
A Singular Value Maximizing Data Recording Algorithm for

Concurrent Learning

Girish Chowdhary and Eric Johnson

Abstract— We present a singular value maximizing algorithm
for recording data to be used by concurrent learning adaptive
controllers. These controllers use recorded and current data
concurrently and can have exponential stability guarantees,
with the rate of convergence directly proportional to the
minimum singular value of the matrix containing recorded data.
The presented algorithm selects data for recording to improve
the minimum singular value, and hence results in improved
tracking performance, this is established through comparison
with previously studied data recording methods that record
points that are sufficiently different.

I. INTRODUCTION

The key capability brought about by concurrent learning

adaptive controllers is the ability to guarantee exponential

parameter and tracking error convergence without persis-

tency of excitation [4], [3]. Concurrent learning adaptive

controllers achieve this by using recorded data concurrently

with current data. In our previous work, we showed that

convergence can be guaranteed if the recorded data meet a

rank-condition [4], [3]. The rank-condition requires that the

recorded data contain as many linearly independent elements

as the dimension of the basis of the uncertainty. Further-

more, we indicated that the rate of convergence depends on

the minimum singular value of the matrix containing the

recorded data points (history stack). Therefore, for selecting

data for concurrent learning, it would be ideal to record data

that meets the rank-condition and maximizes the minimum

singular value of the history stack.

If no previous information about a system is available,

or changes to the system have rendered the previously

available information inapplicable, then a concurrent learning

implementation needs to begin with no data points in the

memory. In this case, a method for selecting data in real-

time is needed, in which instantaneous data will be scanned

at regular intervals and data points will be selected for

recording if they satisfy selection criteria. In this paper,

we discuss several such selection criteria, and present an

algorithm that ensures a data point is only included for

concurrent learning if the minimum singular value of the

history stack matrix is maximized.

The organization of this paper is as follows, we begin with

discussion of model reference adaptive control in section

II. Concurrent learning adaptive control for adaptive control

problems with structured uncertainty is described in section

III-A, while neuro-adaptive concurrent learning control for

G. Chowdhary and Assoc. Prof. E. N. Johnson are with the Daniel
Guggenheim school of aerospace engineering at the Georgia Institute
of Technology, Atlanta GA, Girish.Chowdhary@gatech.edu,
Eric.Johnson@ae.gatech.edu

adaptive control problems with unstructured uncertainty is

described in section III-B. A simple method for recording

different points using a cyclic history stack is described in IV,

while the singular value maximizing algorithm is described

in section V. The performance of concurrent learning adap-

tive controllers with the data selection methods is evaluated

in section VI. The paper is concluded in section VII.

II. MODEL REFERENCE ADAPTIVE CONTROL

This section discusses the formulation of Model Reference

Adaptive Control using approximate model inversion [9], [3].

Let Dx ∈ ℜn be compact, and Let x(t) ∈ Dx be the known

state vector, let δ ∈ ℜk denote the control input, and consider

the following system:

ẋ = f(x(t), δ(t)), (1)

where the function f is assumed to be continuously differ-

entiable in x ∈ Dx, and control input δ is assumed to be

bounded and piecewise continuous. The conditions for the

existence and the uniqueness of the solution to 1 are assumed

to be met. Since the exact model 1 is usually not available or

not invertible, we introduce an approximate inversion model

f̂(x, δ) which can be inverted to determine the control input

δ:

δ = f̂−1(x, ν). (2)

Where ν is the pseudo control input, which represents the

desired model output ẋ and is expected to be approximately

achieved by δ. Hence, the pseudo control input is the output

of the approximate inversion model:

ν = f̂(x, δ). (3)

This approximation results in a model error of the form:

ẋ = ν(x, δ) + ∆(x, δ) (4)

where the model error ∆ : ℜn+k → ℜn is given by:

∆(x, δ) = f(x, δ)− f̂(x, δ). (5)

A reference model can be designed that characterizes the

desired response of the system:

ẋrm(t) = frm(xrm(t), r(t)), (6)

where frm(xrm(t), r(t)) denote the reference model dynam-

ics which are assumed to be continuously differentiable in

x for all x ∈ Dx ⊂ ℜn. The command r(t) is assumed

to be bounded and piecewise continuous, furthermore, it is

assumed that all requirements for guaranteeing the existence

of a unique solution to 6 are satisfied. It is also assumed that

2011 American Control Conference
on O'Farrell Street, San Francisco, CA, USA
June 29 - July 01, 2011

978-1-4577-0079-8/11/$26.00 ©2011 AACC 3547

the reference model states remain bounded for a bounded

reference input.

