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Abstract: This paper investigates the parameter identification of a state-of-charge dependent
equivalent circuit model (ECM) for Lithium-ion batteries. Different from most existing ECM
identification methods, we focus on identifying the functional relations between ECM parameters
and state-of-charge (SOC). By transforming the ECM into an ARX model, a Gaussian process
regression (GPR) approach is proposed, without using parametric functions to describe the SOC
dependence of ARX coefficients. The proposed approach derives the posterior distributions of
ECM parameters, thus is capable to quantify the estimation uncertainties. Another advantage
lies in the flexibility of incorporating the knowledge of batteries into the prior distributions used
in GPR, which enhances the estimation performance in the presence of noises. The effectiveness
of the proposed GPR approach is illustrated by simulation examples under both low and high
noise levels.
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1. INTRODUCTION

Due to their high energy density and long cycle life,
Lithium-ion batteries (LIBs) are widely used in various ap-
plications (Zhang et al., 2014). To ensure safe and reliable
operations, an advanced battery management system is
needed to monitor state-of-charge (SOC), state-of-health,
and state-of-power of batteries. All these monitoring func-
tions rely on a sufficiently accurate Lithium-ion battery
model. Therefore, how to obtain such a battery model
has attracted tremendous attention in recent years (Zhang
et al., 2014).

Existing battery models in literature can be classified
into three categories: electrochemical model, data-driven
model, and equivalent circuit model (ECM) (Zhang et al.,
2014). Among them, the ECM is a gray-box model that
combines partial knowledge and data. The ECM is widely
used due to its effectiveness in trade-off between model
complexity and accuracy. Since battery dynamics signifi-
cantly varies with operating conditions, the ECM parame-
ters are often described as functions of SOC, temperature,
and current load (Huria et al., 2012).

To account for the above time-varying characteristic of
ECM parameters, a vast number of recursive least-squares
or Kalman filtering based identification methods have been
reported, see Zhang et al. (2018), Wang et al. (2018) and
Partovibakhsh and Liu (2014) for a non-exhaustive list
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of references. Such methods update the ECM parameter
estimates as the operating condition varies. In addition, it
is also of practical interest to identify functional relations
between the ECM parameters and the time-varying oper-
ating conditions. By collecting data around finite number
of separated SOC conditions, a straightforward approach
in Huria et al. (2012) first identifies a set of ECM parame-
ters under each SOC condition, and then interpolates these
ECM parameters to generate lookup tables. Alternatively,
with a comprehensive dataset consisting of various SOC
conditions, different optimization based methods are pro-
posed in Malik et al. (2014) and Hu et al. (2009) to deter-
mine the nonlinear SOC-dependence of ECM parameters.
By assuming affine dependence on SOC and temperature,
a linear parameter varying (LPV) ECM model is identified
in Hu and Yurkovich (2011) by a subspace method. A com-
mon feature of the methods in Malik et al. (2014), Hu et al.
(2009) and Hu and Yurkovich (2011) is that the functional
relations between the ECM parameters and the operation
conditions are specified a priori in a parametrized form.
Impropriate parametrization of such dependencies often
leads to increased bias or variance of the identified ECM
parameters.

Inspired by Golabi et al. (2017), a non-parametric ap-
proach is proposed in this paper to identify the SOC-
dependent ECM parameters. From a first-order ECM,
the proposed approach first derives an ARX model (au-
toregression model with exogeneous inputs) with SOC-
dependent coefficients. Such SOC dependency is described
by non-parametric Gaussian processes (GPs), which is
different from the parametrized functional forms adopted



Fig. 1. First-order ECM of the LIB

in Malik et al. (2014), Hu et al. (2009) and Hu and
Yurkovich (2011). By exploiting Gaussian process regres-
sion (GPR), the posterior Gaussian distributions of the
SOC-dependence of ECM parameters are obtained. This
naturally provides maximum posterior estimates with as-
sociated uncertainty quantification. Moreover, the pro-
posed GPR approach is flexible in using an estimate of
parametrized SOC dependence in Malik et al. (2014), Hu
et al. (2009) and Hu and Yurkovich (2011) to define the
priori distribution of GPs, which achieves performance
improvement in the simulation study.

