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Abstract— We consider the problem of detecting rare events
in a real data set with structural interdependencies. The real
data set is modeled using hidden Markov models (HMMs), and
rare event detection is viewed as a variant of the quickest detec-
tion problem. We assess the feasibility of two quickest detection
frameworks recently suggested. The first method is based on
dynamic programming and follows a Bayesian approach, and
the second method is a non-Bayesian approximate cumulative
sum (CUSUM) algorithm. We discuss implementation consid-
erations for each method and show their performance through
simulations for a real data set. In addition, we examine, through
simulations, the robustness of the CUSUM-based method when
the rare event model is not exactly known but belongs to a
known class of models.

I. INTRODUCTION

Quickest Detection is the problem of detecting abrupt

changes in the statistical behavior of an observed signal in

real-time. Designing optimal quickest detection procedures

typically involves a tradeoff between two performance cri-

teria; one being a measure of detection delay, and the other

being a measure of the frequency of false alarms [14].

The literature has focused much attention on the case

of i.i.d. observations before and after the change occurs.

However, real applications often involve complex structural

interdependencies between data points which are better mod-

elled using hidden Markov models (HMMs). This paper

considers one such application in the field of urban planning.

Cell phone traffic data is available at little to no cost to city

planners and can be used to detect emergency states. A timely

response to emergencies is crucial to avert catastrophes,

and false alarms may lead to unneeded costly measures.

In addition, network traffic data reflects the periodic rythm

of human activity, making HMM quickest detection a more

suitable choice than i.i.d. alternatives.

We focus on two frameworks recently suggested for the

HMM quickest detection problem; one is a Bayesian dy-

namic programming (DP) based framework [6], and the other

is a non-Bayesian approximate CUSUM framework [5]. In

this paper, we assess the feasibility of the suggested methods

for detecting disruptions in real data sets.

An important consideration is robustness when the dis-

ruption model is not exactly known, which is often the

case when dealing with rare events (abnormal states). A

recent paper addresses this problem for i.i.d. observations

[9]. We examine through simulations the robustness of the

non-bayesian CUSUM-based framework suggested in [5] and

suggest an experimental procedure to design minimax-robust

HMM-CUSUM algorithms when the exact disruption model
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is unknown but belongs to a known class of models. The

procedure is demonstrated on real data.

There is abundant work in the literature on anomaly

detection in general, and some work on the problem for cell-

phone network data in particular. To name a few, [13] pro-

poses a one step clustering algorithm to detect anomalies in

streaming cellphone network data for emergency detection.

[7] uses Markov-modulated Poisson processes and machine

learning techniques to detect changes in data that reflects

normal human activity. Finally, the reader is refered to [4],

a survey of the field of anomaly detection and the various

classes of methods it employs.

The contribution of our paper is threefold. First, we use

quickest detection as a method for detecting rare events in

real data. Quickest detection is backed by rigorous theoretical

guarantees, and to the best of our knowledge, there are few,

if any, case studies that focus on its application on HMM

real data. Second, we compare two novel HMM quickest

detection techniques based on their feasibility for real data

applications. Finally, we provide guidelines for designing

HMM-CUSUM procedures that guarantee minimax robust-

ness when the disruption model is not exactly known but

belongs to a class with finitely many models.

We describe the real data set in section II. Then, in

section III, we discuss the implementation issues encountered

when modeling the data set with HMMs. In section IV,

we outline the DP-based Bayesian algorithm and focus on

implementation challenges. In section V, we outline the

CUSUM-based HMM quickest detection algorithm, show its

real data performance through simulations, and address its

robustness when the disruption model is not exactly known.

II. DESCRIPTION OF DATA SET

The time-series data consists of measurements of cell

phone network traffic from the area surrounding Termini,

Rome’s busiest subway station. Network traffic is measured

by the number of phone calls initiated in a 15 minute

interval and is normalized to maintain anonimity. The data

available spans a period of approximately 3 months. Figure

1 shows an average week of network traffic. The first 5

peaks corresponds to weekdays, and the shorter peaks that

follow correspond to weekends. Within any day, we observe

a pattern of rapid increase in communication activity from

morning until mid-day followed by decrease in traffic in the

later part of the day. Night time exhibits the lowest level

of activity. Figure 2 shows 3 weeks of periodic data, with a

disruption of the pattern in day 2 of the second week shown.

