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Abstract— Model Reduction is an essential tool that has been
applied in many control applications such as control of fluid
flows. Most model reduction algorithms assume linear models
and fail when applied to nonlinear high dimensional systems,
in particular, fluid flow problems with high Reynolds numbers.
For example, proper orthogonal decomposition (POD) fails to
capture the nonlinear degrees of freedom in these systems, since
it assumes that data belong to a linear space and therefore
relies on the Euclidean distance as the metric to minimize.
However, snapshots generated by nonlinear partial differential
equations (PDEs) belong to manifolds for which the geodesics
do not correspond in general to the Euclidean distance. A
geodesic is a curve that is locally the shortest path between
points. In this paper, we propose a model reduction method
which generalizes POD to nonlinear manifolds which have a
differentiable structure at each of their points. Moreover, an
optimal method in constructing reduced order models for the
two-dimensional Burgers’ equation subject to boundary control
is presented and compared to the POD reduced models.

I. INTRODUCTION

The control of many processes requires mathematical
models that are computationally amenable to control
design with the fewest number of states necessary. This is
particularly apparent in the control of large scale systems,
and systems governed by partial differential equations
(PDEs) where the number of states is very high. Some
of the applications include flow control, and in particular
aerodynamic flow control, where there has been significant
interest, see e.g., [1][2][3] [4][7] [8][9][12][14][13][15]
[16][5].

Considerable progress has been made in model reduction
methods for linear models, especially time-invariant ones,
as reported in the excellent monograph [21]. However, most
applications of practical interest involve models that are
nonlinear. For example, fluid flows are usually governed by
Navier-Stokes equations which are highly nonlinear for large
Reynolds numbers. These flows arise in many applications
such as in control of heat transfer in solid-state circuits,
devices, and composite materials, in control, estimation and
optimization of energy efficient buildings, in the control
of vehicular platoons, microelectromechanical systems
(MEMS), smart structures, aerodynamics, combustion, and
process control. An important application in combustion
control in gas turbines and rockets is flameholder stabilized
premixed combustion, where it is crucial to control the flow
and flame dynamics to suppress thermoacoustic instabilities
[6].
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Among the multitude of model reduction techniques,
the proper orthogonal decomposition (POD) is arguably
the most popular one method used in deriving reduced
models for fluid flows governed by nonlinear PDEs for
simulation or control purposes. In POD snapshots obtained
by conducting experiments or computational fluid dynamic
(CFD) simulations are usually used to create an ensemble
of solutions with particular open loop control input data.
The set is used to construct a set of POD basis modes (see
e.g. [15]) and a reduced order model is obtained depending
on the energy ratio with the full order model.

Methods borrowed from optimal control theory is used
to find the POD basis ~φk which satisfy the desired optimal
conditions and the boundary conditions. By solving the
system analytically or numerically, the dynamical behavior
of the system with different parameters (such as the Reynolds
number etc.) can be understood in detail, and under the given
optimal conditions, ~φk are the optimal orthogonal bases of
the system. In this theory one is allowed to give different
optimal conditions for different requirements, and the user
can set different approximation demands for the initial
condition and the global behavior, respectively. Therefore
the optimal truncated low dimensional dynamical systems
with particular emphasis on some important temporal-spatial
regions can be constructed. From this short introduction, it
can be seen that this new theory is quite different from the
spatial method, in which the low dimensional dynamical
systems is constructed by means of Galerkin projection of
the PDE onto a set of predetermined bases.

It is well known that the modes maximize energy in mean
square sense, that is, it captures the mean square energy of
the snapshot ensemble better than any other basis [17] [11].
With N snapshots in hand the N ×N correlation matrix L
defined by

Li,j = 〈Si, Sj〉 (1)

is constructed, where 〈 , 〉 denoted the usual Euclidean inner
product.
With M denoting the number of POD modes to be con-
structed, the first M eigenvalues of largest magnitude,
{λi}Mi=1, of L are found. They are sorted in descending order,
and their corresponding eigenvectors {vi}Mi=1 are calculated.
Each eigenvector is normalized so that

‖vi‖2 =
1

λi
. (2)

The orthonormal POD basis set {φi}Mi=1 is constructed
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according to

φi =

N∑
j=1

vi,jSj , (3)

where vi,j is the jth component of vi.
With a POD basis in hand, the solution w of the distributed

parameter model is approximated as a linear combination of
POD modes, i.e.,

w ≈
M∑
i=1

αiφi (4)