A tracking control law consisting of a linear feedback part

upd = Kx, a linear feedforward part ucrm = ẋrm, and an

adaptive part uad(x) is proposed to have the following form:

u = ucrm + upd − uad. (7)

Define the tracking error e as e(t) = xrm(t) − x(t), then,

letting A = −K the tracking error dynamics are found to be

[9], [3]:

ė = Ae+ [uad(x, δ)−∆(x, δ)]. (8)

The baseline full state feedback controller upd = Kx is

assumed to be designed such that A is a Hurwitz matrix.

Hence for any positive definite matrix Q ∈ ℜn×n , a positive

definite solution P ∈ ℜn×n exists to the Lyapunov equation:

ATP + PA+Q = 0. (9)

Letting x̄ = [x, δ] ∈ ℜn+k, two cases for characterizing

the uncertainty ∆(x) can be considered. In the first case

(Case I: Structured Uncertainty), the uncertainty is assumed

to be represented as an unknown linear combination of

known nonlinear basis function. That is, there exist a matrix

of constants W ∗ ∈ ℜm×n and a vector of continuously

differentiable functions Φ(x̄) = [φ1(x̄), φ2(x̄),, φm(x̄)]T

such that

∆(x̄) = W ∗TΦ(x̄). (10)

In this case letting W denote the estimate W ∗ the adaptive

law can be written as

uad(x̄) = WTΦ(x̄). (11)

A large class of plants can be modeled in this manner. If the

basis functions are also unknown, we say that the uncertainty

is unstructured, in this case (Case II: Unstructured Uncer-

tainty) if it is known that the uncertainty ∆(x̄) is continuous

and defined over a compact domain D ⊂ ℜn+k, a Radial

Basis Function (RBF) Neural Network (NN) can be used as

the adaptive element:

uad(x̄) = WTσ(x̄). (12)

where W ∈ ℜn×l and σ(x̄) = [1, σ2(x̄), σ3(x̄),, σl(x̄)]
T

is a vector of known radial basis functions. For i = 2, 3..., l
let ci denote the RBF centroid and µi denote the RBF

width then for each i The radial basis functions are given

as σi(x) = e−‖x̄−ci‖
2/µi . In this case, the the universal

approximation property of RBF NN [14] can be leveraged to

guarantee that given a fixed number of radial basis functions

l there exists ideal weights W ∗ ∈ ℜn×l and a real number

ǫ̃(x̄) such that ∆(x) = W ∗Tσ(x̄) + ǫ̃(x̄).

A. Baseline Adaptive Law

For the case of structured uncertainty it is well known that

the following adaptive law

˙̂
W = −ΓWΦ(x̄)eTP (13)

where ΓW is a positive definite matrix of appropriate dimen-

sions results e(t) → 0 [12], [8], [18] if the weights remain

bounded. Equation 13 will be referred to as the baseline

adaptive law. Furthermore, replacing Φ(x̄) with σ(x̄) in

equation 13 results in the baseline gradient based adaptive

law for the case of unstructured uncertainty (case II). For this

case, the baseline adaptive law guarantees uniform ultimate

boundedness of tracking error e [10].

The baseline adaptive law of equation 13 however, does

not guarantee the boundedness of adaptive weights unless

modification terms such as σ mod (see [8]), or e mod

(see [12]) are added. Furthermore, it is well known that

global exponential tracking error (e(t)) and weight error

(W̃ (t) = W (t) − W ∗) to zero is only guaranteed for the

baseline adaptive law if and only if the plant states (and

consequently the signal Φ(x̄(t))) are persistently exciting

(PE) [13], [1], [18]. A PE signal must contain as many

spectral lines as the dimension of the basis of the uncertainty

over a time interval (see reference [18] for a definition of

PE signals). Hence, constant reference signals are not PE,

nor are exponentially decaying reference signals. In many

control applications, enforcing such persistent excitation in

the control system may be infeasible or not acceptable due

to energy requirements.