The rest of this paper is organized as follows. Section 2
describes the SOC-dependent battery model and states the
parameter identification problem. Section 3 presents the
GPR approach to identify SOC-dependent ECM parame-
ters. Section 4 demonstrates the effectiveness of the pro-
posed method via simulation examples. The conclusions
are given in Section 5.

2. MODEL DESCRIPTION AND PROBLEM
STATEMENT

In this section, we introduce the continuous-time first-
order ECM, and derive the corresponding discrete-time
LPV-ARX model. Then, we describe the SOC-dependent
ECM parameter identification problem to be solved in this
paper.

2.1 Continuous-time equivalent circuit model

Due to its simplicity and accuracy, the first-order ECM
in Fig.1 is widely adopted in LIB applications. The open
circuit voltage (OCV) is denoted by Voc. The internal
resistance Rs is used to represent the ohmic polarization
phenomenon. The polarization resistance R1 and polar-
ization capacitance C1 are used to denote the phenomena
of electrochemical polarization and concentration polar-
ization, which can reflect the transient dynamics under
current excitation. Based on the circuit theory, the first-
order ECM is expressed as

I = C1
dV1
dt

+
V1
R1

, (1)

Voc = IRs + V1 + Vt, (2)

where I is the load current. Vt is the terminal voltage and
V1 represent the voltage of C1. The ECM parameters Rs,
R1 and C1 vary with SOC, while their dependence on
temperature is left to future research. For convenience,
z is used to denote the SOC throughout this paper.
Both the above ECM parameters and Voc have nonlinear

dependence on SOC, which are denoted by Rs(z), R1(z),
C1(z) and Voc(z).

The OCV-SOC relationship Voc(z) can be obtained from
the OCV-SOC test (Zheng et al., 2016). In this paper,
SOC is assumed to be available, which can be obtained by
Coulomb counting with an accurate initial SOC. For more
methods of SOC estimation, please refer to Krewer et al.
(2018).

2.2 Discrete-time LPV-ARX model

In order to identify ECM parameters from sampled mea-
surements, the ECM in (1) needs to be transformed into a
discrete-time model. Let Ts denote the sampling interval.
By assuming constant current over the time interval [(k−
1)Ts, kTs], it can be then derived from (1) that

V1,k =R1(zk)(1− e−
Ts

R1(zk)C1(zk) )Ik−1

+ e
− Ts
R1(zk)C1(zk)V1,k−1,

(3)

where V1,k, Ik, zk denote V1(kTs), I(kTs), z(kTs).

Substituting

Vp,k = Vt,k – Voc,k = V1,k +Rs(zk)Ik (4)

into (3) where Voc,k denotes Voc(kTs), we obain the follow-
ing LPV-ARX for ECM:

Vp(k) = θ1(zk)Vp,k−1 + θ2(zk)Ik−1 + θ3(zk)Ik + ek, (5)

where θ1(zk−1), θ2(zk−1), and θ3(zk) are SOC-dependent
ARX coefficients defined as

θ1(zk) = e
− Ts
R1(zk)C1(zk) , (6)

θ2(zk) = R1(zk)
(

1− e−
Ts

R1(zk)C1(zk)

)
−Rs(zk)e

− Ts
R1(zk)C1(zk) , (7)

θ3(zk) = Rs(zk). (8)

Note that ek is included as a zero-mean white Gaussian
noise with variance σ2 to account for measurement noises
and approximation errors. Using the LPV-ARX model (5)
for ECM parameter identification implies that Vp,k needs
to be computed from Voc,k and Vt,k according to (4). Voc,k
is determined by the estimated SOC and the OCV-SOC
relationship.

2.3 Problem statement

Due to their dependence on SOC, the ECM parameters
vary with time. Various recursive identification methods
have been reported in literature to estimate these time-
varying ECM parameters (Zhang et al., 2018; Wang et al.,
2018; Partovibakhsh and Liu, 2014). However, such meth-
ods do not quantify the functional relations between these
ECM parameters and SOC. In this paper, we aim at
identifying the nonlinear SOC-dependence of the internal
resistance Rs and the time constant τ by applying a GPR
approach to the LPV-ARX model in (5).