This shows that POD find a low dimensional embedding
of the snapshots that preserve most of the the energy as
measured in a much higher dimensional solution space.
However, for nonlinear PDEs the snapshot sets contain
nonlinear structures that is not captured by POD, since the
latter (numerically) uses the Euclidean distance. Snapshots
far apart in the solution manifold may appear deceptively
close in the Euclidean distance while they may be far apart
as measured by their geodesic.
The paper is organized as follows. In section II we introduce
some mathematical background borrowed from differential
geometry. In section III solutions of nonlinear PDEs are
assumed to belong to a manifold, and a method which
generalizes POD to the nonlinear setting is developed. The
method essentially deals with manifold data. Section IV gives
a method based on optimal control theory to compute the
POD basis. In section V we present an application to a
nonlinear convective flow that shows the effectiveness of the
method. Section VI contains concluding remarks.

II. BACKGROUND THEORY

Riemannian manifolds, that is manifolds that can be
associated with a differentiable structure at each of their
points, are considered in this paper. An important property
of Riemannian manifolds is that they admit a tangent space
of the same dimension as the manifold at each of their
points. A Riemannian metric on a manifold M is a smoothly
varying inner product ( , ) on the tangent space TxM at
each point x ∈M . If v ∈ TxM , then ‖v‖ =

√
(v, v). Given

a smooth curve segment in M , its length is computed by
integrating the norm of the tangent vectors along the curve.
The Riemannian distance between two points x, y ∈ M ,
denoted d(x; y), is defined as the minimum length over all
possible smooth curves between x and y. A geodesic is
a curve that locally minimizes the length between points.
A manifold is said to be complete if all geodesics extend
indefinitely, this means that between any two points there
exists a length-minimizing geodesic [19][20].

Given a tangent vector v ∈ TxM , there exists a unique
geodesic, γv(t), with v as its initial velocity. One can define
the exponential map as,

Expx : Tx 7−→ M (5)
v 7−→ γv(1) (6)

The exponential map is a diffeomorphism in a neighborhood
of zero, and its inverse in this neighborhood is the Rieman-
nian log map, denoted Logx. Thus for a point y in the domain
of Logx the geodesic distance between x and y is given by
[19]

d(x, y) = ‖Logx(y)‖ (7)

III. NONLINEAR PROPER ORTHOGONAL
DECOMPOSITION

Consider a set of snapshots {S1, · · · , SN}, Sj ∈ Rd. In
practical terms the objective of POD is to find an orthonormal
basis {φ1, · · · , φd} such that

φ1 = arg max‖φ‖=1

N∑
i=1

< φ, Si >

φk = arg max‖φ‖=1

N∑
i=1

k−1∑
j=1

< φj , Si >
2 + < φ, Si >

2

The k-dimensional subspace {span{φ1, · · · , φk} maximizes
the energy of the snapshots projected to it. To generalize
POD for data on manifolds there is a need to extend
the concept of a linear subspace to that of a geodesic
submanifold, and define the notion of a projection for it.

Recall that a geodesic is a curve that is locally the
shortest path between points. A submanifold S of M is
said to be geodesic at x ∈ S if all geodesics of N passing
through x are also geodesics of M [19].

Following [20] the projection of a point m ∈ M onto
a geodesic submanifold S of M is defined as the point on
S that is nearest to m in Riemannian distance. Therefore,
the projection operator PN : M 7−→ S is defined as [20]

PS(m) = arg mins∈Sd(m, s)2 (8)

Since projection is defined by a minimization, there is no
guarantee that the projection of a point exists or that it is
unique. However, by restricting to small enough neighbor-
hoods the projection can be guaranteed to exist and is unique.
Using (7) the projection operator can be written as

PS(m) = arg mins∈S‖Logm(s)‖2 (9)

Let µ be the mean vector of the snapshots {S1, · · · , SN},
i.e.,

µ = arg minx∈M

N∑
i=1

d(x, Si)
2

= arg minx∈M

N∑
i=1

‖LogSi
(x)‖2 (10)

Nonlinear POD is defined by first constructing an orthonor-
mal basis of tangent vectors φ1, · · · , φd ∈ TµM that span
TµM . Letting Vk = span({φ1, · · · , φd}) the corresponding
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nonlinear POD submanifolds are Sk := Expµ(Vk). The basis
vectors for TµM can be computed by [20]

