Approximation meth- ods for optimal control synthesis. The Canadian Journal of Chemical Engineering, 49(4), 522–528. Jazwinski, A. (1970). Stochastic Processes and Filtering Theory. Academic Press, New York. Kim, Y., Lin, K.H., Thierry, D.M., and Biegler, L.T. (2020a). Advanced-multi-step MHE for large-scale non- linear systems. Submitted for publication. Kim, Y., Thierry, D.M., and Biegler, L.T. (2020b). Serial advanced-multi-step nonlinear model predictive control using an extended sensitivity method. Journal of Process Control, 96, 82 – 93. Kraus, T., Kuhl, P., Wirsching, L., Bock, H.G., and Diehl, M. (2006). Moving Horizon State Estimation for Tennessee Eastman Benchmark Process. In 2006 IEEE Intl. Conf. on Multisensor Fusion and Integration for Intelligent Systems, 377–382. Negrete, R.L. (2011). Nonlinear Programming Sensitivity Based Methods for Constrained State Estimation. Ph.D. thesis, Carnegie Mellon University. Nocedal, J. and Wright, S. (2006). Numerical Optimization. Springer Series in Operations Research and Financial Engineering. Springer, New York. Thierry, D.M. and Biegler, L.T. (2019). Dynamic real- time optimization for a CO2 capture process. AIChE Journal, 65(7), 1–11. Waechter, A. and Biegler, L.T. (2006). Implementation of an interior-point filter algorithm for large-scale nonlin- ear programming. Mathematical Programming, 106(1), 25–57. Wynn, A., Vukov, M., and Diehl, M. (2014). Convergence guarantees for moving horizon estimation based on the real-time iteration scheme. IEEE Transactions on Automatic Control, 59(8), 2215–2221. Yang, X. and Biegler, L.T. (2013). Advanced-multi-step nonlinear model predictive control. Journal of Process Control, 23(8), 1116–1128. Zavala, V.M., Laird, C.D., and Biegler, L.T. (2007). A fast computational framework for large-scale moving horizon estimation. IFAC Proceedings Volumes, 40(5), 19 – 28. 8th IFAC Symposium on Dynamics and Control of Process Systems. Zavala, V.M., Laird, C.D., and Biegler, L.T. (2008). A fast moving horizon estimation algorithm based on nonlinear programming sensitivity. Journal of Process Control, 18(9), 876 – 884.