3. IDENTIFICATION OF SOC-DEPENDENT ECM
PARAMETERS

In this section, the identification of SOC-dependent ECM
parameters is divided into two steps. Firstly, a GPR



approach is exploited to identify the LPV-ARX model
coefficients; then, the SOC-dependent ECM parameters
are derived by using (6)-(8).

3.1 The re-scaled LPV-ARX model

For convenience, yk, x1,k, x2,k, and x3,k are used to denote
Vp,k, Vp,k−1, Ik−1, and Ik, respectively. Then, the LPV-
ARX model can be rewritten as

y(k) = θ1(zk)x1,k + θ2(zk)x2,k + θ3(zk)x3,k + ek. (9)

However, the LPV-ARX model coefficients in (9) take val-
ues at vastly different orders of magnitude, which results
in a poorly scaled problem for numerical optimization. For
this reason, the model identification are performed on a re-
scaled LPV-ARX model

y(k) = θ∗1(zk)x∗1,k + θ∗2(zk)x∗2,k + θ∗3(zk)x∗3,k + ek, (10)

θ∗1(zk) = θ1(zk), θ∗2(zk) = β2θ2(zk), θ∗3(zk) = β3θ3(zk),
(11)

x∗1,k = x1,k, x
∗
2,k =

1

β2
x2,k, x

∗
3,k =

1

β3
x3,k, (12)

which introduces scale factors β2 and β3 such that
{θ∗i (z)}3i=1 are of the same order of magnitude.

3.2 GPR approach to LPV-ARX model identification

Inspired by Golabi et al. (2017), the SOC-dependent ARX
model coefficients {θ∗1(zk)}, {θ∗2(zk)} and {θ∗3(zk)} in (10)
are described as three independent GPs whose mean and
covariance functions are defined as

E[θ∗i (zj)] = µi(zj), (13)

cov[θ∗i (zj), θ
∗
i (zl)] = Ki(zj , zl) = λie

−
(zj−zl)

2

2δ2
i , i = 1, 2, 3

(14)
with λi and δi being hyperparameters of the Gaussian
kernel function Ki(zj , zl). The values of these hyperpa-
rameters are determined from training data, as will be
explained in Section 3.3. According to (10), it can be seen
that {yk} is also a Gaussian process with its mean and
covariance function as follows:

E(yj) = v(zj) =

3∑
i=1

µi(zj)x
∗
i,j , (15)

cov(yj , yl) =

3∑
i=1

x∗i,jK
i(zj , zl)x

∗
i,l + σ2

jl, (16)

j = 1, 2, . . . , N, l = 1, 2, . . . , N,

where σ2
jl is a function that is equal to σ2 only if j = l

and zero otherwise. With the above derivation, the joint
distribution of a sequence of measured outputs Y =
[y1, . . . yN ]> and a SOC-dependent ARX coefficient θ∗i (zk)
is a Gaussian distribution[

Y
θ∗i (zk)

]
∼ N

([
v

µi(zk)

]
,

[
K ki
k>i Ki(zk, zk)

])
. (17)

where the Gram matrix K, the mean vector v and the
vector ki are defined as

[K]jl = cov(yj , yl),

v = [v(z1) v(z2) . . . v(zN )]>,

ki = [x∗i,1K
i(zk, z1) x∗i,2K

i(zk, z2) . . . x∗i,NK
i(zk, zN )]>.