φ1 = arg max‖φ‖=1

N∑
i=1

‖Logµ(PS(Si))‖2 (11)

where S = Expµ(span(φ)), and

φk = arg max‖φ‖=1

N∑
i=1

‖Logµ(PS(Si))‖2 (12)

where S = Expµ(span(φ1, · · · , φk−1, φ)).
The concepts discussed above rely on determining the dis-
tance d(· , ·), or the exponential and logarithm maps. This
is not possible in general, in particular, when using only
snapshots. A more tractable problem is to define a distance
on M is to embed it in a Euclidean space and use the
Euclidean distance between points. This notion of distance
is extrinsic to M , that is, it depends on the ambient space
and the choice of embedding. One such embedding is the so-
called locally linear embedding (LLE) [18]. Each point in the
snapshot ensemble with sufficiently close neighbors to lie on
or near a locally linear patch of the manifold. The geometry
of these patches can be characterized by linear coefficients
that reconstruct each data point from its neighbors. The
neighborhoods can be constructed as in the first method. The
error is measured by the cost function

E(W ) =
∑
i

∣∣Si −∑
j

WijSj
∣∣2 (13)

where Sj denotes snapshot j, Wij represents the contribution
of jth snapshot to the ith reconstruction. The weights Wij are
computed by minimizing the cost function E(W ) w.r.t. W
subject to the constraint that Wij = 0 if Sj is not a neighbor
of Si, and

∑
iWij = 1 to enforce symmetry and invariance

w.r.t. translations, rotations, and rescalings. Each snapshot
Si is mapped in a low dimensional vector Yi representing
global internal coordinate on the manifold, and obtained as
the minimizer of the embedding cost function

ε(Y ) =
∑
i

∣∣Yi −∑
j

WijYj
∣∣2 (14)

where Wij’s are fixed. The cost (14) is quadratic in Yi and
can be minimized by solving a sparse eigenvalue problem.

IV. POD BASED ON OPTIMAL CONTROL

Consider the general nonlinear initial-boundary value
problem [22]

∂ ~w

∂t
+N(~w) = 0, ~x ∈ Ω, t > 0 (15)

~w(~x, 0) = ~w0(~x), ~x ∈ Ω, (16)
~w(~x, t)|∂Ω = ~g(~x, t), t > 0,

where for t > 0, N : H ⊂ V → F, is a nonlinear operator,
where H,V and F are the Hilbert spaces. H is the linear
subspace of V . The inner products on H,F and V are
(., .)H , (., .)F , (., .)V , respectively. The corresponding norm

defined on V is ‖~w‖v = (~w, ~w)
1/2
v ,∀~w ⊂ V.

Define a space

BN = {φ = ~φ1(~x), · · · , ~φN (~x)T |~φi ∈ H, (~φi, ~φj) = δij}

~w(~̃x, t) is decomposed as:

~w(~̃x, t) = ~wN (~x, t) + ~wR(~x, t) (17)

≈
N∑
k=1

ak(t)~φk(~x). (18)

Then, we project the PDE onto the unknown bases ~φk to get
the Galerkin model

ȧk(t) = Gk(ak; ~φ1, · · · , ~φN ;∇~φ1, · · · ,∇~φN , · · · ) (19)

ak(0) = (~w0(~x), ~φk).

Now the optimization function to be solved is as follows:
Find φopt ∈ BN such that:

J(φopt) = min
φ∈BN

J(φ) (20)

where J(φ) =

∫ T

0

‖~wR‖2vdt

V. APPLICATION TO THE 2D BURGERS’ EQUATION

The specific problem geometry considered is shown in
Figure 1. The idea and methods presented here could be
modified to apply to a different geometry or obstacle shape.

Fig. 1. Problem Geometry

The problem statement with its corresponding boundary
conditions and governing equations was taken from [13].
A realistic example of this geometry in an aerodynamic
application would be a payload hatch open during flight
with actuator control only on the boundary. Let Ωgap be the
region defined by [a1, a2]× [b1, b2]. Let Ωfull be the region
defined by (a0, aend)× (b0, bend). Then the problem domain
is given by Ω = Ωfull/Ωgap. In this problem setup, Ωgap is
an obstacle.
The system dynamics that act within the problem domain are
described by the two-dimensional (2D) Burgers’ equation
[16]

∂
∂tw(t, x, y) +∇.F (w)

= 1
Re

(
∂2

∂x2w(t, x, y) + ∂2

∂y2w(t, x, y)
)
, (21)

where Re is the Reynolds number and the form of F (w) is

F (w) =
[
c1
w2(t, x, y)

2
c2
w2(t, x, y)

