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Abstract— In this paper we address the model matching
problem for multirate systems where the controller output is
generated at a faster rate than the measurement update rate.
The model matching problem is considered from the input-state
viewpoint: given a desired LTI system, find conditions and pro-
vide a controller design procedure to achieve matching between
the closed-loop system and the desired system state variables
at the measurement update rate. We provide a solution to this
problem using a particular time-varying controller structure. In
addition we give conditions to avoid ripples in the steady-state
output of the continuous-time plant.

I. INTRODUCTION

Multirate systems are characterized by the presence of

digital signals and systems updating at different rates. There

are numerous applications where multirate control systems

are employed. In some of these applications the update rate

of the feedback measurement is slower than the controller

update rate. Examples include the control of the Hard-Disk

Drive (HDD) Read/Write (R/W) head [1], the octane rating

control in the continuous catalytic reforming process [2],

and the control of chemical concentrations in distillation

columns [3]. The use of a control update rate faster than

the measurement update rate was shown in [4] to allow

input-output model matching with a desired LTI system. In

this paper a state-space approach to design a controller for

multirate systems is proposed. The multirate system com-

prises a continuous-time LTI plant whose state is available

at the slow rate, 1/Ts (also referred to as measurement update

rate), and is provided to a digital Linear Periodically Time-

Varying (LPTV) controller operating at the faster rate, 1/T .

The first control design objectives is to ensure that the closed-

loop state vector matches the state vector of a desired LTI

system at the slow measurement rate 1/Ts. This control

problem, which can be referred to as the input-state matching

problem, clearly differs from the classical input-output model

matching problem by the fact that a desired dynamics can

be assigned to each state of the closed-loop system.

The second control design objective is to ensure that the

steady-state response of the closed-loop system to step refer-

ence signals is ripple-free. Ripples is a well known drawback

of LPTV controllers in the multirate systems framework

[4]. Sufficient conditions for the existence of a controller

such that the closed-loop system exhibits ripple-free steady-

state response to step reference signals are either the use

of a discrete-time internal model of the reference [5], [6]

or that the time-varying gains of the controller meet some
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particular conditions [7]. In this paper we solve the problem

of ripples in the steady-state response from the model match-

ing perspective. In other words, we find conditions under

which a multirate control system designed to achieve input-

state matching with another desired system also achieves a

ripple-free steady-state response to step reference signals. In

particular, we show that these conditions pose restrictions on

the choice of the input matrix of the desired system.

II. PRELIMINARIES

The control system considered in this work involves digital

signals and systems updating at the two different rates, 1/T

and 1/Ts, where Ts = NT , and N is a positive integer. To

distinguish between the slow-rate and fast-rate signals (or

system) the superscripts T and NT , respectively, will be

utilized to refer to their update rate. No superscript will be

utilized, instead, for continuous-time signals (or systems) and

constant matrices. Notice that, due to the different update

rates, the k-th sample of a fast-rate signal yT
1 (that is yT

1 [k])
is available at time t = kT , and that the k-th sample of a slow-

rate signal yNT
2 (that is yNT

2 [k]) is available only at time t =
kNT . For this reason, given a continuous-time signal y, and

denoting with yT and yNT the corresponding fast-sampled

and slow-sampled versions of y, respectively, the following

relation holds: yNT [k] = yT [kN] for every integer k. Since it

is desired to keep track of both the sampling periods Ts and

T , for fast-rate signals we will use the double index notation

kN+ i to refer to their samples, where i = 0, . . . ,N−1 serves

to index the N samples available within the time windows

[kTs,(k + 1)Ts), and k is a non-negative integer needed to

refer to a particular time window. By using this double index

notation, the sample yT
1 [kN + i] of the fast-rate signal yT

1 is

available at the time instant t = (kN + i)T = kTs + iT .

In the following we give the definition of the lift-

ing operator and we show how the lifting operation can

be applied to linear time-invariant (LTI) systems. Let

V be the set of one sided, real-valued, fast-updating

sequences wT [k] and let V N be the set of sequences

with elements as N dimensional vectors. The lifting op-

erator LN and the lifted sequence wNT
L

[k] are defined

as LN : V → V N : wT [k] → wNT
L

[k], where wNT
L

[k] ,
[

(wT [kN])⊤,(wT [kN + 1])⊤, · · · ,(wT [kN +N − 1])⊤
]⊤

and ⊤
denotes the transpose operator.