From (17), given the measured sequence Y , the posterior
distributions of the re-scaled LPV-ARX model coefficients

{θ∗i (zk)}3i=1 still form GPs, and their posterior mean and
variance are

E[θ∗i (zk)|D] = µi(zk) + k>i (K + σ2I)−1(Y − v), (18)

cov[θ∗i (zk)|D] = Ki(zk, zk)− k>i (K + σ2I)−1ki, (19)

with D representing a dataset {x∗1,j , x∗2,j , x∗3,j , zj , yj}Nj=1.
To compute the above posterior mean in (18), the priori
mean function µi(z) needs to be specified. If no priori
knowledge is available, the prior mean µi(z) is usually
set to zero. If the SOC-dependent ECM parameters are
parametrized and estimated using the methods proposed
in Hu and Yurkovich (2011), Hu et al. (2009) and Malik
et al. (2014), these estimated SOC dependencies can be
used as the mean functions µi(z). Such incorporation of
additional a prior knowledge into non-zero mean functions
helps enhance the estimation performance, as illustrated
by the simulation example in Section 4.2.

3.3 Determination of hyperparameters

With a training dataset, the hyperparameters {λi,δi}3i=1 in
(14) and the noise standard deviation σ can be determined
by maximizing the marginal likelihood. The logarithm of
the marginal likelihood to be optimized is shown below
after removing the constant term:

g(λi, δi, σ) = −1

2
(Y − v)>(K + σ2I)−1(Y − v)

− 1

2
log|K + σ2I|.

(20)

However, this paper does not solve (20) directly due to
a numerical problem. The second term in (20) involves
the calculation of the determinant, with carries the risk of
numerical underflow, which means the calculation result
of determinant is less than the smallest number that the
computer can represent. To address this issue, we intro-
duces an amplification factor α to rewrite the objective
function (20) as

g(λi, δi, σ) =− 1

2
(Y − v)>(K + σ2I)−1(Y − v)

− 1

2
log|α(K + σ2I)|.

(21)

This does not affect the optimal solution, since the differ-
ence between (20) and (21) are only a constant.

3.4 From LPV-ARX model coefficients to ECM parameters

According to (6)-(8) and (11), from the LPV-ARX model
coefficients, the internal resistance Rs and the time con-
stant τ can be expressed as

Rs(zk) =
1

β3
θ∗3(zk), (22)

τ(zk) = − Ts
lnθ∗1(zk)

. (23)

Since θ∗1(zk) and θ∗3(zk) are Gaussian distributed random
variables obtained in Section 3.2, both Rs(zk) and τ(zk)
are also random. Note that τ(zk) is non-Gaussian dis-
tributed due to the nonlinear transformation in (23). To
avoid the expensive computation in deriving the accurate
distribution of τ , an Gaussian approximation is adopted



by exploiting the first-order Taylor expansion of (23). Let
µ̂1(zk) denote E[θ∗1(zk)|D], then (23) is approximated by

τ(zk) ≈ − Ts
lnµ̂1(zk)

+
Ts

(lnµ̂1(zk))2
[θ∗1(zk)− µ̂1(zk)]. (24)

Therefore, according to (22) and (24), the posterior distri-
butions of Rs(zk) and τ(zk) are

E[Rs(zk)|D] =
1

β3
E[θ∗3(zk)|D], (25)

cov[Rs(zk)|D] =
1

β2
3

cov[θ∗3(zk)|D], (26)

E[τ(zk)|D] = − Ts
lnµ̂1(zk)

, (27)

cov[τ(zk)|D] =
T 2
s

(lnµ̂1(zk))4
cov[θ∗1(zk)|D]. (28)

3.5 Summary of the proposed identification algorithm

Based on the available data Vt and I, the proposed
identification algorithm is summarized below.

(1) Compute SOC by Coulomb counting, then determine
the functional relation between OCV and SOC from
the OCV-SOC test.

(2) Select the appropriate scale factors β2 and β3 in (11)
and compute the re-scaled regressors in (12).

(3) Determine the prior mean functions µi(z) for the
GPs. If no priori knowledge is available, µi(z) is
usually set to zero. If the SOC-dependent ECM
parameters are parametrized and estimated using the
methods proposed in Malik et al. (2014), Hu et al.
(2009) and Hu and Yurkovich (2011), these estimated
SOC dependencies can be used as the mean functions
µi(z).

(4) Determine the amplification factors α in (21), then
estimate hyperparameters {λi, δi}3i=1 and the noise
standard deviation σ by maximizing (21).

