Aguilar, R.M., Torres, J.M. & Martín, C.A. (2019). Automatic learning for the system identification. A case study in the prediction of power generation in a wind farm. Revista Iberoamericana de Automática e Informática industrial, 16(1), 114-127. Cozad, A., Sahinidis, N., & Miller, D. (2015). A combined first-principles and data-driven approach to model building. Computers & Chemical Eng., 73, 116-127. Grossmann, I., & Harjunkoski, I. (2019). Process Systems Engineering: Academic and industrial perspectives. Computers & Chemical Engineering, 126, 474-484. Kalliski, M., Pitarch, J.L., Jasch, C., & de Prada, C. (2019). Support to Decision-Making in a Network of Industrial Evaporators. Revista Iberoamericana de Automática e Informática industrial, 16(1), 26-35. Kershenbaum, L.S., & Kittisupakorn, P. (1994). The use of a partially simulated exothermic (PARSEX) reactor for experimental testing of control algorithms. Chemical Engineering Research & Design, 72(1), 55-63. Nauta, K., Weiland, S., Backx, A., & Jokic, A. (2007). Approximation of fast dynamics in kinetic networks using non-negative polynomials. 16th IEEE Inter. Conf. on Control Applications, 1144-1149. Singapore. Neumann, P., Cao, L., Russo, D., Vassiliadis, V., & Lapkin, A. (2019). A new formulation for symbolic regression to identify physico-chemical laws from experimental data. Chemical Engineering Journal, 123412. Papachristodoulou, A., Anderson, J., Valmorbida, G., Prajna, S., Seiler, P., & Parrilo, P. (2013). SOSTOOLS: Sum of squares optimization toolbox for MATLAB. Parrilo, P. (2000). Structured semidefinite programs and semialgebraic geometry methods in robustness and optimization. PhD. Thesis: Caltech. Pitarch, J.L., & de Prada, C. (2019). Machine learning and the digital era from a Process Systems Engineering perspective. 10th EUROSIM Congress (p. 12). Logroño. Pitarch, J.L., Sala, A., & de Prada, C. (2019a). A Sum-Of-Squares Constrained Regression Approach for Process Modeling. IFAC-PapersOnLine, 52(1), 754-759. Pitarch, J.L., Sala, A., & de Prada, C. (2019b). A systematic grey-box modeling methodology via data reconciliation and SOS constrained regression. Processes, 7(3), 170. Putinar, M. (1993). Positive Polynomials on Compact Semi-algebraic Sets. Indiana Univerisity Mathematics Journal, 42(3), 969-984. Sala, A., & Ariño, C.V. (2009). Polynomial fuzzy models for nonlinear control: A Taylor series approach. IEEE Transactions on Fuzzy Systems, 17(6), 1284-1295. Scherer, C. (2005). Relaxations for Robust Linear Matrix Inequality Problems with Verifications for Exactness. SIAM Journal on Matrix Analysis and Applications, 27(2), 365-395. Venkatasubramanian, V. (2019). The Promise of Artificial Intelligence in Chemical Engineering: Is It Here, Finally? AIChE Journal, 65(2), 466-478.