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Abstract— We present the stability analysis of bilateral tele-
operation systems in the face of time varying stiff environments
via Integral Quadratic Constraints (IQCs). Numerical cases are
given for both arbitrarily fast and slowly varying parametric
uncertainties.

I. INTRODUCTION

In the last two decades, the stability problem of bilateral

teleoperation systems in the face of a rich class of uncer-

tainties has been considered via numerous methods. The

immediate requirement of satisfactory performance levels

turned out to be a very challenging problem since obtaining

such levels while maintaining stability are, unlike a motion

control system, uncompromisable. Hence, the common trade

off between performance and stability in control systems is

of the utmost importance in teleoperation systems. Therefore,

many available control methodologies are being generalized

and experimentally tested for a better understanding of the

underlying limitations. The most popular methods are the

physically motivated energy relation methods, i.e. passivity

based approaches that are advocating the strategic energy

dissipation schemes. These methods tend to model the bilat-

eral teleoperation system as a 2-port network where human

and the environment is modeled to be the source and the load

terminations analogous to a circuit. To complete the analogy,

the human and the environment have been assumed to be

passive Linear Time Invariant (LTI) operators. Therefore,

unconditional stability criteria, scattering transforms and

wave variables are used for the stability analysis e.g. [1]–

[3].

During the teleoperation, when the remote site is explored

with a human user in the local site, it is expected that the

user experience the changes in the dynamic properties of

the environment. The user can touch different objects or

skim along a surface to find a soft spot etc. Hence, an

LTI assumption of the environment put severe restrictions

on the class of systems of interest. On the other hand, one

might assume that the environment is passive but arbitrary

otherwise hence embed the class of relevant linear passive

environments with time varying parameters into the vast pas-

sive nonlinear operator class. Thus, passivity based nonlinear

stability tests can be invoked. In some cases, if there is a

known bound on the parameters and their rate-of-variation,

then this covering might lead to conservative assessments of

stability.
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Therefore, it might be more beneficial to use the well-

known linear frequency domain methods available. However,

many classical analysis tools, such as unconditional (abso-

lute) stability criteria, µ-tools from robust control theory etc.

require the assumption of LTI operators in general. Seem-

ingly, these shortcomings led the researchers concentrate on

the nonlinear counterparts of the passivity theory.

Our motivation is to draw the attention of the teleop-

eration community to the recent advances in the robust

control theory which resolve many of these shortcomings

as witnessed in the last decade. In [4] (which is partially

presented here together with [5], [6]), our aim is to show that

the framework of Integral Quadratic Constraints (IQCs,[7])

utilized here offers a unification of stability analysis (and

to some extent controller synthesis) for a rich class of

uncertainties. Specifically, in [6], it is shown that the net-

work theoretical frequency domain methodologies can be

interpreted as particular cases of IQC theorem.

In this paper, stability analysis with respect to a time-

varying parametric uncertainty which models the environ-

ment as a stiff spring is considered with frequency dependent

multipliers. Two distinct cases namely, parameters with ar-

bitrarily fast and arbitrarily slow variations are presented. A

particular advantage of the IQC framework is that whenever

additional modeling information is available, the analysis can

be refined with ease in a structured manner.

The notation is standard. For a hermitian matrix M , M ≻
0 (M ≺ 0) denotes positive (negative) definiteness. Positive

(negative) semi-definiteness is also denoted by M � 0 (M �
0). The notation (⋆)∗ denotes the complex conjugate of the

right outer factor of a quadratic form. RH∞ denotes the set

of real rational, proper and stable functions. Consequently

RH•×•

∞
symbol denotes the real rational proper and stable

transfer matrices, where the size of the matrix does not play

a role in the discussion. A hat d̂enotes the Fourier transform

i.e. f̂(iω). An upper linear fractional transformation (LFT)

is denoted by ∆ ⋆ G = G22 + G21∆(I − G11∆)−1G12 for

some appropriately partitioned ∆, G. Similarly, a lower LFT

is denoted by G ⋆∆ = G11 +G12∆(I −G22∆)−1G21.

II. PRELIMINARIES

In this section, we briefly recap the IQC theory which is

introduced in [7]. Assume a system interconnection given by

v = Gw , w = ∆(v) (1)

where G ∈ RH•×•

∞
and ∆ is a bounded causal operator.

Definition II.1. Consider the interconnection depicted in

Figure 1a with G,∆ ∈ RH•×•

∞
of compatible dimensions.
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This G − ∆ interconnection is said to be well-posed if

(I − G∆)(s) has a proper inverse. Moreover, a well-posed

interconnection is said to be stable if the inverse of (I −
G∆)(s) is stable.

