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Abstract— In this paper we study the problem of estimating
the state of sensors in a sensor network from noisy pairwise rel-
ative measurements. The underlying sensor network is typically
modeled by a graph whose edges correspond to pairwise relative
measurements and nodes represent sensors. Using tools from
algebraic topology and cohomology theory, we present a new
model in which the higher order relations between measure-
ments are captured as simplicial complexes. This allows us to
address the fundamental tension between two conflicting goals:
finding estimates that are close to obtained measurements, and
at the same time are consistent around any sequence of pairwise
measurements that form a cycle. By defining a measure of
inconsistency around each cycle, we present a one-parameter
family of algorithms that solves the estimation problem by
identifying and removing the smallest fraction of measurements
that make the estimates globally inconsistent. We demonstrate
that the inconsistencies are due to topological obstructions and
can be decomposed into local and global components that have
interesting geometric interpretations. Furthermore, we show
that the proposed algorithm is naturally distributed and will
provably result in consistent estimates, and more importantly,
recovers two sparse estimation algorithms as special cases.

I. INTRODUCTION

A common application of estimation in sensor networks is
to find the best estimate of a quantity of interest using noisy
relative measurements. Examples of problems of this type
include localization and time synchronization where one is
interested in determining some unknown absolute quantity
represented by node values in a network using a set of
pairwise differences. The unknown variable on the nodes can
represent the time offset of a clock relative to a reference
clock in the time synchronization problem or coordinates or
direction of a moving sensor.

Nodes in a sensor network often have limited commu-
nication power. As a result, only a subset of all possible
relative measurements is available to each sensor. The noisy
measurements can be represented as edge valuations in
a network and the unknown absolute quantities as node
valuations. Simply put, the goal of such estimation is to
use noisy relative measurements to find the absolute node
values (cf. Karp et al. [1], and Giridhar et al. [2] on time
synchronization in the sensor networks).

Since adding a constant to all the node values does not
change the relative differences, the best we can hope for is
to find an estimate of the pairwise differences rather than the
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absolute node values. Therefore, the problem is sometimes
formulated as estimation of the pairwise differences from
their noisy measurements. To make the resulting node values
unique, it is assumed that there is an anchor node whose state
is known and can be used as a reference for other nodes.

The two main objectives in estimation of pairwise differ-
ences are, first for the estimates to be close to the measured
values, and second for the estimates to be consistent. A
set of pairwise differences is consistent if it can be used
(together with the state of the reference node) to define a
unique estimate of the node values. For example, if there
are three scalar pairwise measurements that form a clique
in the underlying graph, one would like the estimated edge
values for the 3-clique to have the additional property that
the sum of two pairwise differences gives the third one, or in
other words, borrowing from circuits terminology, Kirchoff’s
Voltage Law (KVL) is satisfied across every loop, exactly as
in an electric circuit.

In [1] the authors provide a protocol for sensors to estimate
the clock offsets in an optimal and globally consistent way.
More recently, Barooah et al. in [3] study the effect of graph
structure on estimation accuracy and provide lower and upper
bounds on the variance of estimation error (MSE). They also
look at vector valued variables and propose a decentralized
and asynchronous algorithm to find the Best Linear Unbiased
Estimator (BLUE) [4]. In [5], the authors suggest a new
decentralized algorithm to find BLUE with fewer message
exchanges. When the noise in relative measurements is Gaus-
sian and independent, a BLUE can be computed using stan-
dard least squares by simply computing a pseudo-inverse [6].
On the other hand, to solve the problem using purely local
information, an iterative coordinated descent algorithm can
be used. Xiao et al. in [7] consider a general linear estimation
model and use repeated local averaging to compute the least
square solution even when the underlying network topology
changes over time. When the linear measurement model
involves pairwise relative differences, there is a beautiful
analogy between solution of this least squares problem and
electric network theory (cf. [2], and Doyle and Snell [8]).