The disruption corresponds to a train accident at Termini

which lead to a surge in communication traffic at the time.

Further details on this data set can be found in [8]. Our
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purpose is to detect this disruption using quickest detection

techniques.
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Fig. 1: An Average Week of Network Traffic
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Fig. 2: Three Weeks of Data from Termini with a Surge in
Cellphone Network Traffic around Termini on Tuesday of the
Second Week

III. DATA MINING AND STATISTICAL MODELING OF

ROME DATA USING HMMS

In this section, we focus on implementation aspects of

fitting an HMM in the business-as-usual Rome data. The

reader can refer to [16] for a tutorial on HMMs.

We choose the emission probability distribution to be

Poisson reflecting the nature of the data as counts of phone

calls. Let A be the transition probability matrix of the

underlying markov chain, Ns the number of underlying

states, F the vector of initial state probabilities, and B(i)
the parameter of the Poisson random variable describing the

observations under state i of the underlying Markov chain.

Our aim is to solve for the model Ω = (A, B, F, Ns) that

best describes a finite training sequence of business-as-usual

data O.

There is no known way to analytically solve for the

model Ω which maximizes Pr(O | Ω) [16]. However,

for a fixed Ns and starting with an intial “guess” model

Ω1 = (A1, B1, F1, Ns), we can find a model Ω2 =
(A2, B2, F2, Ns) that locally maximizes Pr(O | Ω) using an

iterative procedure like Baum-Welch [10] (a variant of the

EM Algorithm [11]). In this work, we used functions from

the “mhsmm” package in the statistical computing language

R [15] to implement the Baum-Welch algorithm for Poisson

observations.

The choice of Ω1 has a significant effect on the optimality

of the final estimate, especially the choice of B [16]. In our

implementation, we took all underlying states and transitions

to be initially equally likely. The parameters of the different

Poisson emission probabilities were obtained by sorting the

observation sequence, dividing it into Ns bins of equal

length, and averaging the observations in each bin resulting

in B.

To determine the number of states Ns that best describes

O, apply the Baum-Welch algorithm on O for an increasing

number of states Ns, yielding a locally optimal model Ω(Ns)
for every Ns. Pr(O | Ω(Ns)) can be taken as a measure of

accuracy of fit for Ns states and can be calculated using the

Forward Algorithm [3][2]. In practice, the forward variable

“underflows” (heads exponentially to 0 for longer O) which

can be resolved by scaling the forward variable by a factor

independent of the underlying state, as described in [16].

Figure 3 is a plot of log{Pr(O | Ω(Ns))} for Ns between

2 and 18. Note that increasing the number of states initially

results in increasing accuracy, but beyond Ns = 6 there is

no significant gain in increasing Ns.
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Fig. 3: log{Pr[O | Ω(Ns)]} for Increasing Number of States of
Underlying Model

The data set had missing samples spanning days at a

time, making interpolation an unfavorable option, especially

knowing the periodic daily pattern of variation. We addressed

the issue by replacing missing samples with the average value

corresponding to available samples on similar days and times

of the day as the missing samples.

IV. DP-BASED BAYESIAN QUICKEST DETECTION FOR

OBSERVATIONS DRAWN FROM A HIDDEN MARKOV

MODEL

Consider a finite-state Markov chain M = {Mt; t ≥ 1}
with d states, and suppose that the initial state distribution

and the one-step transition matrix of M change suddenly

at some unobservable random time T . Conditioned on the

change time, M is time-homogenous before T with initial

state distribution µ and one-step transition matrix W0 and

is time-homogenous thereafter with initial distribution ρ and

one-step transition matrix W1.

The change time T is assumed to have a zero-modified

geometric distribution with parameters θ0 and θ, meaning

that

T =

{

0, w.p. θ0

t, w.p. (1 − θ0)(1 − θ)t−1θ

}

Let the process X = {Xt; t ≥ 1} denote a sequence of

noisy observations of M . The probability distribution of X t

is a function of the current state Mt and whether or not the

change has occured by time t. Here, Xt is assumed to have

a Poisson distribution with parameter λij , where i ∈ 1, ..., d
refers to the value of Mt, and j = 1{t≥T} is 0 before the

change and 1 thereafter.