G

∆

(a)

G

∆
−

(b)

Fig. 1. The general interconnection (left) and the assumed interconnection
for passive systems (right)

An Integral Quadratic Constraint (IQC) for the input and

output signals of ∆ is expressed as

∫
∞

−∞

(

∆̂(v)(iω)
v̂(iω)

)
∗

Π(iω)

(

∆̂(v)(iω)
v̂(iω)

)

dω ≥ 0. (2)

A bounded operator ∆ : Lm
2 → Ln

2 is said to satisfy the

constraint defined by Π(iω) if (2) holds for all v ∈ Lm
2 .

The following sufficient stability condition for the inter-

connection in Figure 1a is the main theorem which forms

the basis for the IQC framework.

Theorem II.1 ([7]). Let the system model G ∈ RHn×m
∞

be

given and let ∆ : Lm
2 → Ln

2 be a bounded causal operator.

Suppose that

1) for every τ ∈ [0, 1], the interconnection of G and τ∆
is well-posed;

2) for every τ ∈ [0, 1], τ∆ satisfies the IQC defined by

Π(iω) which is bounded as a function of ω ∈ R;

3) there exists some ǫ > 0 such that

(
I

G(iω)

)
∗

Π(iω)

(
I

G(iω)

)

� −ǫI for all ω ∈ R.

(3)

Then the G−∆ interconnection in Figure 1a is stable.

In the terminology of network theory, the teleoperation

system is considered to be a 2-port network with the human

and the environment being seen as the source and the load

of the network respectively (Figure 2a). We, instead, turn to

a more familiar interpretation depicted in Figure 2b.

Remark 1. The negative feedback is required to correct the

sign changes when the flow variable exits one port and

∆s N ∆l

+ +

− −

(a)

N11 N12

N21 N22

∆s

∆l

−

−

(b)

Fig. 2. Two representations of a 2-port network.

enters another with the opposite sign. Hence the differences

between Figure 2a and Figure 2b.

A well-known version of the classical passivity theorem,

(see e.g. [8, Thm. VI.5.10]) would help us to determine the

lowest tolerable level of passivity of the uncertainties for

which a given interconnection remains stable. We can also

formulate it as a corollary of the general IQC theorem as

follows.

Corollary II.2. The interconnection of G,∆ ∈ RH•×•

∞
as

in Figure 1b is stable if there exist a p ∈ R and a positive

λ(ω) ∈ R such that
(
∆(iω)

I

)
∗
(
−pλ(ω) λ(ω)
λ(ω) 0

)(
∆(iω)

I

)

� 0 (4)

(
I

−G(iω)

)
∗
(
−pλ(ω) λ(ω)
λ(ω) 0

)(
I

−G(iω)

)

≺ 0 (5)

hold for all ω ∈ R ∪ {∞}.

Remark 2. Note that (4) and (5) are nothing but

∆(iω) + ∆∗(iω) � p∆∗(iω)∆(iω), (6)

G(iω) +G∗(iω) ≻ −pI. (7)

The case p = 0 recovers the classical passivity theorem.

The idea of replacing the passive operators with known

models or at least family of models whose Nyquist curves are

bounded by some constraints, has been recently investigated

in [9], [10] for nominal LTI environment models in the

Bounded Impedance Passivity (or Bounded Impedance Abso-

lute Stability) method. In terms of interconnections, one can

see that, these methods boil down to a simple linear fractional

transformation on one of the uncertainty blocks. Note that,

in scattering domain (4),(5) links the parametrization of the

so-called impedance circles of [9] to the test presented.

Lemma II.3 (KYP Lemma). Let a transfer function G(s) =








A B

C D









with no poles on the imaginary axis be given.

Then, the following are equivalent:

1) For a given symmetric matrix P , the system satisfies

G(iω)
∗

PG(iω) ≻ 0 ∀ω ∈ R ∪ {∞} (8)

2) There exists a symmetric matrix X such that




I 0

A B

C D





T




0 X 0

X 0 0

0 0 P









I 0

A B

C D



 ≻ 0 (9)

holds.

III. ROBUST STABILITY ANALYSIS FOR TIME–VARYING

ENVIRONMENT MODELS

When modeled as a stiff spring, the stiffness coefficient

of the environment plays a crucial role on the achievable

performance. But, the changes in this coefficient are seldom

taken into account due to the common LTI assumption of the

corresponding model. Possibly, e.g. in a teleoperated surgery

application, the magnitude and the time variation rates of

the parameter might be limited if there is no interaction
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∆h

Ke

P

−

Fig. 3. The uncertain interconnection

with hard surfaces such as bones. Hence the robustness test

against an arbitrarily fast varying parameter is expected to

be conservative for such an application.