While the above mentioned results and many others
provide distributed (and sometimes asynchronous) solutions
to the problem of finding a consistent edge valuation, the
resulting estimates often suffer from the drawback that
estimated edge values are different from the measured ones
on most of the edges: large errors in a small subset of
measurements can distort an otherwise consistent estimate
on a large subset of edges. One could then ask the question:
what are the fewest number of measurements that prevent
the other measurements from forming a consistent estimate?
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This is the approach taken in this paper. The answer to
this question obviously depends on graph topology: On a
graph without loops any edge valuation is consistent. On the
other hand, large systematic errors in pairwise measurements
cannot be detected on a cycle-free graph due to lack of
redundancy. To answer the question posed, one needs to go
beyond pairwise interactions and a graph-based model of the
underlying sensor network and consider simplicial complexes
as models of the network [9]–[11]. Our results are informed
and motivated by the works in [9], [10], as well as Jiang
et al. [12] in construction of absolute rankings from relative
rankings.

In this paper we argue that there could be topological ob-
structions to aggregation of locally consistent edge valuations
into a global estimate. We show that even in the presence
of such topological obstacles, one can find the sparsest
representation of inconsistency-causing measurements. We
demonstrate how cohomology theory and its sparse rep-
resentation can be used to identify the fewest number of
measurements that need to be discarded to get a consistent
estimate. We also explore the tradeoff between consistency
of an estimate and how close to the measured values it is.
We quantify the (local) inconsistency of an estimate and
show through simulations how increasing the threshold of
the inconsistency we are willing to accept in an estimate,
makes the estimate closer to the measured value.

II. PROBLEM SETUP AND MATHEMATICAL
PRELIMINARIES

Let G = (V,E) be an undirected graph representing the
network of sensors and relative measurements where V =
{v1, v2, . . . , vn} is the set of nodes and E is the set of edges
with m = ∣E∣. Two nodes vi, vj are said to be neighbors,
denoted by vi ∼ vj , when {vi, vj} ∈ E. Let x : V → ℝ be
an unknown function that assigns a real value to each of the
nodes. x is only known through measurements of pairwise
differences of its value on neighboring nodes. Any two
neighboring sensors vi and vj communicate with each other
to form a common measurement of the difference between
x(vi) and x(vj). As a consequence, even though noise is
oftentimes at the node level, we can effectively attribute it
to relative measurements. Noisy pairwise measurements are
modeled as a real valued function y defined for all (vi, vj)
such that {vi, vj} ∈ E as

y(vi, vj) = x(vi)− x(vj) + "(vi, vj), (1)

where "(vi, vj) = −"(vj , vi) is the noise of measurement.
Given y, we want to find an estimate x̂ of x. To measure the
quality of x̂, we compare y with ŷ, the pairwise differences
that are induced on the edges, if x̂ was the unknown function.
ŷ is related to x̂ by ŷ(vi, vj) = x̂(vi)− x̂(vj). Therefore, the
problem can be reformulated as minimizing ∥y− ŷ∥ subject
to ŷ : E → ℝ being induced by pairwise differences of some
function x̂ : V → ℝ. Once ŷ is known, x̂ can be determined
up to an additive constant. To get a unique x̂, we assume
that for every connected component of the graph there exist
an anchor node on which the value of x is known.

We now present a brief review of the key concepts from
algebraic topology that we use in this paper, namely sim-
plicial complexes, cochains, and cohomology. The following
definitions and results are standard and can be found in [13],
[14].

A k dimensional simplex henceforth called a k-simplex is
a set of k+1 points {v0, v1, . . . , vk}. For any j ≤ k a j-face
of a k-simplex is a nonempty subset of the k+ 1 points that
define the simplex.

Definition 1: A simplicial complex K is a finite collection
of simplices that has two properties:

1) Every face of K is in K.
2) The intersection of any two simplices in K is a face of

each of them.
We can define an orientation for a simplicial complex

by defining an ordering on all of its simplices. We denote
the k-simplex {v0, v1, . . . , vk} with some ordering on it
by [v0, v1, . . . , vk]. Likewise, an orientation of a simplicial
complex implies an ordering on all of its simplices.

The dimension of a simplicial complex is the maximum
of the dimensions of its simplices. A j-skeleton of K is a
simplicial complex consisting of all of the j-simplices of
K. In particular the 1-skeleton of a simplicial complex is a
graph. For k ≥ 2 the k dimensional flag complex of a graph
G denoted by Fk(G) is the largest simplicial complex of
dimension k whose 1-skeleton is G.