(5) Obtain the posterior distributions of the re-scaled
LPV-ARX model coefficients {θ∗i (z)}3i=1 according to
(18)-(19).

(6) Obtain the approximated posterior means and vari-
ances of the ECM parameters Rs and τ using (25)-
(28). The parameter estimates are set to be the poste-
rior means, and their uncertainties are quantified by
the posterior variances.

4. SIMULATION EXAMPLE

This section presents the identification results of the
proposed GPR approach using a simulated first-order
ECM. In the simulation setup, the capacity, the OCV-
SOC relationship and the SOC-dependent parameters are
configured as follows according to Shen et al. (2016): the
capacity is 8Ah,

Rs(z) =

5∑
k=0

b1(k)zk, R1(z) =

5∑
k=0

b2(k)zk,

C1(z) =

5∑
k=0

b3(k)zk, Voc(z) =

11∑
k=0

b4(k)zk,
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Fig. 2. Current excitation signal for the first 100 seconds

b1 = [0.005, 0.022,−0.109, 0.215,−0.192, 0.065],

b2 = [0.015,−0.128, 0.576,−1.180, 1.114,−0.396],

b3 = [12200, 19423,−40000, 40000, 1317,−4000],

b4 = [3.04, 8.58,−53.31, 125.72, 148.51,−1426.11,

3000,−2309,−934, 3000,−2045,−486].

The discharge current excitation is periodic, whose curve
over the first 100 seconds is depicted in Fig.2. The total
simulation time is 1518 seconds, such that the SOC starts
at 80% and ends at zero. The sample time Ts is set to 2
seconds. To evaluate the identification performance, the
following Root Mean Square Error (RMSE) and Mean
Absolute Percentage Error (MAPE) of the identified ECM
parameters are used:

RMSE =

√√√√ 1

N

N∑
k=1

(hk − ĥk)2, (29)

MAPE =
1

N

N∑
k=1

∣∣∣∣∣hk − ĥkhk

∣∣∣∣∣× 100%, (30)

where hk is the true value, ĥk is the estimate, and N is the
number of samples. In the following, two scenarios with
a low and high noise level are considered in the simu-
lation study. it is demonstrated that the proposed GPR
approach with zero-mean priori distributions is effective
at a low noise level, while encoding additional knowledge
into nonzero-mean prior distributions improves estimation
performance under both two noise levels.

4.1 Identification results at a low noise level

In the first simulation scenario, the measurement noise
variance σ2 is set to 10−8. In the summarized identification
algorithm of Section 3.5, the factors in Step 2 and Step 4
are selected as 1000, 1000, and 5 × 107; zero-mean priori
distributions are adopted in Step 3 for the GPs. In Step 4,
the optimization solver minFunc (Schmidt, 2005) is used
to maximize (21) by using the Newton method, and the
obtained hyperparameters are

λ1 = 0.91, λ2 = 0.13, λ3 = 0.97, σ = 1.49× 10−4,

δ1 = 0.18, δ2 = 0.64, δ3 = 0.21.

After determining the hyperparameters, we can obtain the
posteriori distributions of internal resistance Rs and time



constants τ by following Steps 4 and 5 of the algorithm
summarized in Section 3.5. The posteriori means are used
as the parameter estimates, while the posterior variances
are exploited to determine the 2-σ confidence intervals.
These estimates and their confidence intervals are shown
in Fig.3. The obtained RMSE and MAPE for Rs and
τ are shown in Tables 1-4 .The small estimation errors
and narrow confidence intervals indicate the accuracy and
reliability of the obtained estimates.

Now consider the introduction of nonzero-mean prior dis-
tributions in Step 3 of the algorithm summarized in Sec-
tion 3.5. For this purpose, the mean functions {µi(z)}3i=1
are first polynomially parametrized as

µi(z) =

4∑
k=1

ai(k)zk, (31)

and the least-squares identification of these polynomial
coefficients are
a1 =[1.00467,−0.27380, 0.73487,−0.61904, 0],

a2 =[−0.00494,−0.01701, 0.75487,−0.11742, 0.06204],

a3 =[0.00497, 0.01936,−0.08159, 0.12174,−0.06123].

