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Abstract—Hybrid power system (HPS) is the power system 
consists of renewable energy sources and traditional energy 
sources used together to increase system efficiency and reduce 
operation cost.  Energy management is one of the main issues in 
operating the HPS, which needs to be optimized with respect to the 
current and future change in generation, demand, and market 
price, particularly for HPS with strong renewable penetration. 
Optimal energy management strategies such as dynamic 
programming (DP) may become significantly suboptimal under 
strong uncertainty in prediction of renewable generation and 
utility price. In order to reduce the impact of such uncertainties, a 
two-scale dynamic programming scheme is proposed in this study 
to optimize the operational benefit based on multi-scale prediction. 
The proposed idea is illustrated with a simple HPS which consists 
of wind turbine and battery storage with grid connection. The 
system is expected to satisfy certain load demand while minimizing 
the cost via peak-load shaving. First, a macro-scale dynamic 
programming (MASDP) is performed for the long term period, 
based on long term ahead prediction of hourly electricity price and 
wind energy (speed). The battery state-of-charge (SOC) is thus 
obtained as the macro-scale reference trajectory. The micro-scale 
dynamic programming (MISDP)  is then applied with a short term 
interval, based on short term-hour ahead auto-regressive moving 
average (ARMA) prediction of hourly electricity price and wind 
energy. The nodal SOC values from the MASDP result are used as 
the terminal condition for the MISDP. The simulation results 
show that the proposed method can significantly decrease the 
operation cost, as compared with the single scale DP method. 
 
Index Terms: Hybrid Power Systems, Energy Management, 
Dynamic Programming, Wind Energy, Battery Storage 
 

I. INTRODUCTION 

enewable energy, such wind, solar, hydro, geothermal, 
biomass among others,  has become a critical aspect of 

development for power generation due to the concern for 
energy and environmental sustainability. The major 
disadvantage in renewable generation is their nature of 
uncertainty and intermittency. In order to meet the load 
demand for all time, it is common for renewable generation 
systems to be integrated with conventional energy sources 
(e.g. diesel generator) and storage (e.g. battery, 
ultra-capacitor, and compressed air ), or the utility grid. Such 
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system configuration is well known as the hybrid power 
system (HPS). Figure 1 illustrates a simple HPS with wind 
generation, battery storage and grid connection. 

           

                  Fig. 1. Illustration of Hybrid Power System 

Design and operation of the HPS has been studied from 
different aspects, such as optimal sizing of subsystems [1] [2], 
power quality control [3] [4], and energy management [5] [6]. 
Energy management involves optimization of the energy flow 
among individual components within a given period such that 
the operating cost can be minimized. For example, a 
hierarchical fuzzy based optimization method was proposed 
in [5] to manage energy flows for a wind-solar power system. 
In [6], a self-optimization method was developed with multi- 
objective and discrete optimization approaches for a hybrid 
energy storage system. In [7], battery memory effect is 
considered when making control strategy for hybrid power 
systems. In addition to the knowledge of components/ 
subsystems behavior (models), a successful scheme of energy 
management often relies on prediction of renewable 
generation (e.g. wind and solar), load demand, and market 
utility price. However, accuracy of these predictions are 
usually duration dependent, i.e. the longer the prediction 
window, the worse the prediction accuracy. From the 
prediction quality standpoint, only the short-term prediction 
should be used, however, due to the relatively slow dynamics 
and operating capacity of certain HPS components, e.g. 
storage units, short-term optimization thus obtained could be 
significantly suboptimal for a longer time period, e.g. diurnal. 

In this paper, a two-scale dynamic optimization approach 
is applied to the HPS energy management problem, which 
aims to balance the conflicts between the long term and short 
term optimization for HPS,  and to reduce the impact of 
uncertainty in the relevant predictions. The idea originated 
from a recent work on the trip based power management for 
plug-in hybrid electric vehicle conducted by our group [8]. 
The system is expected to satisfy a specific load demand 
while minimizing the cost via peak-load shaving. First, a 
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macro-scale dynamic programming (MASDP) is performed 
for the long term period, based on long term prediction of 
hourly electricity price and wind energy (speed). The storage 
setpoints (e.g. battery state-of-charge (SOC)) is thus obtained 
as the macro-scale reference trajectory. The micro-scale 
dynamic programming (MISDP)  is then applied along with 
the actual system operation by dividing the total operational 
period into a number of short intervals.  The micro-scale DP 
problem is solved by reinforcing the terminal storage setpoint 
as terminal condition for the relevant optimization problem. 
The auto-regressive moving average (ARMA) method was 
adopted for the prediction of hourly electricity price and wind 
energy. The proposed method is evaluated on a simple HPS 
with wind power generation, battery storage and grid 
connection.   

