Golabi, A., Meskin, N., Tóth, R., and Mohammadpour, J. (2017). A Bayesian approach for LPV model identifica- tion and its application to complex processes. IEEE Transactions on Control Systems Technology, 25(6), 2160–2167. Hu, Y., Yurkovich, S., Guezennec, Y., and Yurkovich, B. (2009). A technique for dynamic battery model identi- fication in automotive applications using linear param- eter varying structures. Control Engineering Practice, 17(10), 1190–1201. Hu, Y. and Yurkovich, S. (2011). Linear parameter varying battery model identification using subspace methods. Journal of Power Sources, 196(5), 2913–2923. Huria, T., Ceraolo, M., Gazzarri, J., and Jackey, R. (2012). High fidelity electrical model with thermal dependence for characterization and simulation of high power lithium battery cells. In Proceedings of 2012 IEEE International Electric Vehicle Conference, 1–8. Greenville, SC, USA. Krewer, U., Röder, F., Harinath, E., Braatz, R.D., Bedürftig, B., and Findeisen, R. (2018). Dynamic mod- els of li-ion batteries for diagnosis and operation: a review and perspective. Journal of the electrochemical society, 165(16), A3656. Malik, A., Zhang, Z., and Agarwal, R.K. (2014). Extrac- tion of battery parameters using a multi-objective ge- netic algorithm with a non-linear circuit model. Journal of Power Sources, 259, 76–86. Partovibakhsh, M. and Liu, G. (2014). An adaptive un- scented Kalman filtering approach for online estimation of model parameters and state-of-charge of lithium-ion batteries for autonomous mobile robots. IEEE Trans- actions on Control Systems Technology, 23(1), 357–363. Schmidt, M. (2005). minfunc: unconstrained differentiable multivariate optimization in Matlab. http://www.cs. ubc.ca/ ~ schmidtm/Software/minFunc.html. Shen, J.N., He, Y.J., and Ma, Z.F. (2016). Simultaneous model selection and parameter estimation for lithium- ion batteries: A sequential MINLP solution approach. AIChE Journal, 62(1), 78–89. Wang, Q., Kang, J., Tan, Z., and Luo, M. (2018). An online method to simultaneously identify the parameters and estimate states for lithium-ion batteries. Electrochimica Acta, 289, 376–388. Zhang, C., Allafi, W., Dinh, Q., Ascencio, P., and Marco, J. (2018). Online estimation of battery equivalent circuit model parameters and state of charge using decoupled least squares technique. Energy, 142, 678–688. Zhang, C., Li, K., Mcloone, S., and Yang, Z. (2014). Bat- tery modelling methods for electric vehicles-A review. In Proceedings of 2014 European Control Conference (ECC), 2673–2678. Strasbourg, France. Zheng, F., Xing, Y., Jiang, J., Sun, B., Kim, J., and Pecht, M. (2016). Influence of different open circuit voltage tests on state of charge online estimation for lithium- ion batteries. Applied Energy, 183, 513–525.