Using the mean functions in (31), the obtained estimates
and their confidence intervals are shown in Fig.4. The
obtained RMSE and MAPE for Rs and τ are shown
in Tables 1-4. The proposed algorithms with zero-mean
and nonzero-mean priori distributions both achieve small
estimation errors and narrow confidence intervals under
the low noise level. The proposed algorithms with nonzero-
mean priori distributions achieve slightly better perfor-
mance.

Table 1. RMSE for Rs in different scenarios

Scenarios Low noise level High noise level

µi(z) = 0 8.46× 10−6 1.04× 10−4

µi(z) in (31) 7.19× 10−6 4.17× 10−5

Table 2. RMSE for τ in different scenarios

Scenarios Low noise level High noise level

µi(z) = 0 6.99 16.20
µi(z) in (31) 4.39 13.84

Table 3. MAPE for Rs in different scenarios

Scenarios Low noise level High noise level

µi(z) = 0 0.108% 1.27%
µi(z) in (31) 0.095% 0.63%

Table 4. MAPE for τ in different scenarios

Scenarios Low noise level High noise level

µi(z) = 0 3.37% 21.49%
µi(z) in (31) 2.53% 18.05%

4.2 Identification results at a high noise level

The second simulation scenario sets a higher noise level,
i.e., the measured noise variance is increased to 10−6. In
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Fig. 3. Identification results of internal resistance Rs and
time constant τ with zero-mean priori distributions at
a low noise level
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Fig. 4. Identification results of internal resistance Rs and
time constant τ with nonzero-mean priori distribu-
tions at a low noise level

the implemented identification algorithm, the scale factors
β2, β3 are the same as in Section 4.1, and the amplification
factor α is set to 7× 105. Firstly, the same GPR approach
with the zero-mean priori distribution in Section 4.1 is
examined. The obtained hyperparameters are

λ1 = 0.61, λ2 = 0.83, λ3 = 0.60, σ = 1.48× 10−3,

δ1 = 0.41, δ2 = 0.97, δ3 = 0.35.

Then the GPR approach with nonzero-mean priori distri-
butions in Section 4.1 is examined. In this high noise case,
the identified polynomial coefficients in (31) are

a1 =[0.99697,−0.17439, 0.36065,−0.28335, 0],

a2 =[−0.00473,−0.01675, 0.66215,−0.09277, 0.04436],

a3 =[0.00477, 0.01987,−0.07851, 0.11201, 0.05561].

The obtained hyperparameters are

λ1 = 0.95, λ2 = 0.66, λ3 = 0.88, σ = 1.50× 10−4,

δ1 = 0.41, δ2 = 0.77, δ3 = 0.54.

The identification results are shown in Fig.5 and Fig.6.
The obtained RMSE and MAPE for Rs and τ are shown
in Tables 1-4. Compared to the GPR approach with zero-
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Fig. 5. Identification results of internal resistance Rs and
time constant τ with zero-mean priori distributions at
a high noise level
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Fig. 6. Identification results of internal resistance Rs and
time constant τ with nonzero-mean priori distribu-
tions at a high noise level

mean priori distributions, the use of nonzero-mean priori
distributions achieves more than 50% decrease in RMSE
and MAPE for Rs, and more than 14% decrease in RMSE
and MAPE for τ . This shows that the estimation perfor-
mance under a high noise level is significantly improved by
encoding additional knowledge in the nonzero-mean priori
distributions.

5. CONCLUSION

In this paper, GPR is employed in the identification of
state-of-charge dependent ECM parameters of LIB. Unlike
other methods, the method is able to obtain the posteriori
distributions of the ECM parameters. The posterior means
are used as the parameter estimates, and the posteriori
variances quantify the associated estimation uncertainties.
The proposed method can flexibly incorporate the priori
knowledge of batteries by using nonzero-mean functions,
which enhances its estimation performance under a high
noise level. Future research effort will focus on the compu-
tation efficiency of the proposed GPR-based identification

algorithm, in order to better cope with the large amount
of data collected over a wide range of SOC.
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