The remainder of the paper is organized as follows. In 
Section II, the system configuration and component models 
are presented.  The prediction of electricity price and wind 
power generation is discussed in Section III, Section IV 
presents the detailed procedure of the two-scale dynamic 
programming for the energy management, with the 
simulation result given in Section V. The paper closes in 
section VI with a conclusion for the whole paper.  

 

II. SYSTEM CONFIGURATION AND MODELS 

A. System Configuration and Components 

A hybrid energy system usually combines the renewable 
(such as wind and solar) and more reliable conventional 
power generation sources (such as grid supported by fossil 
fuel power plant or deisel generator) together to enhance 
system reliability, power quality and operational efficiency, 
balancing the energy supply and minimizing the energy cost 
on supplying system load. Storage units are used to reinforce 
power availability, power quality and to reduce the net 
operational cost via peak load shaving.  

In this study, the HPS used as an illustrative example 
consists of a 10 kW wind turbine generator, a 200 Ah 
lithium-ion battery pack with connection to electricity grid. 
The HPS is used to satisfy the power need for a residential 
building.  

The wind power generation is calculated as : 

       

2
32

3wP D U     
                          (1) 

where 
wP  is the average wind power,  is the air density, D  

is the rotor diameter, and U  is the average wind speed in a 
time period. The rotor diameter is 8m and the efficiency of the 
wind turbine is assumed to be 80%. 

Lithium-ion (Li-ion) has been considered as a good choice 
for energy storage, since it has high energy density, high 
specific energy and no memory effect. Rechargeable Li-ion 
battery packs have been widely used for portable applications, 
hybrid vehicles, and more recently well attended for energy 
storage of renewable generation. The simplified Li-ion 
battery bank model can be described as a nonlinear circuit. 
Regardless temperature, the state of charge (SOC) of the 

battery can be calculated by 
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                         (2) 

where C is the battery pack capacity. SOCini is the initial SOC, 
and i(t) is the current of the battery, positive for charge and 
negative for discharge  

The HPS has grid connection which implicitly relies on 
fossil fuel power plants. The electricity price fluctuates in a 
given time interval, e.g. an hour, according to the total supply 
and consumption of the grid. In this study, is obtained from 
the published data at the Midwest Independent Transmission 
System Operator (MidwestISO) website [9]. The HPS can 
trade electricity with the grid at any time; it may buy or sell 
electricity from or to the grid. 

B. System Load 

Most HPS are used to supply loads. Some standalone 
HPSs supplies local residential buildings, others supplies 
utilities, such as cell phone station. In our study, the system 
load is used to supply residential buildings. 

C. System Controller 

The main task for the HPS controller is to perform the 
appropriate actions to manage the energy flow with the 
objective of minimizing the operating cost. The HPS 
controller includes the following functionalilities:  

 Store the generated wind energy to the battery; 
 Supply the generated wind energy to the system load; 
 Sell the generated wind energy to the grid; 
 Buy the energy from the grid and store to the battery; 
 Buy the energy from the grid and use it to supply the 

system load; 
 Sell the energy from the battery to the grid; 
 Fetch the energy from the battery and use it to supply the 

system load; 
 

III. PREDICTION OF ELECTRICITY PRICE AND WIND 
POWER GENERATION  

The dynamic optimization for HPS energy management 
requires the prediction of the hourly electricity price and wind 
power with certain period, e.g. 24 hour or 2 two 3 hours. Both 
electricity price and wind speed are obtained as time sequence. 
There have many prediction schemes developed for the 
prediction of the electricity price and wind speed [10][11].  

In this study, the ARMA is adopted. The ARMA model has 
two components: autoregressive and moving average, which 
can be characterized by 

                        1 0

p q

t j t j k t k
j k

X a X b e 
 

  
               

  (3)  

where X is the time-series data sequence, and et is a white 
noise process characterized by zero mean and variance . The 
equation states that a realization of the time-series X(t) 
depends on a linear combination of the past observations plus 
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a moving average of et. The model in Eq. (3) is known as an 
ARMA(p,q) process, where p is the order of the 
autoregressive process of X on itself, and q is the order of the 
moving-average error term. 