2

]T
. (22)
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In this case, the value for c1 is equal to 1 and c2 is equal to
0. The value used is 300, a small Reynolds number, but it
still allows for the nonlinearity to show in the problem.
Dirichlet boundary conditions located on the obstacle top
and bottom are denoted by Γtop and Γbottom. A Dirichlet
boundary condition is a first-type boundary condition that
specifies the values of the solution defined by f(x) on a
domain boundary [17]. The form of the boundary condition
is

w(t, x, y) = f(t, x, y) ∀(x, y) ∈ ∂Ω (23)

The boundary conditions on the top and bottom are described
by the following:

w(t,Γbottom) = ubottom(t)Ψbottom(x),

w(t,Γtop) = utop(t)Ψtop(x), (24)

Here utop(t) and ubottom(t) are the control inputs on the
top and bottom boundaries, respectively; the spatial functions
Ψtop(x) and Ψbottom(x) describe the spatial effect that the
controls have on the top and bottom boundaries.
The boundary condition on the airflow intake side is

w(t,Γin) = f(y) (25)

and it is parabolic in nature. The airflow outtake side has a
Neumann boundary condition that has the form [23].

∂

∂x
w(t,Γout) = 0 (26)

On all of the remaining boundaries of Ω, w(t, x, y) is set
equal to 0 for all values of t. Finally, the initial conditions
for the interior are given by

w(0, x, y) = w0(x, y) ∈ L2(Ω). (27)

A numerical solution was found by simulation using Comsol
. The resulting system model contains a little more than 4000
states. The velocity field may be represented as:

~w = ~W + ~wN + ~wR

= ~W +

N∑
k=1

ak(t)~φk(~x) + ~wR (28)

where ~W = W~i + V~j is the mean velocity, ~w = w~i + v~j,
~x = x~i + y~j, ~wR is the remainder and ~φk = φk~i + ϕk~j is
the optimal basis that satisfies

∫
Ω
φkϕldΩ = δkl Using POD

in [15], projection of Burgers’ equations onto the space of
the optimal basis ~φk gives the reduced order model.
In the simulation, we will use the first 3 POD modes as
initial modes for the optimal reduction process. Our optimal
functional condition will be [22]:

J(φ) =

∫ T

0

‖~wR‖2dt (29)

=

∫ T

0

(
w −

N∑
k=1

ak(t)φk(~x), w −
N∑
k=1

ak(t)φk(~x)
)
dt

and the generalized optimal functional condition will be:

Jg(φ) =

∫ T

0

( N∑
k=1

[a2
k − 2ak(w, φk)] + ~λT (~G− ~̇a)

)
dt

+

N∑
k, l = 1
k ≤ l

[(φk, φl)− δkl] (30)

where ~λ(t) is N dimensional vector of Lagrangian mul-
tipliers. The optimization problem is solved by conjugate
gradients algorithm. We use

ak(0) =

∫
Ω

(~w0 − ~W ).~φkdΩ

as initial values to the optimization problem.
In order to nd the optimal bases ~φk, let the variation of Jg

equals to zero, i.e., δJg = 0. Using the basic theorem of
variation method, from the terms involving δak, we get the
ODEs of λk as

λ̇k =

N∑
l,m=1

λl

∫
Ω

(
~φk.(~φm.∇~φl) + ~φk.(~φl.∇~φm)

)
dΩam

+

N∑
l=1

λl

∫
Ω

[~φk.(~φl∇ ~W + ~W.∇~φl) +
1

Re
∇~φk.∇~φl]dΩ

− 2(ak −
∫

Ω

~w.~φkdΩ), λk(T ) = 0. (31)

Fig. 2. Full Solution

Conjugate gradients algorithm is used to solve the problem
where we alternate in x and y directions to find the optimal
bases φk and ϕk. The POD bases which are the bases
obtained with the method in [16], are used as the initial bases
for the iterations. Figures 2,3 and 4 show the full soulution,
POD reduced model and Optimal bases POD respectively.

VI. CONCLUSION

In this paper, a generalization of POD to manifold data
generated by nonlinear PDEs is discussed. The manifolds are
assumed to be Riemmanian, so that nonlinear POD relies on
computing geodesic submanifolds. Then, based on optimal
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Fig. 3. POD reduced model

Fig. 4. Optimal basis POD reduced model

control theory and using snapshots from a numerical solution
of the 2D Burgers’ equation, optimal bases are derived.
The first three POD modes were used as initials for the
optimization problem. The result shows that this approach
gives better results compared with standard POD.
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