Definition 2: Given an oriented simplicial complex K, let
Ck be the set of all its ordered k-simplices. A k-dimensional
cochain over the field of reals henceforth called a k-cochain
is a function f : Ck → ℝ such that

f([v0, v1, . . . , vj , . . . , vi, . . . , vk])

= −f([v0, v1, . . . , vi, . . . , vj , . . . , vk]),

for all 1 ≤ i < j ≤ k.
The set of all k-cochains of a simplicial complex is

a vector field over the reals denoted by Ck(K). We let
Ck(K) = 0, if k is greater than the dimension of K. Note that
Ck(K) is a finite dimensional vector field with its dimension
equal to the number of the k-simplices in K. Next we define
coboundary maps.

Definition 3: The kth coboundary operator is a linear
map �k : Ck(K)→ Ck+1(K) defined as

(�kf)([v0, v1, . . . , vk+1])

=

k+1∑
j=0

(−1)jf([v0, v1, . . . , vj−1, vj+1, . . . , vk+1]).

It is easy to prove:
Lemma 1: The linear map �k ∘ �k−1 : Ck−1(K) →

Ck+1(K) is the zero map for all k ≥ 1.
Given an oriented simplicial complex K, for any � ∈ Ck

whose ordering is consistent with the orientation of K, let
b� : Ck → ℝ be the k-cochain such that b�(�) = 1 and
b�(�) = 0 for all � ∈ Ck which are not permutations of
�. The assumption that b� is a k-cochain uniquely specifies
its value on ordered k-simplices which are permutations of
�. The set of all b� is the canonical basis for the vector
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space Ck(K). The representation of a cochain with respect
to a basis can be written as a column vector. Likewise the
linear maps on cochains can be represented as matrices. We
do not distinguish between cochains and coboundary maps,
and their vector and matrix representations with respect to
the canonical basis.

To define simplicial cohomology, we need to look at two
subspaces of Ck(K):

ker �k = {f ∈ Ck(K) : �kf = 0},
im �k−1 = {f ∈ Ck(K) : ∃ g ∈ Ck−1(K) s.t. f = �k−1g}.
k-cocylces are elements of kernel of �k and k-coboundaries
are elements of image of �k−1. By Lemma 1, im �k−1 is a
subspace of ker �k. Hence, we can define the kth cohomology
Hk(K) as the quotient vector space

Hk(K) = ker �k/im �k−1.

The dimension of kth cohomology is called the kth Betti
number �k(K)1. Informally, the kth Betti number counts the
number of k dimensional ‘holes’ in the simplicial complex.
For example, �0(K) is the number of connected components
in K, or �1(K) is the number of two-dimensional or ‘circular’
holes. If the simplicial complex is contractible (i.e. can be
contracted continuously into a point), then all Betti numbers
are equal to zero. Two cochains are said to be cohomologous
if their difference is a coboundary.

Definition 4: The cohomology class of the cochain f ∈
Ck(K) denoted by [f ] is the set

[f ] = {g ∈ Ck(K) : g − f ∈ im �k−1}.
Hodge decomposition is an orthogonal decomposition of

the vector space of cochains into three subspaces. To state
the Hodge decomposition theorem, we first need to define
the adjoint operators of coboundary maps. Let ⟨⋅, ⋅⟩k and
⟨⋅, ⋅⟩k+1 be inner products on Ck(K) and Ck+1(K) respec-
tively. Then, the unique adjoint operator corresponding to
the kth coboundary operator is �∗k : Ck+1(K) → Ck(K)
defined to satisfy ⟨�kf, g⟩k+1 = ⟨f, �∗kg⟩k, for all f ∈
Ck(K) and g ∈ Ck+1(K). Unless otherwise specified, all
the inner products are the standard inner products of vector
representations of cochains with respect to the canonical
basis.

Definition 5: The kth combinatorial Laplacian operator is
the linear operator Δk : Ck(K)→ Ck(K) defined as

Δk = �k−1 ∘ �∗k−1 + �∗k ∘ �k.
We now can state the Hodge decomposition theorem. A
simple proof can be found in [15].

Theorem 1 (Hodge decomposition): Vector space of k-
cochains can be decomposed orthogonally as

Ck(K) = im �k−1 ⊕ ker Δk ⊕ im �∗k. (2)

Furthermore, the dimension of ker Δk equals �k(K).
Therefore, ker Δk is trivial if and only if �k(K) = 0.