Consider now the strictly proper LTI system

vT [kN + i+ 1] = AvvT [kN + i]+Bvw
T [kN + i]

yNT [k] =CvvT [kN]
(1)

where the state variables vT and input wT update at the fast-

rate 1/T and the output yNT is available only at the slower-
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rate 1/Ts. We will refer to the lifted representation of the fast-

updating system (1) as the following slow-updating single-

rate system

vT [(k+ 1)N] = ÃvvT [kN]+ B̃vwNT
L [k]

yNT [k] =CvvT [kN]

where the matrices Ãv and B̃v, given by Ãv = AN
v and

B̃v =
[

AN−1
v Bv, · · · ,AvBv,Bv

]

, can be obtained by recursively

applying (1) for i = 0, . . . ,N − 1.

III. PROBLEM FORMULATION

Consider the continuous-time LTI system

ẋ(t) = Acx(t)+Bcu(t)
y(t) =Ccx(t)

(2)

where x(t) ∈R
nx is the state vector, u(t) ∈R

nu is the control

input vector, and y(t) ∈ R
ny is the output vector to be

regulated to the constant reference signal rNT [k] ∈ R
ny . The

control system structure shown in Fig. 1 is considered. The

digital controller C operates at the sampling period T , and

the measurements of the plant state x(t) are available at

the slow sampling period NT . We consider a causal, digital

C ZOH (sI −Ac)
−1Bc

Ts

x
Cc

rNT uT

xNT

y

Fig. 1: Control system structure

controller C of the following LPTV form

ϕT [kN + i+ 1] = Kϕ,iϕ
T [kN]+Kx,ix

NT [k]+Lir
NT [k]

uT [kN + i] =CϕϕT [kN + i]
(3)

where ϕT ∈R
nϕ with nϕ ∈N

+. The control design objectives

are stated in the following problem.

Problem 3.1: Find conditions and design the matrices Cϕ ,

Kϕ,i, Kx,i, Li, i = 0, . . . ,N−1, of the controller (3) to achieve

closed-loop state matching, at the slow rate 1/NT , with the

desired single-rate system

ζ NT [k+ 1] = Fζ NT [k]+GrNT [k]

yNT [k] = Hζ NT [k]
(4)

where ζ NT [k] ∈ R
nx+nϕ , H , [Cc,0ny×nϕ ], and the matrices

F , G are chosen such that the desired system (4) is stable

and exhibits zero steady-state regulation error to a unit step

input. Moreover, the matrices Cϕ , Kϕ,i, Kx,i, and Li have to

be designed in order to achieve a ripple-free closed-loop re-

sponse to step reference signals. By “ripple-free” it is meant

that the continuous-time regulation error, e(t) = y(t)− r∞

(where r∞ , limk→∞ rNT [k]), has to be zero at steady-state

within two consecutive measurement update instants, that is,

limk→∞

∫ (k+1)Ts

kTs
e⊤(t)e(t)dt = 0.

To ensure the non-criticality of the sampling period T and

the stabilizability of the periodic discrete-time system formed

by the cascade connection of the zero-order hold, plant and

slow-rate sampler, the following is assumed [8], [9], [10]:

Assumption 3.1: The sampling times involved in the mul-

tirate system are not critical, that is, λa −λb 6= j2πk/(NT )
and λa 6= j2πk/(NT ), ∀k ∈ N, k 6= 0, where λa and λb are

any two distinct eigenvalues of Ac.

This assumption can be readily satisfied with proper selection

of T and N.