We use the noisy observation sequence X to detect the

change in the underlying unobservable sequence M as soon

as possible while minimizing false alarms.
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A. Bayesian Framework

The framework in this section was proposed in [6]. It

proceeds as follows:

Define the process Y by Yt =
(

Mt, 1{t≥T}

)

for t ≥ 1.

Yt = (d, 0) has the interpretation that Mt = d and the change

has not occured yet (t < T ). The state space of the process

Y = {(0, 0), (1, 0), ..., (d, 0), (0, 1), (1, 1), ..., (d, 1)}

is partitioned into

Y0 = {(0, 0), (1, 0)..., (d, 0)}, Y1 = {(0, 1), (1, 1), ..., (d, 1)}

First, note that Y is a Markov process with initial distribution

η = ((1 − θ0)µ, θ0ρ) and one-step transition matrix P =
[

(1 − θ)W0 θW1

0 W1

]

. Y1 forms a recurrent class, and the

states in Y0 are transient. The problem is to detect the time

till absorption of Y in Y1:

T = min{t ≥ 1; Yt /∈ Y0 }

Let CD be the cost of each observation taken after T without
detecting a change, and CF the cost of a false alarm. The

Bayes’ risk associated with a decision rule τ is thus:

µ(τ) = CDE
[

(τ − T )+
]

+ CF Pr(τ < T ) (1)

where expectation is taken over all possible sequences X
and Y and change times T . The objective is to solve the

following optimization problem:
inf

causal τ
µ(τ) (2)

B. Solution [6]

For every t ≥ 0, let Πt = (Πt(y), y ∈ Y) be the row

vector of posterior probabilities

Πt(y) = Pr{Yt = y | X1, X2, ...Xt}, y ∈ Y

that the Markov chain Y is in state y ∈ Y at time t given

the history of the observation process X .

The process {Πt, t ≥ 0} is a Markov process on the proba-

bility simplex state space P = {π ∈ [0, 1]|Y |;
∑

y∈Y

π(y) = 1}

with
Πt+1 =

ΠtPdiag(f(Xt+1))

ΠtPf(Xt+1)
(3)

where P is the one-step transition matrix, f(Xt+1) is the

column vector of emission probabilities of X t+1 under y ∈
Y , and diag(f(Xt+1)) is the diagonal matrix formed using

the elements of f(Xt+1).
Let g(π) be the expected delay cost for the current sample

over all possible underlying y ∈ Y given the past. Similarly,

define h(π) as the expected cost of false alarm over y ∈ Y
given our knowledge of the past if change is declared at the

current sample. The two quantities are given by:

g(π) =
∑

y∈Y1

CDπ(y) and h(π) =
∑

y∈Y0

CF π(y)

The optimal cost is a function of the initial state η;

specifically, it is the value function evaluated at η of an

optimal stopping problem over the Markov process Π. The

value function J satisfies the following Bellman equation:

J(π) = min{h(π), g(π) + EX

[

J(π
′

) | π
]

} (4)

where π
′

is obtained from π through (3) for a given obser-

vation x. The reader can refer to [1] for the intuition behind

equation (4).

An approximate solution for the infinite horizon Bellman

equation 4 can be obtained by solving the problem for N(ε)
stages, where ε corresponds to a tolerable error margin. Let

µN(ε) be the optimal cost for the finite horizon problem

with N(ε) stages, and µ∗ be the optimal cost of the infinite

horizon problem. For every positive ε, there exists N(ε) such

that µN(ε) − µ∗ ≤ ε. More especifically,

N(ε) =









CF

ε





CF

CD

+
∑

y,y′∈Y0

I − (1 − θ)W0
−1(y, y′)













µN(ε) is the N-stage value function evaluated at π0 = η.

The N-stage finite horizon value function for a starting pos-

terior probability πt can be obtained through the following

recursion:

Jk+1(πt)

= min
{

h(πt), g(πt) + EXt+1

(

Jk(Πt+1) | Πt = πt

)}

where k = 1, 2, · · · , N(ε) and J 0 := h, and πt+1 can easily

be calculated from πt for a given value of Xt+1 using (3).