III. CONCURRENT LEARNING ADAPTIVE CONTROL

Conceptually, the baseline adaptive law attempts to min-

imize a quadratic cost on the instantaneous tracking error

(12e
T (t)e(t)). This reliance on only instantaneous data results

in a rank-‘ update law, that is even though Ẇ is a matrix,

its rank will be at-most one [9], [5]. This is one reason

why the baseline adaptive law must be persistently provided

with information in order to guarantee exponential stability.

A concurrent learning adaptive law on the other hand,

uses recorded and current data concurrently for adaptation,

and is not rank-1. This ensures that if the recorded data

are sufficiently rich, then exponential stability of the zero

solution of the tracking error and weight error dynamics can

be guaranteed without requiring persistency of excitation. In

the following we present some key theorems that characterize

these properties.

A. Exponential Convergence with Concurrent Learning for

Case of Structured Uncertainty

In this section we present an exponentially stable concur-

rent learning adaptive controller for the case of structured

uncertainty (Case I, in section II) subject to a sufficient ver-

ifiable condition on the linear independence of the recorded

data.

Theorem 1 Consider the system in equation 1, the control

law of equation 7, the case of structured uncertainty. For

the jth recorded data point let ǫj = νad(x̄j) − ∆(x̄j),
furthermore let p be the number of recorded data points

Φ(x̄j) in the history stack matrix Z = [Φ(x̄1),,Φ(x̄p)],
such that rank(Z) = m, and consider the following weight

update law:

Ẇ (t) = −ΓWΦ(x̄(t))eT (t)P −

p
∑

j=1

ΓWΦ(x̄j)ǫ
T
j (t). (14)

3548

Then the zero solution e(t) ≡ 0 of tracking error dynamics

of equation 8 is globally exponentially stable and W (t) →

W ∗ exponentially. Furthermore, let Ω =
p
∑

j=1

ΦjΦ
T
j , then the

rate of convergence is directly proportional to the smallest

singular value of Ω.

Proof: A proof can be found in references [3]. An

equivalent theorem for a different class of plants is proved

in [4].

Remark 1 The above theorem requires only a verifiable

condition on the linear independence of the recorded data to

guarantee that the zero solutions of the tracking error and

the parameter error are globally exponentially stable. It is

important to note that the imposed rank-condition on the

recorded data (rank(Z) = m) is significantly different than

a condition of persistency of excitation in the states. Firstly,

this condition applies only to the recorded data, which is

a small subset of all past states, whereas, the persistency

of excitation condition applies to all past and future states.

Secondly, since the rank of a matrix can be easily determined

online, it is possible to verify whether this condition is

met online, whereas it is impossible to determine whether

a signal will be PE without knowing its future behavior.

Hence, the rank-condition required to guarantee convergence

when recorded data is concurrently used for adaptation with

instantaneous data is less restrictive.

Remark 2 The term ǫj = νad(x̄j) − ∆(x̄j) for the

jth data point can be calculated by noting that ∆(x̄j) =
ẋj−ν(x̄j). Since ν(x̄j) is known, the problem of estimating

system uncertainty can be reduced to that of estimation of ẋ.

In cases where an explicit measurement for ẋ is not available,

ẋj can be estimated using an implementation of a fixed-point

smoother [6]. The details of this process are described in [3],

[5].

B. Neuro-Adaptive Control with Guaranteed Boundedness

with Concurrent Learning for case of Unstructured Uncer-

tainty

When the structure of the uncertainty is unknown (case

II in section II), a RBF NN can be used as the adaptive

element by leveraging their universal approximation property

of RBF NN. In contrast with the baseline adaptive law
˙̂
W = −ΓWσ(x̄)eTP , a concurrent learning adaptive law

guarantees that the tracking error approaches and remains

bounded in a neighorhood of zero, and the weight error

approaches and remains bounded in a compact neighborhood

of the ideas weights. This is proven in reference [3].