1Betti numbers are really defined as dimensions of homology and not
cohomology groups. However, since our coefficient group is the field of
reals, universal coefficient theorem for cohomology implies that the two are
the same (see Theorem 53.5 in [14]).

III. PROBLEM REFORMULATION ON FLAG COMPLEXES

In this section we reformulate the estimation problem as
finding a projection of the 1-cochain of measurements onto
the consistent subspace of the flag complex of the graph.
Let G = (V,E) be the graph defined in section I, and let
K = F2(G) be its two dimensional flag complex. Let x, y,
and " be defined as in section I. It is easy to verify that x is a
0-cochain whereas y and " are 1-cochains. Equation (1) can
be rewritten in terms of coboundary operator as y = �0x+".

The estimation problem as presented in section II is an
optimization problem with the constraint that ŷ is induced by
pairwise differences of some x̂ : V → ℝ. We can reformulate
the constraint using the terminology of algebraic topology
as: ŷ is a 1-cochain that lies in im �0. This is the subspace
of ‘consistent’ 1-cochains, namely the cochains that can be
written as the coboundary of some 0-cochain. The name
consistent refers to the fact that 1-cochains in im �0 can give
rise to a node valuation which is unique up to an additive
constant. The problem of finding a consistent edge valuation
from noisy pairwise measurements can be written as:

min
ŷ∈C1(K)

∥y − ŷ∥

subject to ŷ ∈ im �0,
(3)

where different norms result in different notions of ‘best’
estimate. In what follows we look at the solution and the
residual of (3), when the norm that is used is the ℓ2 norm.
We use Hodge theory to decompose the residual and motivate
our estimation algorithm.

A. Orthogonal Projection

A commonly used norm in (3) is the ℓ2 norm: ∥f∥2 =

⟨f, f⟩1/21 . Let the inner product on C1(K) be defined as
⟨f, g⟩1 = fTWg, where W is some positive semidefinite
matrix. Then the solution ŷ∗ to the optimization problem (3)
is just the orthogonal projection of y, with respect to ⟨⋅, ⋅⟩1,
onto im �0. ŷ∗ is the consistent component of y, whereas the
residual r∗ Δ

= y− ŷ∗ corresponds to the inconsistencies in y.
Hodge decomposition theorem implies that the residual can
be further decomposed into the sum of two orthogonal parts
such that one captures the inconsistencies in y on a local
level whereas the other captures it on a global level. This
is the approach taken in [12] in the context of ranking. We
use the same terminology as [12] to name the components
of a 1-cochain in its Hodge decomposition as ‘consistent’,
‘locally inconsistent’, and ‘globally inconsistent’.

Image of �0 is the subspace of 1-cochains that can arise
as the pairwise differences of a function on nodes of the
graph. Hence, we call it the consistent component. Image
of �∗1 is the space of 1-cochains that sum up to a non-zero
value on the boundary of some 2-simplex. More precisely,
for any 1-cochain f ∈ im �∗1 , there exists an unordered 2-
simplex {v1, v2, v3} in K, such that f([v1, v2])+f([v2, v3])+
f([v3, v1]) ∕= 0. We call a 1-cochain in im �∗1 locally incon-
sistent, because even on nodes of the 2-simplex (i.e. locally),
it cannot give rise, in a consistent way, to a node valuation.
Finally, ker Δ1 is the harmonic or globally inconsistent (but
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locally consistent) subspace of C1(K). This is the space of
cochains that sum up to zero on all 2-simplices but cannot
be written consistently as differences of node valuations.

Remark 1: One can think of a cochain in im �0 as the
gradient of some scalar potential defined on the nodes of
the graph. Similarly, a cochain in im �∗1 can be thought of
as being the curl of a vector field on 2-simplices. A well-
known result from vector calculus asserts that a curl free
vector field can be written as the gradient of some scalar
potential, i.e. the space of 1-cochains can be decomposed
as im �0 ⊕ im �∗1 . This result is only true for a space with a
zero �1 (e.g. ℝn). In general a 1-cochain might also have a
component in ker Δ1.