In order to find the appropriate model order (p, q), we go 
through an order identification process. We try different of  
groups values of the order of the ARMA model, p and q, and 
fit the ARMA model one by one with the hourly data of the 
electricity price in June 2009, and then select the order p, q for 
which ARMA model has the best Akaikes Information 
Criterion (AIC) value [12]. The prediction results are shown 
as Fig 2 and 3. 

 
 Fig.2. 3-Hour Ahead Electricity Price Prediction 

 

 Fig. 3.  24-Hour Ahead Electricity Price Prediction 
 

The longer the prediction window is, the larger prediction 
error it has. From Fig. 4 and 5, the results clearly show that 
shorter term prediction (3-hour period in this study) is better 
than long term prediction (24-hour period in this study).
 Similar procedure is applied to select the wind speed 
forecast model with the hourly wind speed training data from 
June 1st through June 25th 2009 in Milwaukee, Wisconsin 
from Wheather Underground [13]. The prediction result of 
one day is shown in Fig. 4. 

 Because the unpredictable nature of wind, the 
data-driven based forecast model can have relatively good 
prediction for 3–hour prediction. The error gets larger for 
larger prediction window. For one-day ahead wind prediction, 
data driven methods (such as ARMA) would not work. In 
comparison, meteorological model based approach could 
give relatively more reasonable prediction [11]. 
Implementation of such prediction model is under way. As a 

simplified treatment, we adopt the one-day ahead wind power 
prediction from MidwestISO for the macro-scale prediction 
used in the optimization process to be described in next 
section.  
 

 
 Fig.4. 3-Hour Ahead Wind Prediction of One Day in June 2010 

 

IV. TWO-SCALE DYNAMIC PROGRAMMING BASED 
HPS ENERGY MANAGEMENT 

A. Dynamic Programming Based HPS Energy Management 

Dynamic programming is a global optimization approach 
for nonlinear dynamic systems. In HPS energy management, 
the optimal control strategy is to minimize the system cost by 
managing the energy flows among generation resources, 
storage units, loads and the grid.  

In the discrete-time format, the hybrid power system 
model can be expressed as: 

 ( 1) [ ( ), ( )]x k f x k u k            (4) 

where x(k) is the state vector of the system, such as load, 
incoming renewable energy, electricity, and battery SOC. 
Vector u(k) represent the control variables of energy flows 
among different components of HPS. The optimization 
problem relevant to the energy management of HPS is to find 
the control input u(k) so as to minimize the following cost 
function:  

1
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where: 

– ( )p k  is the electricity price at time interval k. 

– uW2G(k) is the amount of wind power sold to grid at time 
interval k, which is positive because selling energy to 
grid will make profit..  

– uB2G(k) is the amount of battery power traded with grid 
at time interval k, which can be positive or negative. The 
value is positive if energy flows from battery to grid; it 
would be negative if energy flows from grid to battery. 

– uG2L(k)  is the amount of grid power purchased by load 
at time interval k, which is positive because buying 
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energy from grid will increase cost.. 
– uB2G(k) can be both positive and negative.  
 
Minimization of the operational cost needs to satisfy the 

following inequality constraints: 

2 2 arg( ) ( ) ( )W B B G ch eu k u k P k                     (6.1) 

2 2 arg( ) ( ) ( )B L B G disch eu k u k P k                  (6.2) 

2 2 2( ) ( ) ( ) ( )G L W L B L Lu k u k u k P k             (6.3) 

2 2 2( ) ( ) ( ) ( )W G W L W B Wu k u k u k P k      (6.4) 

2 2 2 2 2( ), ( ), ( ), ( ), ( ) 0W B W G W L B L G Lu k u k u k u k u k     (6.5) 

 
where  

–  uW2B(k) is the amount of wind power store to the battery at 
time interval k, which is positive. 

–  uW2L(k) is the amount of wind power supply to the load at 
time interval k, which is positive. 

–  uB2L(k) is the amount of battery power supply to the load 
at time interval k, which is positive 

– 
 
PL(k) is the system load at time interval k.  

PW(k) is the amount of incoming wind power at time 
interval k, which should be used for supplying the load, 
storing in the battery and selling to the grid. 

Pcharge(k) is the total charging amount to the battery at time 
interval k., which subjects to the battery model. 

Pdischarge(k)is the total discharging amount from the battery 
at time interval k., which subjects to the battery model.  
 