IV. A SIMPLE METHOD FOR RECORDING SUFFICIENTLY

DIFFERENT POINTS

In the following, we assume that the recorded data is

stored in a history-stack, and new data is added or old

data removed based on the criteria discussed below. We

will let p ∈ ℵ denote the subscript of the last point stored.

For ease of exposition, for a stored data point xj , we let

Φj ∈ ℜm denote Φ(xj) the data point to be stored. We will

let Zk = [Φ1,,Φp] denote the history stack at time step

k. The pth column of Zk will be denoted by Zk(:, p). It is

assumed that the maximum allowable number of recorded

data points is limited due to memory or processing power

considerations. Therefore, we will require that Zk has a

maximum of p̄ ∈ ℵ columns, clearly, in order to be able

to satisfy the rank-condition (see remark 1), p̄ ≥ m. For the

jth data point, the associated model error ∆(xj) is assumed

to be stored in the array ∆̄(:, j) = ∆(xj).

For a given ǫ ∈ ℜ+ a simple way select the instantaneous

data Φ(x(t)) for recording is to require:

‖Φ(x(t))− Φp‖
2

‖Φ(x(t))‖
≥ ǫ. (15)

The above method ascertains that only those data points

are selected for storage that are sufficiently different from

the last data point stored. In order to meet the dimension of

the history stack, the data can be stored in a cyclic manner.

That is if p = p̄, then the next data point replaces the oldest

data point (Φ1), and so on. This method has been used for

selecting data points in our previous work [5], [4], and was

found to be effective.

If the mapping Φ has the properties of a logistic function

(see for example [7]) then it is sufficient to pick sufficiently

different xk in order to achieve the same effect as that

of equation 15. This property is useful when dealing with

Neural Network (NN) based adaptive controllers, particularly

since in these cases the dimension of Φ is often greater

than the dimension of x. Furthermore, due to Micchelli’s

theorem, the satisfaction of the rank-condition for Radial

Basis Function NN is reduced to selecting distinct points for

storage [11], [7]. Hence in this particular case, the criterion in

equation 15 is an effective and efficient way of selecting data

points for recording. However, for general cases, this method

does not guarantee that the rank-condition will always be

satisfied.

V. A SINGULAR VALUE MAXIMIZING APPROACH

From theorem 1 we have that the rate of convergence

depends on λmin(Ω). Letting σ(Ω) denote the singular values

of Ω, we recall that for nonzero singular values σ(Ω) =
√

λ(ΩΩT), and Ω is full ranked only if σmin(Ω) is nonzero

[17]. This fact can be used to select data points for storage.

The method we present in this section selects a data point

for recording if its inclusion results in an increase in the

instantaneous minimum singular value of Ω. The following

fact ascertains that the singular values of Ω are the same as

that of Zk.

Fact 2 σmin([Φ1,,Φp]) =

√

σmin(
p
∑

j=1

ΦjΦT
j)

Proof:

3549

As before, let Zk = [Φ1,,Φp], then
p
∑

j=1

ΦjΦ
T
j =

[Φ1,,Φp][Φ1,,Φp]
T = ZkZ

T
k . The proof now fol-

lows by noting that σmin(Zk) =
√

λmin(ZkZT
k) =

√

σmin(ZkZT
k).

The proof now follows by noting that .

Leveraging this fact, algorithm 1 aims to maximize the

minimum singular value of the matrix containing the history

stack. The algorithm begins by using criterion in equation

15 to select sufficiently different points for storage. If the

number of stored points increases the maximum allowable

number, the algorithm seeks to incorporate new data points

in such a way that the minimum singular value of Zk is in-

creased. To achieve this, the algorithm sequentially replaces

every recorded data point in the history stack with the current

data point and stores the resulting minimum singular value

in a variable. The algorithm then finds the maximum over

these values, and accepts the new data point for storage into

the history stack (by replacing the corresponding existing

point) if the resulting configuration results in an increase in

the instantaneous minimum singular value of Ω.