Initially, we let the rate of variation of parameter vary

arbitrarily fast to compare this test with and later on, the

resulting stability test is modified in the following section for

including the uncertainty as a slowly-varying real parametric

uncertainty ([11]–[13], cf. [14]) where the rate of variation

information is explicitly taken into account by the use of the

so-called “swapping lemma”.

A. IQC Multiplier for Arbitrarily Fast Varying Parametric

Uncertainties

We consider the case that the environment ∆e is a propor-

tional gain acting against on the position of the remote site,

modeling a spring coefficient i.e. Fe = −(Ke(t)
∫
ẋe) and

we assume that the stiffness coefficient is a time varying real

parametric uncertainty. We can assume that the integrator

part −1
s

is included in the nominal system such that only

Ke(t) is treated as the uncertainty. Therefore, we obtain the

robustness test for a system P ∈ RH•×•

∞
, interconnected

to the human and environment operators as depicted in

Figure III.

We utilize constant DG-scalings (e.g. [15]–[17]) for the

uncertainty Ke(t) ∈ [0, K̄] for all t ∈ R, and a frequency

dependent positive multiplier λ(ω) for the passive uncer-

tainty via Corollary II.2. One can show that the structured

uncertainty block ∆̂ :=
[
∆h 0
0 Ke

]
satisfies the following

constraint

(

∆̂
I

)∗







−pλ(ω)I 0 λ(ω)I 0

0 D 0 K̄
2 D + iG

λ(ω)I 0 0 0

0 K̄
2 D − iG 0 0







(

∆̂
I

)

� 0

(10)

for all frequencies where D > 0, G, p are scalars and positive

λ(ω) ∈ R for all ω.

Without loss of generality, we assume a factorization of

the form ([7])

λ(ω) = Ψ(iω)∗MΨ(iω) > 0 (11)

Define Φ := blkdiag{Ψ, 1}, then using

M =







−pM 0 M 0

0 −D 0 K̄
2 D + iG

M 0 0 0

0 K̄
2 D − iG 0 0







(12)

we have a frequency dependent inequality (FDI) of the form

given in (3),
(

Φ

ΦP̃

)∗

M

(
Φ

ΦP̃

)

≺ 0 (13)

where P̃ is the system P with the first channel’s sign is

negated, M is a symmetric matrix and D > 0, G ∈ R.

Moreover, we introduce the following minimal state-space

representations

Ψ(s) =

[
AΨ BΨ

CΨ DΨ

]

and

(
Φ

ΦP̃

)

(s) =

[
A B
C D

]

.

(14)

Then by the use of the KYP Lemma, we obtain the LMI

counterparts of the FDI (13) and (11):




I 0
A B
C D





T 



0 X 0
X 0 0
0 0 M









I 0
A B
C D



 ≺ 0 (15)





I 0
AΨ BΨ

CΨ DΨ





T 



0 Z 0
Z 0 0
0 0 M









I 0
AΨ BΨ

CΨ DΨ



 ≻ 0 (16)

Thus, we conclude the stability test as follows:

Theorem III.1. The teleoperation system transfer matrix

P ∈ RH2×2
∞

interconnected to the uncertainty set
[
∆h 0
0 Ke

]

as described above, is robustly stable if there exist matrices

M,X , Z and scalars D > 0, G, p such that (15) and (16)

holds.

B. IQC Multiplier for Slowly Varying Parametric Uncertain-

ties

To keep the presentation simpler, we will only treat a

system interconnected to time-varying uncertainty, but as in

the previous section combining different multipliers for the

structured uncertainty sets is straightforward. We will use the

results of [11], [13], to include the rate of variation of the

parameter Ke into the robustness test to reduce conservatism

further. For the convenience of the reader, we include the

scalar case of a well known result in adaptive control.