B. Sparse Cohomologous Cochains

The alternative algorithm we peruse here is to find the
fewest problematic measurements and discard them to make
the remaining ones consistent. Even though a small fraction
of the measurements are ignored altogether in our algorithm,
but the remaining ones are not being altered.

Hodge decomposition theorem implies that if ker Δ1 is
trivial, then any 1-cochain that is locally consistent is also
a globally consistent solution to the estimation problem. A
sufficient condition for �1(K) = 0 is for F2(G), the two
dimensional flag complex of G, to be the disjoint union of
finitely many simply connected sets.

When im �∗1 is trivial, we can look at the projection of y
onto ker Δ1 to find out the 1-cochains that prevent the locally
consistent 1-cochains from forming a globally consistent
estimate. Otherwise, we first orthogonally project y onto
im �0 ⊕ ker Δ1 and then proceed as before. We will provide
an alternative solution to deal with the local inconsistencies
in the next section.

The 1-cochain resulting after projecting out the locally
inconsistent component is the sum of a locally consistent
component and a harmonic component which is the topolog-
ical obstruction to the aggregation of the locally consistent
component into a globally consistent estimate. This obstruc-
tion is captured by the cohomology class of the cochain. [f ]
is the set of all 1-cochains that differ from f in a consistent
1-cochain. All the 1-cochains in the same cohomology class
represent the same inconsistency. In Lemma 2 we prove
that if we remove the support of any g ∈ [f ] from the
measurement graph, f becomes a consistent 1-cochain on
the remaining edges of the graph. Therefore, given a locally
consistent 1-cochain f , we can get a globally consistent one
by removing the edges in the support of any cohomologous
cochain g. Since we would like to discard the fewest number
of edges possible, we are interested in finding the sparsest
cochain which is cohomologous to the harmonic component.

For any k and f ∈ Ck(K), the k-cochain in [f ] with the
smallest support can be found by solving the following non-
convex optimization problem:

min
g∈Ck−1(K)

∥f + �k−1g∥0, (4)

where ∥⋅∥0, sometimes called the zero norm, is defined as
∥f∥0 = card({(vi, vj) : f([vi, vj ]) ∕= 0}). A commonly used

convex relaxation of a zero norm minimization problem is
to replace the zero norm with the ℓ1 norm [10]. This is the
approach we take here.

Having motivated all the steps, we now present our al-
gorithm for finding an estimate x̂∗ by removing the fewest
number of problematic edges. For the estimate to be unique,
we assume that there is an anchor node on each connected
component of the sensor network.

1) Project y onto im �0 ⊕ ker Δ1 orthogonally to get ŷ∗,
the locally consistent component of y.

2) Project y onto ker Δ1 orthogonally to get ℎ∗, the
harmonic component of ŷ∗.

3) Solve the following optimization problem to find g∗:

min
g∈C0(K)

∥ℎ∗ + �0g∥1. (5)

ℎ∗ + �0g
∗ is a 1-cochain with a small support which is

cohomologous to ℎ∗.
4) Remove the edges in the support of ℎ∗+ �0g

∗ from the
measurement graph.

5) Use ŷ∗ on the edges not deleted to uniquely find the
estimate x̂∗.

To prove that this algorithm uniquely defines an estimate
x̂∗, we need to show that: (a) ŷ∗ becomes globally consistent
after step 4 of the algorithm and (b) ŷ∗ uniquely defines an
estimate x̂∗ on the remaining edges.

Lemma 2: After step 4 of the algorithm, ŷ∗ is globally
consistent on the remaining edges.

Proof: Let y = yg + yℎ + yc where yg ∈ im �0, yℎ ∈
ker Δ1, and yc ∈ im �∗1 . ŷ∗ = yg + yℎ and ℎ∗ = yℎ imply
that ℎ∗ + �0g

∗ = yℎ + ỹg for some ỹg ∈ im �0. In step 4 of
the algorithm we only delete edges on which ℎ∗ + �0g

∗ ∕=
0. Hence, on all the remaining edges we have yℎ = −ỹg .
Since ỹg is the coboundary of some 0-cochain which is not
affected by edge deletion, ỹg will still be in im �0 after step
4. Therefore, on all the remaining edges ŷ∗ = yg − ỹg for
some ỹg ∈ im �0.