Equation (6.3) implies that at any time interval, the system 
load must be meet with the total amount of uG2L ,uW2L and uB2L. 
The complete battery model can be described as:  

arg ( )

0

( ) ( )
T

ch e socP k i t U dt                     (7.1) 

arg ( )

0

( ) ( )
T

disch e socP k i t U dt                  (7.2) 

         
arg ( )

0

( ) ( )
T

disch e socP k i t U dt                  (7.3) 

arg arg( )Disch eMax Ch eMaxI i t I                (7.4) 

min max( )SOC SOC k SOC             (7.5) 

 
where i(t) is the battery current. It will be positive when the 

battery is being charged, and negative when the battery is 
being uncharged. Due to the bus limitation, the charging and 
discharging current have their maximum limitation. In our 
system, both the maximum charging and discharging current 
are 100 A. SOC(k) is the battery state of charge at time k, and 
subscripts min and max refer to the minimum and maximum 
value of the relevant variables, respectively. In our study, the  
SOCmin is 0.3 and  SOCmax is 0.7. 

An effective way to solve the above cost function 
numerically is to do the quantization and interpolation. For 
continuous state space and control space, the state and control 
values are first discredited into finite grids. At each step of the 

optimization search, the cost function Jk[x(k)] is evaluated 
only at the grid points of the state variables. If the next state 
x(k+1) does not fall exactly on a quantized value, then the 
value of Jk[x(k+1)]. At each step, the backward DP with 
interpolation method was used. 
B. Two-Scale DP for HPS Energy Management 

Both of electricity price and incoming wind power for each 
future time interval must be predicted in order to perform 
optimization by dynamic programming for the future 
operation. As discussed in section III, the long term ahead 
prediction of both electricity price and incoming wind power 
is not enough reliable because of the large prediction window. 
Optimization based on long term prediction always produce 
sub-optimal results. On the other hand, although the short 
term prediction is more reliable, however, due to the 
relatively slow dynamics and operating capacity of certain 
HPS components, e.g. storage units, short-term optimization 
thus obtained could be significantly suboptimal for a longer 
time period, e.g. diurnal. 

In order to balance the conflicts between the long term and 
short term optimization, a two-scale dynamic optimization 
approach is applied to the HPS energy management problem. 
This two-scale dynamic programming includes two dynamic 
programming: long term ahead macro-scale dynamic 

programming (MASDP) and short term ahead micro-scale 
dynamic programming (MISDP).  

 

  (a) Macro-scale Optimal SOC Profile    (b)Zoomed View of Two Time Intervals 
 
Fig. 5. Illustration of MASDP and MISDP 

The macro-scale dynamic programming (MASDP) firstly 
does long term optimization based on long term prediction of 
incoming wind power and the hourly electricity price. After 
that, the long term operation of the energy flows management 
is obtained. The battery SOC reference trajectory of the 
macro-scale optimization is shown in Fig. 5(a).  

Then, the long term is divided into a number of  
equal-distance time intervals. When the time get close to a 
time interval, short term ahead electricity price and incoming 
wind power is predicted. Then, the micro-scale dynamic 
programming (MISDP)  is applied based on the short term 
prediction results. As shown in Fig. 5(b), assume that the 
system is about to complete the operation in the (i1)-th time 
interval, and the operation for the i-th time interval is needed. 
The bold solid line indicates the long term optimal SOC 
profile obtained by MASDP, denoted as upper case notation 
“SOC(i)”, while the actual SOC history in the (i1)-th time 
interval is shown as the thin solid line, denoted as the lower 
case notation “soc(i).” For the DP based energy management 
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algorithm for the i-th interval, the actual value of battery 
state-of-charge soc(i) will be used as the initial value, and the 
SOC(i+1), the battery state-of-charge value at the end of the 
time interval in the macro-scale optimal profile, will be used 
as the terminal value. The dynamic programming algorithm is 
then applied based on the short-term operation for the time 
interval i. The optimal energy management strategy will 
result in the predicted SOC profile as the bold dashed line in 
Fig. 5(b). As the system runs, such a process will be repeated 
for each time interval in sequence. Thus, with the relative 
reliable short term prediction results, the optimization of 
MISDP will result a better operation strategy reinforcing the 
long term operation based on MASDP. 
 