Lemma III.2 (Swapping Lemma). Assume that δ(t) is an

absolutely continuous, bounded, differentiable function and

let the derivative is bounded as |δ̇| ≤ d. Assume further

that u ∈ L2, and a convolution operator T : L2 →
L2 which admits a transfer function such that T (s) :=
(
C(sI −A)−1B +D

)
∈ RH∞ and similarly for the op-

erators

Tc(s) := C(sI −A)−1 , Tb(s) := (sI −A)−1B (17)

If such a T is chosen then, the commutative property of

operator T with a time varying δ(t) is given by,

δTu = Tδu+ Tcδ̇Tbu (18)

and thus,
(
T Tc

0 I

)

︸ ︷︷ ︸

Tleft

(
δ

δ̇Tb

)

︸ ︷︷ ︸

∆s

=

(
δ 0

0 δ̇I

)

︸ ︷︷ ︸

∆x

(
T

Tb

)

︸ ︷︷ ︸

Tright

(19)
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Consider an extended uncertainty block consists of the

time-varying parameter Ke ∈ [0, K̄] and its derivative

|K̇e| ≤ d i.e. ∆x = blkdiag{Ke, K̇e} which satisfies the

following quadratic constraint with a static multiplier

Ms =







−D2 0 K̄
2 D2 + iG2 0

0 −D3 0 iG3
K̄
2 D2 − iG2 0 0 0

0 −iG3 0 d2D3







i.e.
(
∆x

I

)T

Ms

(
∆x

I

)

� 0

where Di > 0 and Gi ∈ R for i = 2, 3. Then, from the

positivity of the quadratic constraint, the following also holds

true,

TT
right

(
∆x

I

)T

Ms

(
∆x

I

)

Tright � 0

Using (19), we have

(
Tleft∆s

Tright

)T

Ms

(
Tleft∆s

Tright

)

� 0

therefore, we can isolate a frequency dependent multiplier

for the parametric uncertainty by

(
∆s

I

)T
[(

Tleft 0
0 Tright

)T

Ms

(
Tleft 0
0 Tright

)](
∆s

I

)

� 0

Since the artificially extended K̇e uncertainty block plays no

role on the plant, we also extend the system with a zero block

i.e. P̂ =
[
P 0

]
to match the input output numbers. Note

that, the loop equations are not affected with this change i.e.

let v ∈ L2, then

(I − Pδ)(v) = (I − P̂∆s)(v)

The remaining step is to find the related multiplier factoriza-

tion for the frequency dependent parts. We initially assumed

that D2 > 0, but this constraint can be avoided i.e. we can

instead look for positive frequency dependent function of

the form ΨD̂2Ψ ≻ 0 where D̂2 is a symmetric matrix.

In a similar fashion Gi multipliers can be replaced with

symmetric matrices. Constructing basis transfer matrices

Ψ,Ψb,Ψc is straightforward which follows from the structure

of T, Tb, Tc stated in the swapping lemma e.g.

(
Ψ Ψc

Ψb •

)

:=





AΨ BΨ I

CΨ DΨ 0
I 0 0





Define

ΦA =

(
Ψ Ψc

0 I

)

,ΦB =

(
Ψ
Ψb

)

(20)

then, the overall frequency dependent multiplier is obtained

as:

(
ΦA

ΦB

)
∗

Md

(
ΦA

ΦB

)

(21)

where

Md =







−D̂2 0 K̄
2 D̂2 + iĜ2 0

0 −D̂3 0 iĜ3
K̄
2 D̂2 − iĜ2 0 0 0

0 −iĜ3 0 d2D̂3







(22)

Along the lines of the previous case, by the use of KYP

Lemma, frequenct dependent constraints are converted to the

following LMIs

(⋆)T





0 X 0
X 0 0
0 0 Md









I 0
A B
C D





T

≺ 0 (23)

(⋆)T





0 Z 0
Z 0 0

0 0 D̂2









I 0
AΨ BΨ

CΨ DΨ



 ≻ 0 (24)

D̂3 ≻ 0 (25)

We can summarize the robustness test as the following

Corollary III.3. Consider a system interconnected to a time

varying uncertainty Ke(t) ∈ [0, K̄] satisfying the properties

stated in Lemma III.2. The interconnection is robustly stable

if there exist symmetric matrices D̂2, D̂3,X , Z such that

(23),(24) and (25) holds.

Hence, one can include the multiplier of passive LTI model

of the human into this test as we did in Section III-A.

IV. NUMERICAL RESULTS

In our case study, we use the system taken from [10] with

the numerical data given in the appendix. We have a passive

uncertainty modeling the human and the time varying Ke

modeling the time varying spring in the environment. We

select different values of p hence confining the uncertainty

set into regions with different size, then testing different K̄

and rate of variation bound d via solving the LMIs. The

resulting LMIs are solved with the parser YALMIP [18],

solvers SeDuMi [19]. The system model is converted to an

admittance representation to render the system proper and

stable, but we include an integrator into the system model

and perturb the integrator transfer function (ρ = 10−5 is

used) to render the overall nominal system stable. Let

Ym =
1

Mms+Bm

, Ys =
1

Mss2 + (Bs +Kv)s+Kp

then the teleoperation system is given by

Ynom =

(

Ym −KfYm

−YmYsµKp
Mms2+Bms+µKfKp

(Mss2+(Bs+Kv)s+Kp)(Mms+Bm)