Algorithm 1 Singular Value Maximizing Algorithm for

Recording Data Points

Require: p ≥ 1

if
‖Φ(x(t))−Φp‖

2

‖Φ(x(t))‖ ≥ ǫ then

p = p+ 1
Zk(:, p) = Φ(x(t)); {store ∆̄(:, p) = ∆(x(t))}

end if

if p ≥ p̄ then

T = Zk

Sold = minSV D(ZT
k)

for j = 1 to p do

Zk(:, j) = Φ(x(t))
S(j) = minSV D(ZT

k)
Zk = T

end for

find maxS and let k denote the corresponding column

index

if maxS > Sold then

Zk(:, k) = Φ(x(t)), {store ∆̄(:, k) = ∆(x(t))}
p = p− 1

else

p = p− 1
Zk = T

end if

end if

VI. EVALUATION OF DATA POINT SELECTION METHODS

THROUGH SIMULATION

In this section we evaluate the effectiveness of the data

point selection criteria through numerical simulation on a

wing rock dynamics model. Wing rock is caused due to

asymmetric stalling on lifting surfaces of agile aircraft. If

left uncontrolled, the oscillations caused by wing rock can

easily grow unbounded and cause structural damage [15].

Let φ denote the roll angle of an aircraft, p denote the roll

rate, δa denote the aileron control input, then a simplified

model for wing rock dynamics is given by:

φ̇ = p (16)

ṗ = δa +∆(x). (17)

Where ∆(x) = W0+W1φ+W2p+W3|φ|p+W4|p|p+W5φ
3.

The parameters for wing rock motion are adapted from [16],

they are W0 = 0.0,W1 = 0.2314,W2 = 0.6918,W3 =
−0.6245,W4 = 0.0095,W5 = 0.0214. Initial conditions for

the simulation are arbitrarily chosen to be φ = 1.2deg, p =
1deg/s. An MRAC controller (see section II) is used. The

reference model chosen is a stable second order linear

system with natural frequency of 1 radian/second and

damping ratio of 0.5. The linear control gains are given by

K = [2.5, 2.3], and the learning rate is set to ΓW = 2.

The simulation runs for a total time of 40 seconds with

an update rate of 0.005 seconds using Euler integration.

The reference model tracking performance of the baseline

MRAC algorithm (without concurrent learning) is shown in

1(a), while the reference model tracking performance of the

concurrent learning MRAC adaptive controller with singular

value maximizing data point selection (algorithm 1) is shown

in figure 1(b). For the chosen learning rate, we note that the

concurrent learning adaptive controller is better at tracking

the reference model. In this simulation however, we are

concerned more with the impact of the selection of data

points on weight convergence. To that effect, we will evaluate

the different data point selection criterion separately in the

following.

A. Weight Evolution without Concurrent Learning

Figure 2 shows the evolution of weights when using the

baseline MRAC controller without concurrent learning. We

note that the weights do not converge to their ideal values.

Furthermore, once the states arrive at the origin (that is once

φ = 0, p = 0) the weights are no longer updated. This is

expected in a controller that only uses instantaneous data for

adaptation.

B. Weight Evolution with a Static History Stack

For the results presented in this section, we use a static

history stack with a fixed number of slots. The history stack

here is called static because once a data point is recorded, it

permanently occupies a slot in the history stack and cannot

overwritten. The data points are selected using the criterion

in equation 15 with ǫ = 0.08. Figure 3 shows the evolution

of the weights for a simulation run. It is interesting to

note that the weights continue to be updated even after the

states arrive at the origin. This is an effect of concurrent

training on recorded data. In fact, it can be seen that for the

chosen learning rate and the data point selection criterion,

the weights are approaching their true values, however are

not sufficiently close to the ideal values by the end of the

simulation. At the end of the simulation it was found that

σmin(Ω) = 0.0265

3550

0 5 10 15 20 25 30 35 40
−0.5

0

0.5

1

1.5

time (sec)

x
 (

ra
d

)

roll angle

actual

ref model

0 5 10 15 20 25 30 35 40
−1

−0.5

0

0.5

1

time (sec)

x
D

o
t

(r
a

d
/s

)

roll rate

actual

ref model

(a) Reference model tracking performance of the baseline MRAC
adaptive controller without concurrent learning.