C. Long-Term Ahead Macro-Scale Dynamic Programming 

The long-term macro-scale dynamic programming does 
optimization based on long-term hourly prediction of 
incoming wind power and the hourly electricity price within 
the long term range. For the MASDP, the cost function (5) has 
to be rewritten to: 

1

2 2 2
0

( )[ ( ) ( ) ( )]
N

W G B G G Lmacro
k

J p k u k u k u k
 



      (8)                          

where ( )macrop k


is the long term ahead predicted 

electricity price at time interval k. 
Besides, one constraint (6.4) should be rewritten to:  

2 2 2( ) ( ) ( ) ( )W macroW G W L W Bu k u k u k P k


        (9) 

where ( )W macroP k


 is the long term ahead predicted 

incoming wind power at time interval k.  
In this study, the macro time range is 24 hours. The 

prediction model has been introduced in section II, where the 
ARMA model is used to predict 24-hour ahead electricity 
price. The 24-hour ahead wind power prediction is referred 
from MidwestISO. 
 
D. Short Term Ahead Micro-Scale Dynamic Programming 

This short term ahead micro-scale dynamic programming 
is based on the short time ahead predictions of electricity 
price and wind speed, to do optimization on each time interval. 
Within each time interval, the cost function which we want to 
minimize should be rewritten as: 

 
1

2 2 2
0

[ ( )][ ( ) ( ) ( )]
T

Micro W G B G G Lmicro
k

J p k u k u k u k
 



        (10) 

where T is the time duration within one time interval, 

( )microp k


is the short term ahead predicted electricity price at 

time interval k. Besides, the constraint (6.4) is rewritten as 

2 2 2( ) ( ) ( ) ( )W microW G W L W Bu k u k u k P k


      (11) 

where ( )W microP k


 is the short term ahead predicted incoming 

wind power at time interval k. In our study, the time period for 
the micro-scale DP is set to be 3 hours. 

V. SIMULATION RESULT 

The proposed idea is evaluated with the wind and 
electricity price data obtained on June 26th  2010. The hourly 
end-user electricity usage in California, Fig 6, is used as 
example for illustrative purpose [14].  

 
 
Fig.6. Hourly Electricity Load for Residential Building 
 

The electricity price prediction of 3-hour ahead, 24-hour 
ahead and actual electricity price is shown in Fig. 7. The 
predicted wind energy, which is calculated from predicted 
wind speed by Eq. (1), is shown in Fig. 8.  

 

 
 
Fig.7. Hourly Electricity Price Predictions of 3-Hour Ahead, 24-Hour Ahead 
and Actual Electricity Price 
 

 
Fig.8. The wind energy prediction of 3-hour ahead, 24-hour ahead and Actual 
incoming wind energy 
 

 The optimal system operation is calculated from section IV. 
The battery SOC of MASDP and MCSDP is shown in Fig. 9 
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Fig.9. The Battery State of Charge of  Macro SOC and Micro SOC 

Table I shows the finally total daily cost using different 
methods for the above simulation case, along with four other 
cases. Notice that the “Non-optimal” column corresponds to a 
simply method that the HPS simply satisfies the load demand 
at each time instant, with no optimization with regard to past 
and/or future system behavior. It will buy energy from grid if 
wind energy does not meet the load, and it will sell extra wind 
energy to the grid after feed the load. The “True Optimum” 
case is the result based on application of dynamic 
programming to the wind/utility profile, as if such 
information is perfectly available to the system. The “24-hour 
ahead Macro DP” indicates the result of applying the control 
policy derived via DP based on 24-hour ahead prediction to 
the actual wind/utility profiles. The difference between this 
column and that of the “True Optimum” is clearly shown, 
which is due to the inaccuracy of prediction.  

The “Two-scale DP” results show improvement in cost 
reduction, with the last column showing the relative saving in 
percentage. The improvement is clearly shown, with the 
average of 13% and standard deviation of 8.37%. The 
variation is due to the varying discrepancy between 
macro-scale (24-hour ahead) and micro-scale (3-hour ahead) 
prediction. Although better assessment would be possible 
with longer term evaluation, the effectiveness of the proposed 
scheme is clearly demonstrated.  

 
Table I 

The total daily cost of different methods 

 

VI. CONCLUSION 

This paper proposes a two-scale dynamic programming 
method for the energy management of the hybrid energy 

system. First, a macro-scale dynamic programming is 
performed for the long term period, based on long term ahead 
prediction of hourly electricity price and wind energy. The 
battery state-of-charge is thus obtained as the macro-scale 
reference trajectory. The micro-scale dynamic programming 
is then applied within a short term interval, based on short 
term-hour ahead ARMA prediction of hourly electricity price 
and wind energy. The nodal SOC values from the macro 
planning result are used as the terminal condition for the 
micro planning. The proposed method is tested on the 
designed HPS. The simulation results show that the proposed 
method can significantly decrease the operation cost, 
compared with the 24-hour ahead  Macro DP method. 
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