)

(26)

then,

Y = Ynom ×

(
1 0
0 − 1

s+ρ

)

The numerical values are taken from [10] as Mm =
0.64,Ms = 0.61, Bm = 0.64, Bs = 11,Kv = 80,Kp =
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4000. Note that the product Kfµ is related to the trans-

parency of the teleoperation system in [10] and for LTI

passive human and environment models, the maximum ad-

missible Kfµ = 0.127 with p → 0 computed from the

unconditional stability theorem for 2-ports.

A. Parameter with Arbitrarily Fast Variation

We simply use Corollary III.1 by setting P = Y . The

result is shown in Figure 4 for different values of K̄. We

see that towards higher values of K̄ the performance levels

decrease rapidly. Note that, though the values of K̄ are

quite realistic for physical systems, this test reports very low

performance levels.

B. Parameter with Bounded Rate of Variation

As we have derived in the last section, we use the outer

factors

Φ1 =





Ψ1

Ψ2 Ψ2c

0 I



 ,Φ2 =





Ψ1

Ψ2

Ψ2b



 (27)

Then, adding zero columns to Y from the constant scaling

case and negating the first channel, Ŷ =
[

Ỹ 0
]
, the FDI

reads as

(⋆)∗M2

(
Φ1

Φ2Ŷ

)

� −ǫI (28)

where

M2 =











−pM 0 0 M 0 0

0 −D2 0 0 K̄
2 D2 + iG2 0

0 0 −D3 0 0 iG3

M 0 0 0 0 0

0 K̄
2 D2 − iG2 0 0 0 0

0 0 −iG3 0 0 d2D3











(29)

and M,D2, D3, G2, G3 are symmetric matrices. We intro-

duce

Ψi(s) =

[
AΨi

BΨi

CΨi
DΨi

]

and

(
Φ1

Φ2Ŷ

)

(s) =

[
A B
C D

]

.

(30)

then again, via KYP Lemma, we have

(⋆)T





0 X 0
X 0 0
0 0 Md









I 0
A B
C D





T

≺ 0

for the positivity of the frequency dependent multipliers λ >

0 and Ψ∗

2D2Ψ2 > 0,we require

(⋆)T





0 Z1 0
Z1 0 0
0 0 M









I 0
AΨ1

BΨ1

CΨ1
DΨ1



 ≻ 0

(⋆)T





0 Z2 0
Z2 0 0
0 0 D2









I 0
AΨ2

BΨ2

CΨ2
DΨ2



 ≻ 0

and

D3 ≻ 0
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Fig. 4. Lower bound on the maximum achievable performance level with
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(See Figure 4)

By solving the LMIs we have obtained Figure 5. In this

case, we have varied d for fixed K̄ = 100 and p = 0.01
which are moderate values if compared to the previous case.

As seen from this result, the dynamic multipliers made it

possible to reduce conservatism dramatically. After the value

d ≥ 107 the performance levels fall to the value reported

by the constant scaling case. As we see from this plot, the

conservative results of the test with constant scalings take

into account the points that are hardly relevant in a physical

experiment for many applications that we have motivated in

the introduction. Therefore, it might be beneficial if we can

also find such similar bounds for the human operator. Our

claim is that the robustness tests with passivity assumption

on the respective models suffer from tha same issue. Even

the most trivial constraints when used together with passivity

assumption might lead to a substantial improvement as we

demonstrate in this example.

V. CONCLUSION

In this paper, we have demonstrated that time varying

environments with known rate of variation bounds can easily

be incorporated in the analysis of bilateral teleoperation

systems. Moreover, we have tried to show the flexibility and

power of the IQC framework that is suitable the teleoperation

problems. The dynamic multiplier construction is a perfect

example to show that one can come up with multipliers to

characterize operators that are difficult to deal with by the
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classical tools. Same line of reasoning is also being pur-

sued for the possible more complicated human/environment

models. Our claim is that most of the conservatism is orig-

inating from the passivity assumptions of the corresponding

operators. It is quite straightforward to modify these results

whenever one has a particular multiplier structure for the

corresponding uncertainty. Thus, we would like to draw

more attention to modeling of human/environment operator

problem rather than the oversimplified passivity assumption.

Our current focus is on investigating suitable multipliers

for various problems of teleoperation and then controller

synthesis with dynamic multipliers.
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