C. ε-Optimal Alarm Time and Algorithm

The change detection algorithm suggested in [6] proceeds

as follows:

Starting with observation X1 and π0 = η, calculate the

updated posterior π1 from π0 and X1 using (3). If π1

belongs to the region ΓN(ε) = {π ∈ P ; JN(ǫ)(π) = h(π)},

then declare that a change has occured and stop sampling.

Otherwise, repeat for t = 2 by sampling X2, and calculating

π2 from π1 and X2, and so on.

The region ΓN(ε) is calculated offline only once for a set

of model parameters and costs. The region is a non-empty

closed convex subset of the 2d-dimensional simplex P that

shrinks with increasing N(ǫ), and converges to Γ (the infinite

horizon optimal stopping region) as N → ∞ [6].

D. Implementation

Despite the favorable properties of region ΓN(ε), its

boundary cannot generally be expressed in closed form

[6]. The offline determination of ΓN(ε) involves computing

JN(ε)(π) for all π in the continuous higher-dimension prob-

ability simplex P , which is computationally intractable.

To get around this problem, we resort to a simple form of

cost-to-go function approximation, where the optimal cost-

to-go is computed only for a set of representative states.

The representative states are chosen through a discretization

of the 2d-dimensional probability simplex. The optimal cost

to go is then calculated offline for all posterior probability

vectors in the resulting grid. However, for a posterior proba-

bility vector π in the grid, the calculation requires knowing

the value of the optimal cost-to-go function at all states

(posterior probability vectors) accessible from π. Nearest

neighbour interpolation is used to estimate the cost-to-go

values corresponding to accessible states outside the grid.

Determining ΓN(ε) in practice poses another challenge

relating to the calculation of the Q-factor at stage k+1:
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EXt+1

(

Jk(Πt+1) | Πt = πt

)

. Conditioned on the underly-

ing state Yt+1, Xt+1 is a Poisson random variable with

a parameter λ(y) that depends on the value y of Y t+1.

The countably infinite support of Xt+1 makes the Q-factor

calculation computationally intractable. For that reason, we

approximate the Q-factor for a certain Πt = πt by the

weighted average of J k(Πt+1) evaluated at a well-chosen

set SA of values of Xt+1. More specifically, the approximate

Q-factor is:

Qk
app(π) =

∑

x∈SA
Pr(Xt+1 = x | πt)J

k(πt+1)

Pr(Xt+1 ∈ SA | πt)

The set SA is chosen to include points where most of the

Poisson p.d.f. is centered for parameters λ(y) where y ∈ Y .

The computational complexity of the offline procedure

with the approximations suggested is in the order of

(N(ε) + NP )

(

1

dstep
+ 1

)2d−1

where dstep is the probability grid step size, and Np the

number of poisson samples used to approximate the Q-

Factor.

E. Simulation Results

In section III, we found that the number of underlying

states required to model the data set with “reasonable”

accuracy is Ns = 6. But due to the exponential complexity

of the algorithm in the number of states Ns, we start by

modeling the data with a three state and a four state HMM.

The resulting HMM parameters can be found in [1]. The

change detection algorithm proceeds from the beginning of

the disruption week which consists of 2016 samples. The

disruption occurs at sample 406 (with a value of 181).

For Ns = 3, we obtain the detection times in Table I under

different values of the false alarm cost (CF ). The results were

obtained taking a discretization step size of 0.25, a sample

cost CD of 1, error margin of ε=3, and a prior θ = 1/300.

Notice how all the cost assignments considered result in a

false alarm at t = 405. The traffic measurement at t = 405
was 171, a value at the boundary between between business-

as-usual and disurption states. With a crude 3 state model, a

higher penalty for false alarms is required to correctly resolve

this boundary situation. The higher penalty, however, results

in longer horizons which are computationally infeasible.