We also show in Lemma 4 that the connected components
of the graph do not become disconnected in the edge deletion
step. Therefore, there exists a path connecting each node vi
to some anchor node v0. Consequently, x̂∗(vi) can be found
by adding x(v0) to the sum of ŷ∗ on the path connecting
the two. Consistency of ŷ∗ implies that x̂∗ is independent of
the path chosen. To prove that the connectivity of the graph
does not change after running the algorithm, we first state a
lemma.

Lemma 3: For any optimal solution a∗ to the problem

min
a

p∑
k=1

∣zk − a∣, (6)

which is an extreme point, zk = a∗ for some k ∈ {1, . . . , p}.
The proof is trivial and is omitted. For more about extreme

points and linear optimization see [16].
Lemma 4: If ℎ∗ + �0g

∗ is an extreme point, connected
components stay connected after the edge deletion step of
the algorithm.
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Proof: Without loss of generality we can assume that
the graph has only one connected component to start with.
We prove the lemma by contradiction. Assume that after
deleting the edges we end up with at least two components.
Then there exists at least an edge {vi, vj} ∈ E such that
vi is in component 1 and vj is in the component 2 and
(ℎ∗ + �0g

∗)([vi, vj ]) ∕= 0. Let Ẽ be the set of such edges
and let p = ∣Ẽ∣. Assume that there exists one {vi, vj} ∈ Ẽ
such that ŷ∗([vi, vj ]) ∕= 0. This assumption is generic and is
satisfied with probability one if the probability distribution
of noise has no atoms.

Let g̃ ∈ C0(K,ℝ) be a 0-cochain which is a on all the
nodes of component 2 and zero on all other nodes. �0g̃ is
either equal to a or −a on all the 1-simplices that connect
one component to the other component and is zero on all
other 1-simplices. For any a, g∗ − g̃ is a feasible solution
to the optimization in (5). For k ∈ {1, . . . , p} let zk be
equal to (ℎ∗ + �0g

∗)([vi, vj ]) where ([vi, vj ]) is the kth
ordered 1-simplex such that vi is in component 1 and vj
is in component 2. Now consider problem (6) with zk as
defined. Since ℎ∗ + �0g

∗ is optimal and extreme point for
(5), so is a = 0 for (6). Hence by Lemma 3, zk = 0 for
some k ∈ {1, . . . , p} which contradicts the fact that the only
edges in Ẽ are the ones in support of ℎ∗ + �0g

∗.
If we use an optimization method that always yields an

extreme point solution (e.g. the simplex algorithm), we do
not need to worry about the graph becoming disconnected
by edge deletion.

IV. PROBLEM REFORMULATION ON CONSISTENCY
COMPLEXES

In the previous section, we orthogonally projected away
the locally inconsistent component of the measurements
in the first step of the algorithm. This might significantly
distort the measurements on the 2-simplices if the local
inconsistency is too large. The algorithm we suggest in
this section resolves this issue by constructing the two
dimensional simplicial complex in a way that the local
inconsistencies are absent (or negligible) to start with. In
this section instead of working with F2(G), we introduce
a new simplicial complex that we call the 
-consistent
complex whose topology captures the local consistencies of
the measurements.

Definition 6: For any 
 ∈ ℝ+∪{+∞} and pairwise mea-
surements y, the 
-consistent complex of graph G, denoted
by K
(G, y), is an arbitrarily oriented two dimensional sim-
plicial complex whose 1-skeleton is G and which includes
{vi, vj , vk} as a 2-simplex if and only if vi ∼ vj , vj ∼ vk,
vk ∼ vi, and

y([vi, vj ]) + y([vj , vk]) + y([vk, vi]) ≤ 
.
Remark 2: The definition of 
-consistent complex basi-

cally requires ‘filling in’ a triangle, when the total inconsis-
tency of the measurements on that triangle is no more than 
.
This defines a one parameter family of simplicial complexes
that allows for calibrating how much local inconsistency we
would like to tolerate by changing the value of 
. The 
-
consistent complex is a subcomplex of the flag complex.

When 
 is equal to +∞ we get the two dimensional flag
complex used in the previous section. When 
 = 0 we
only add the 2-simplices on which the measurements are
exactly consistent. Generically this will result in a simplicial
complex that has no 2-simplices. Consequently, the first step
of our algorithm is trivial for 
 = 0. In such a case our
algorithm is the same as (3), the standard estimation problem
on a graph, when the norm used is the ℓ1 norm.