0 5 10 15 20 25 30 35 40
−0.5

0

0.5

1

1.5

time (sec)

x
 (

ra
d

)

roll angle

actual

ref model

0 5 10 15 20 25 30 35 40
−1

−0.5

0

0.5

1

time (sec)

x
D

o
t

(r
a

d
/s

)

roll rate

actual

ref model

(b) Reference model tracking performance of the concurrent learn-
ing adaptive controller with singular value maximizing data point
selection (see algorithm 1).

Fig. 1. Comparison of reference model tracing performance for the control
of wing rock dynamics with and without concurrent learning.

C. Weight Evolution with a Cyclic History Stack

The history stack here is called cyclic because data is

recorded in a cyclical manner. That is, once the history stack

is full, the newest data point bumps out the oldest data point

and so on. This approach aid in guaranteeing that the history

stack reflects the most recently stored data points. The data

points are selected using the criterion in equation 15 with

ǫ = 0.08. Figure 4 shows the evolution of the weights for a

simulation run. As in the previous case, concurrent learning

results in weight update even after the states arrive at the

origin. It can be seen that the weights are closer to their true

values than when using a static history stack. At the end of

the simulation it was found that σmin(Ω) = 0.0980.

D. Weight Evolution with the Singular Value Maximizing

Approach

In this simulation run, the data points are recorded using

algorithm 1. Figure 5 shows that the weights converge to their

true values within 20 seconds of the simulation. Furthermore,

convergence occurs even when the states have arrived at the

origin and are no longer PE. At the end of the simulation

it was found that σmin(Ω) = 0.3519. Figure 6 compares

0 5 10 15 20 25 30 35 40
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

time (sec)

W

W(i)

W
*
(i)

Fig. 2. Evolution of weight when using the baseline MRAC controller
without concurrent learning. Note that the weights do not converge, in fact,
once the states arrive at the origin weights remain constant.

0 5 10 15 20 25 30 35 40
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

time (sec)

W

W(i)

W
*
(i)

Fig. 3. Evolution of weight with concurrent learning adaptive controller
using a static history stack. Note that the weights are approaching their true
values, however are not close to the ideal value by the end of the simulation
(40 seconds).

σmin(Ω) at every time step for the three data point selection

algorithms discussed. It can be seen that when using a

static history stack, σmin(Ω) reaches a constant value and

remains there once the history stack is full. Whereas, when

a cyclic history stack is used, σmin(Ω) changes as new

data replaces old data and occasionally even drops below

σmin(Ω) achieved when using a static history stack, however

by the end of the simulation σmin(Ω) with a cyclic history

stack is larger than σmin(Ω) when using a static history

stack. The singular value maximizing algorithm (algorithm 1)

outperforms both these methods. It can be seen that new data

points are selected and old data points removed such that the

minimum singular value is maximized. This improvement in

the quality of the data is also reflected in weight convergence,

with the weights updated by the singular value maximizing

approach arriving at their true values faster than the other

two approaches.

E. Concurrent Learning with Pre-recorded history stack

If a pre-recorded history stack satisfying the rank-

condition is available for a system, then exponential stability

of the tracking error and weight error dynamics can be

guaranteed. These results are presented in [2]. Note that the

3551

0 5 10 15 20 25 30 35 40
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

time (sec)

W

W(i)

W
*
(i)

Fig. 4. Evolution of weight with concurrent learning adaptive controller
using a cyclic history stack. Note that the weights are approaching their
true values, and they are closer to their true values than when using a static
history stack within the first 20 seconds of the simulation.

0 5 10 15 20 25 30 35 40
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

time (sec)

W

W(i)

W
*
(i)

Fig. 5. Evolution of weight with concurrent learning adaptive controller
using the singular value maximizing algorithm (algorithm 1). Note that the
weights approach their true values by the end of the simulation (40 seconds).

exponential stability can be used to formulate exponentially

decaying transient performance bounds.

VII. CONCLUSION

We presented a singular value maximizing algorithm for

recording data points for concurrent learning. A simulation

of wing rock dynamics was used to characterize the effec-

tiveness of the approach. We compared the performance of

this approach with previously studied approaches, including

a cyclic history stack approach in which newer data points

bump out older data points. We conclude that the singular

value maximizing algorithm presented in this paper ensures a

rich stack of recorded data is maintained while staying within

memory limits. Future work includes algorithms to monitor

the relevance of recorded data to current operating conditions

to determine if history stack repopulation is required.

