Balay, S., Abhyankar, S., Adams, M., Brown, J., Brune, P., Buschelman, K., Dalcin, L., Dener, A., Eijkhout, V., Gropp, W., et al. (2019). PETSc users manual. Bent, R., Sundar, K., and Fobes, D. (2020). GasModels.jl. https://github.com/lanl-ansi/GasModels.jl. Boyd, S., Parikh, N., and Chu, E. (2011). Distributed optimization and statistical learning via the alternating direction method of multipliers. Now Publishers Inc. Cai, X.C. and Saad, Y. (1996). Overlapping domain decomposition algorithms for general sparse matrices. Numerical linear algebra with applications, 3(3), 221– 237. Cai, X.C. and Sarkis, M. (1999). A restricted additive schwarz preconditioner for general sparse linear systems. SIAM Journal on Scientific Computing, 21(2), 792–797. Chiang, N.Y. and Zavala, V.M. (2016). An inertia-free filter line-search algorithm for large-scale nonlinear pro- gramming. Computational Optimization and Applica- tions, 64(2), 327–354. Chiang, N., Petra, C.G., and Zavala, V.M. (2014). Structured nonconvex optimization of large-scale energy sys- tems using PIPS-NLP. In 2014 Power Systems Computation Conference, 1–7. IEEE. Coffrin, C., Bent, R., Sundar, K., Ng, Y., and Lubin, M. (2018). PowerModels.jl: An open-source framework for exploring power flow formulations. In 2018 Power Systems Computation Conference (PSCC), 1–8. doi: 10.23919/PSCC.2018.8442948. Curtis,F.E.,Huber,J.,Schenk,O.,andW ̈achter,A. (2012). A note on the implementation of an interior- point algorithm for nonlinear optimization with inexact step computations. Mathematical programming, 136(1), 209–227. Dunning, I., Huchette, J., and Lubin, M. (2017). JuMP: A modeling language for mathematical optimization. SIAM Review, 59(2), 295–320. Gerstner, P., Schick, M., Heuveline, V., Meyer-Hu ̈bner, N., Suriyah, M., Leibfried, T., Slednev, V., Fichtner, W., and Bertsch, V.V. (2016). A domain decomposition ap- proach for solving dynamic optimal power flow problems in parallel with application to the german transmission grid. Preprint Series of the Engineering Mathematics and Computing Lab, (1). Geth, F., Coffrin, C., and Fobes, D.M. (2020). A flexible storage model for power network optimization. arXiv preprint arXiv:2004.14768. HSL, A. (2007). collection of fortran codes for large-scale scientific computation. See http://www. hsl. rl. ac. uk. Jalving, J., Cao, Y., and Zavala, V.M. (2019). Graph- based modeling and simulation of complex systems. Computers & Chemical Engineering, 125, 134–154. Jalving, J., Shin, S., and Zavala, V.M. (2020). A graph- based modeling abstraction for optimization: Concepts and implementation in plasmo. jl. arXiv preprint arXiv:2006.05378. Kim, Y. and Anitescu, M. (2020). A real-time optimization with warm-start of multiperiod ac optimal power flows. Electric Power Systems Research, 189, 106721. Rodriguez, J.S., Laird, C.D., and Zavala, V.M. (2020). Scalable preconditioning of block-structured linear al- gebra systems using admm. Computers & Chemical Engineering, 133, 106478. Shin, S., Anitescu, M., and Zavala, V.M. (2020a). Overlapping schwarz decomposition for constrained quadratic programs. arXiv preprint arXiv:2003.07502. Shin, S., Zavala, V.M., and Anitescu, M. (2020b). Decentralized schemes with overlap for solving graph- structured optimization problems. IEEE Transactions on Control of Network Systems. Sundar, K. and Zlotnik, A. (2018). State and parameter estimation for natural gas pipeline networks using tran- sient state data. IEEE Transactions on Control Systems Technology, 27(5), 2110–2124. Wa ̈chter, A. and Biegler, L.T. (2006). On the implemen- tation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical programming, 106(1), 25–57.