The ‘holes’ of K
(G, y) correspond to regions of G where
inconsistencies are large. In a 
-consistent complex the holes
are not just artifacts of network structure. Rather, they also
capture essential inconsistencies that are caused by excessive
noise on certain edges.

All the results of previous section can be readily extended
to 
-consistent simplicial complexes by skipping the first
step of the algorithm. The resulting estimate is guaranteed
to have inconsistency that is no more than 
 on any of the
2-simplices.

V. DISTRIBUTED IMPLEMENTATION

In this section we show that the algorithms proposed in
sections III and IV can be implemented by nodes in a dis-
tributed way using only local measurements and connectivity
information.

In the first two steps we need to orthogonally project
y onto im �0 ⊕ ker Δ1 and ker Δ1 respectively. Since we
need only the connectivity information to construct �0 and
Δ1, this is essentially a local calculation. See [11] for a
detailed discussion of how these steps can be carried out in
a distributed way.

In the third step we solve the linear program in (5) to get
an extreme point solution. Since both the objective and the
domain of (5) depend only on graph connectivity, we can use
the subgradient [17] or distributed simplex [18] algorithms
to solve the program using only local information. Once we
get g∗, we can proceed to the fourth step to remove the
problematic edges from the graph. This step can easily be
implemented in a distributed way.

After deleting the problematic edges, a node which is a
neighbor of the anchor node can compute x̂∗ by adding
the reference node’s state to y∗ on the edge connecting
them. Then it can act as an anchor for its neighbors and
so on. Since each connected component has at least one
reference node, eventually all the nodes can compute x̂∗. All
the measurements that are not deleted are (approximately)
consistent. Each node gets consistent information from all
its neighbors and as a result can compute an estimate x̂∗

which is consistent up to 
.

VI. SIMULATIONS

We use a random geometric graph as the model of our
network (see [9], [19]). x is i.i.d. with a uniform distribution
over [0, 10] for all nodes. The measurement noise is i.i.d.
Gaussian with variance 1. We solve the optimization problem
(5) using simplex algorithm. Some simulation results are
presented in Fig. 1. Note that increasing 
 corresponds to
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(a) (b)

(c) (d)

(e) (f)

Fig. 1. Simulation results. (a) 0.01-consistent complex (b) deleted edges
for 
 = 0.01 (c) 1-consistent complex (d) deleted edges for 
 = 1 (e)
+∞-consistent complex (f) deleted edges for 
 = +∞.

adding the 2-simplices with more inconsistencies to the sim-
plicial complex. Hence, 
-consistent simplicial complexes
have fewer ’holes’ for higher values of 
. Our algorithm
reconstructs x faithfully for a large range of 
.

The simulations clearly demonstrates the tradeoff between
the local inconsistencies we are willing to tolerate, and the
number of edges we need to discard. When 
 is small we get
an estimate that is more consistent locally but is obtained by
discarding more of the informative measurements, whereas
when 
 is large the estimate is less consistent locally, but is
obtained by using most of the measurements available. This
shows that there is an inherent tradeoff between the two main
objectives of the problem of estimation from noisy pairwise
measurements: small error, that is for the estimate ŷ∗ to be
close to y, and consistency, which requires ŷ∗ to induce a
consistent function on the nodes.

VII. DIRECTIONS FOR FUTURE WORK

In the future, we would like to explore the tradeoff
between the error of an estimate and its consistency more

in depth. We would like to see how the total error of our
estimate and the number of edges we discard vary when we
run our algorithm for different values of 
.

Another possible extension is to use the more general
cell complexes instead of simplicial complexes. When cell
complexes are used, we can consider the inconsistencies
in the more general cycles that have lengths of more than
three. For instance if the network is a hexagonal grid, the
more natural 2-cells to use would be hexagons. Then we
can talk about local inconsistencies on hexagons instead of
triangles. Our algorithm will still work in this setting with
the caveat that to attach a 2-cell to the cell complex we need
the measurements from all the 1-cells that make its boundary.
Even though the algorithm is still distributed, but we need
information from the nodes with further hop distances.
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