Table II shows the detection times for Ns = 4 under

different false alarm costs CF (keeping all other parameters

constant). Notice that correct detection occured in the range

of CF considered when a more refined model (Ns = 4) was

taken to describe the data. The fact that Ns = 4 was sufficient

indicates that the difference between business-as-usual and

disruption data in this particular data is pronounced enough

that even a crude model (Ns < 6) was sufficient for quickest

detection purposes.

For a lot of other real-world applications, the richness

of the data and the subtle differences between business-as-

usual and disruption necessitate a high number of underlying

Markov states. The algorithm does not scale well with

increasing Ns, and a different approach is needed.

TABLE I: Detection Time and Horizon for Different False Alarm
Costs when Ns = 3

CF Horizon N(ε) Detection Sample

0.5 31 404

1 301 405

10 3034 405
20 6143 405

TABLE II: Detection Time and Horizon for Different False Alarm
Costs when Ns = 4

False Alarm Cost Horizon N(ε) Detection Sample

0.5 134 404

1 267 406
10 2700 406

20 5467 406

V. NON-BAYESIAN APPROXIMATE CUSUM METHOD

FOR HMM QUICKEST DETECTION

A non-Bayesian CUSUM-based approach for HMM

quickest detection was suggested in [5]. It exhibits minimax

optimality in the sense that for a given constraint on the delay

between false alarms, it minimizes the worst case delay to

detection. CUSUM is commonly viewed as a repeated se-

quential probability ratio test (SPRT) with a lower threshold

of zero, and an upper threshold chosen to capture the tradeoff

between false alarm frequency and detection delay. For a

more detailed description of CUSUM and SPRT, we refer

the reader to [12] and [17] respectively.

A. HMM CUSUM-Like Procedure for Quickest Detection

Designing CUSUM procedures involves finding a relevant

function g(Xn) of the observations Xn that satisfies Page’s

recursion [12] and the antipodality condition, namely that

E(g(Xn)|H) ≤ 0 and E(g(Xn)|K) ≥ 0), where K(H) is the

hypothesis that change has (has not) occured. For the HMM-

quickest detection problem, [5] proposes using the following

form of g(Xn). For the k’th sample after the last SPRT,

and taking fH and fK to be the HMM probability measure

before and after change (calculated using the scaled forward

algorithm as described in [5]),

g(n; k)(Xn) = ln

(

fK(Xn | Xn−1, . . . , Xk)

fH(Xn | Xn−1, . . . , Xk)

)

The CUSUM recursion is then

Sn = max{0, Sn−1 + g(n; k)}

The stopping time is min{n; Sn ≥ h}, where h is a

threshold chosen according to the desired tradeoff between

false alarm frequency and detection delay. Average detection

delay increases linearly with h, whereas the average delay

between false alarms increases exponentially in h [5]. This

“log-linear” behavior is the main reason why CUSUM algo-

rithms work.

B. Simulation Results

In this section, we discuss the results of running HMM-

CUSUM on the Rome data. We use a 6-state HMM descrip-

tion of the data (parameters can be found in [1]). Figure

4 shows the stopping times obtained for different values

of h. Notice that small h (h < 1.5) leads to false alarms.

As h increases, the time between false alarm increases

exponentially, and for 1.5 ≤ h ≤ 1100, HMM-CUSUM

783



1h = 1.5 h = 1100
0

200

400

600

Log Scale − Threshold h

S
to

p
p
in

g
 T

im
e
 (

s
a
m

p
le

 #
)

False Alarm
    Region

Detection Region

Fig. 4: Detection Time Versus h for 1 week Termini Data Fit with
a 6-state HMM: h ∈ (0, 1.6)

0 100 200 300 400
0

0.5

1

1.5

2

2.5

Sample Number

C
u

m
u

la
ti
v
e

 S
u

m
 S

n

Monday Week 2
Detection

Fig. 5: HMM-CUSUM as a Repeated SPRT

consistently detects the disruption with linearly increasing

delay. Beyond h = 1100, the disruption goes undetected

(alarm at infinity).

This behavior can be explained by observing the trajectory

of the cumulative sum Sn for the Rome data (figure 5).