VIII. ACKNOWLEDGMENTS

This work was supported in part by NSF ECS-0238993

and NASA Cooperative Agreement NNX08AD06A.

REFERENCES

[1] Stephan Boyd and Sankar Sastry. Necessary and sufficient conditions
for parameter convergence in adaptive control. Automatica, 22(6):629–
639, 1986.

0 5 10 15 20 25 30 35 40
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Time seconds

σ
m

in
(Z

k
)

static history stack

cyclic history stack

SV maximizing method

Fig. 6. Plot of the minimum singular value σmin(Ω) at every time step for
the three data point selection criteria discussed. Note that in case of the static
history stack, σmin(Ω) stays constant once the history stack is full, in case
of the cyclic history stack, σmin(Ω) changes with time as new data replace
old data, occasionally dropping below that of the σmin(Ω) for the static
history stack. When the singular value maximizing algorithm (algorithm 1)
is used, data points are only selected such that σmin(Ω) increases with
time. This results in faster weight convergence.

[2] G. Chowdhary and E. N. Johnson. Adaptive flight control with
guaranteed convergence. In Conference on Guidance, Navigation and

Control, Munich, Germany, April 2011. CEAS.
[3] Girish Chowdhary. Concurrent Learning for Convergence in Adaptive

Control Without Persistency of Excitation. PhD thesis, Georgia
Institute of Technology, Atlanta, GA, 2010.

[4] Girish Chowdhary and Eric N. Johnson. Concurrent learning for
convergence in adaptive control without persistency of excitation. In
49th IEEE Conference on Decision and Control, 2010.

[5] Girish Chowdhary and Eric N. Johnson. Theory and flight test
validation of a concurrent learning adaptive controller. Journal of

Guidance Control and Dynamics, 34(2):592–607, March 2011.
[6] Arthur Gelb. Applied Optimal Estimation. MIT Press, Cambridge,

1974.
[7] Simon Haykin. Neural Networks a Comprehensive Foundation.

Prentice Hall, USA, Upper Saddle River, 2 edition, 1998.
[8] Petros A. Ioannou and Jung Sun. Robust Adaptive Control. Prentice-

Hall, Upper Saddle River, 1996.
[9] Eric N. Johnson. Limited Authority Adaptive Flight Control. PhD

thesis, Georgia Institute of Technology, Atlanta Ga, 2000.
[10] Y. H. Kim and F.L. Lewis. High-Level Feedback Control with Neural

Networks, volume 21 of Robotics and Intelligent Systems. World
Scientific, Singapore, 1998.

[11] Charles A. Micchelli. Interpolation of scattered data: distance matrices
and conditionally positive definite functions. Construct. Approx.,
2(1):11 –22, dec. 1986.

[12] K. Narendra and A. Annaswamy. A new adaptive law for robust adap-
tation without persistent excitation. IEEE Transactions on Automatic

Control, 32(2):134–145, February 1987.
[13] Kumpati S. Narendra and Anuradha M. Annaswamy. Stable Adaptive

Systems. Prentice-Hall, Englewood Cliffs, 1989.
[14] J. Park and I.W. Sandberg. Universal approximation using radial-basis-

function networks. Neural Computatations, 3:246–257, 1991.
[15] Ahmed A. Saad. Simulation and analysis of wing rock physics for a

generic fighter model with three degrees of freedom. PhD thesis, Air
Force Institute of Technology, Air University, Wright-Patterson Air
Force Base, Dayton, Ohio, 2000.

[16] S. N. Singh, W. Yim, and W. R. Wells. Direct adaptive control of wing
rock motion of slender delta wings. Journal of Guidance Control and

Dynamics, 18(1):25–30, Feb. 1995.
[17] Gilbert Strang. Linear Algebra and its Applications. Thomson

Learning, Brooks, 1988.
[18] Gang Tao. Adaptive Control Design and Analysis. Wiley, New York,

2003.

3552