Initially, the data shows an overwhelming likelihood of being

business-as-usual which leads to restarting the SPRT with

Sn < 0 reset to 0. Around Monday’s peak traffic time,

the likelihood of disruption increases leading to a significant

positive drift. The increase, however, is not enough to cross

the threshold h and raise an alarm. Eventually, Tuesday’s

surge in traffic raises the likelihood of disruption to the point

of crossing the threshold, leading to detection. Low values

of h intercept the Monday peak leading to false alarms, and

very high values of h intercept neither peak, leading to failed

detection.

Figure 6 shows an approximate average alarm time for data

sampled from the Termini disruption model under different

values of h. The average alarm time for each h is obtained

through Monte Carlo simulations. To guarantee detection, on

average, the value of h required is greater than 7.5.

C. Robustness Results

First, consider the effect of designing HMM-CUSUM

based on the Rome disruption model when the actual dis-

ruption is sampled from one of the models in table III which

differ from the Rome model in that they have progressively

smaller emission probability parameters. In figure 7a, we see

Model Emission λ’s

1 161 166 177 194 213 228

2 141 146 157 174 193 208

3 121 126 137 154 173 188

TABLE III: Actual Disruption Emission λ’s (Transition Matrix
and Initial Probability Same as Those from Termini)
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Fig. 6: Average Alarm Time Versus h for Locally Optimal 6-State
Model Describing Rome Data

that this discrepancy between assumed and actual disruption

models leads to a higher detection delay (less optimal) for

h = 7.5 (compare with figure 6). Recall that h = 7.5 is the

lowest threshold to guarantee “negligible” false alarm rate on

average. Being the lowest such threshold, it also guarantees

the smallest detection delay for the desired false alarm rate.

The observed increase in detection delay can be explained as

follows: when the actual emission probability parameters of

the disruption model are less than the assumed ones, it takes

more samples for Sn to show the magnitude of positive drift

that would lead to crossing the threshold designed for higher

emission probabilities.

Second, we propose a simulation-based method to de-

sign robust HMM-CUSUM procedures when the disruption

model is unknown but belongs to a known class C with

|C| models. We focus on minimizing average detection

delay for a negligible false alarm rate. The design model

is constrained to be in C. Note that an HMM-CUSUM

procedure is characterized by a threshold h and an assumed

disruption model. We suggest the following method:

• For each model Ci in the class (C), plot the average

alarm time (obtained from Monte Carlo Simulations)

when the HMM-CUSUM is designed for disruptions

from Ci and the actual disruptions are drawn from Cj

with j = 1, . . . , |C|
• From each Ci plot obtained, find the lowest threshold

hi that guarantees negligible false alarm rate (average

alarm time≥ 406) for all Cj . In addition, find the

maximum average delay (Di) for all Cj at the chosen

hi.

• Choose the pairing of Ci and hi that minimizes the

maximum average delay Di found in the previous step.

For the class C described in table III and the original model

obtained from Termini, we obtain the plots in figures 7a-

d. In figure 7a, we observe that when the HMM-CUSUM

is designed for the Termini disruption, h = 9.6 guarantees

a negligible false alarm rate for all models in C. For this

threshold, the worst average delay happens for data drawn

from perturbed model 3 and has a value of 31 samples. Based

on the simulation results (table IV), the design model of

choice is perturbed Model 1 or 2 with a worst case detection

delay of 21.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we assessed the feasibility of two HMM

quickest detection procedures for detecting rare events in a

real data set in the context of urban planning.
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Fig. 7: Performance of HMM-CUSUM under different assumed and actual models in C. (- = Termini model) (* = perturbed

model 1) (o = perturbed model 2) (+ = perturbed model 3)

For the DP-based procedure described in [6], we suggested

approximations for finding the optimal region described by

an infinite horizon dynamic program with a continuous

state space. The suggested approximations do not scale

well with increasing state-space dimension rendering the

method infeasible for real applications. On the other hand,

the performance guarantees on HMM-CUSUM [5] often

involve approximations, but it is fast and scales well with

increasing dimensions. Finally, we examined the robustness

of the HMM-CUSUM when the disruption model is not

exactly known, but belongs to a known class of HMMs.

Future work in this area will focus on finding theoretical

results for the minimax-robust HMM quickest detection and

finding rigorous notions of distance for HMMs compatible

with the quickest detection problem.
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