IV. MULTIRATE CONTROL DESIGN

In this section we provide a solution to problem 3.1. In

particular, conditions to achieve input-state model matching

with the desired system (4) are given in section IV-A; in

section IV-B we provide conditions such that the closed-

loop system designed in section IV-A also exhibits ripple-

free steady-state response to step reference signals. Before

addressing the above mentioned problems it is convenient to

rewrite the closed-loop system into a different form. Consider

the zero-order hold equivalent of the plant (2) at the sampling

period T

xT [kN + i+ 1] = ΦxT [kN + i]+ΓuT [kN + i]

yT [kN + i] =CcxT [kN + i]
(5)

where Φ = eAcT and Γ =
∫ T

0 eAcλ Bcdλ . The discrete-time

system (5) and the proposed time-varying controller (3) can

be rewritten in the following compact form:

ξ T [kN + i+ 1] = Φ̄ξ T [kN + i]+ Γ̄wT [kN + i]

yNT [k] = Hξ T [kN]
(6)

where ξ T [kN + i] , [(xT [kN + i])⊤,(ϕT [kN + i])⊤]⊤ is the

extended state vector, the matrices Φ̄, Γ̄ are given by

Φ̄ ,

[

Φ ΓCϕ

0nϕ×nx 0nϕ×nϕ

]

, Γ̄ ,

[

0nx×nϕ

Inϕ×nϕ

]

,

and wT [kN + i] can be thought of as a pseudo-control action

given by

wT [kN + i], Kiξ
T [kN]+Lir

NT [k] (7)

with Ki ,
[

Kx,i,Kϕ,i

]

. Let wNT
L

be the lifted pseudo-control

signal obtained from wT as shown in section II. The induced

lifted version of the system (6) is given by:

ξ T [(k+ 1)N] = Φ̄L ξ T [kN]+ Γ̄L wNT
L [k]

yNT [k] = Hξ T [kN]
(8)

where Φ̄L , Φ̄N , Γ̄L ,
[

Φ̄N−1Γ̄, · · · ,Φ̄Γ̄, Γ̄
]

, wNT
L

[k] ,
[

(wT [kN])⊤, · · · ,(wT [kN +N − 1])⊤
]⊤

. Considering that ξ T

in (7) is available only at the measurement update rate, the

lifted version of the pseudo-control (7) takes the form

wNT
L [k] = KL ξ T [kN]+LL rNT [k] (9)

where KL and LL are constant matrices given by

KL ,











K0

K1

...

KN−1











=











Kx,0 Kϕ,0

Kx,1 Kϕ,1
...

...

Kx,N−1 Kϕ,N−1











,LL ,











L0

L1

...

LN−1











.

(10)
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Notice that the lifted single-rate LTI system formed by (8)

and (9) describes the dynamics of the original LPTV closed-

loop system, formed by (3) and (5), at the sampling period Ts.

In particular, the closed-loop single-rate LTI system obtained

by combining (8) and (9) can be rewritten as

ξ T [(k+ 1)N] = (Φ̄L + Γ̄L KL )ξ T [kN]+ Γ̄L LL rNT [k]

yNT [k] = Hξ T [kN]. (11)

A. Model matching problem: design of KL and LL

From the closed-loop system (11) it is clear that, for a

given matrix Cϕ , input-state matching is achieved at the

slow-rate 1/Ts with the desired system (4) if and only if

the periodically time-varying matrices Kx,i, Kϕ,i, and Li,

i = 0, . . . ,N − 1, are selected such that KL and LL satisfy

Φ̄L + Γ̄L KL = F (12)

Γ̄L LL = G. (13)

In this section, necessary and sufficient conditions are given

for the existence of a solution (KL ,LL ) to (12) and (13) for

any pair (F,G) characterizing the desired system (4). The

following lemma gives a preliminary result needed to obtain

those conditions.

Lemma 4.1 (On the existence of a right inverse of Γ̄L ):

The matrix Γ̄L , defined for the system (8), has a right

inverse Γ̄+
L

for any integer nϕ if and only if

1. N ≥ nx + 1

2. the pair (Φ,ΓCϕ ) is controllable

Proof: Considering that Φ̄p, where p ∈N
+, is given by

Φ̄p =

[

Φp Φp−1ΓCϕ

0nϕ×nx 0nϕ×nϕ

]

,

Γ̄L can be rewritten as

Γ̄L =

[

R̃ 0nx×nϕ

0nϕ×nϕ(N−1) Inϕ

]

(14)

where

R̃ ,
[

ΦN−2ΓCϕ · · · ΦΓCϕ ΓCϕ

]

. (15)

For Γ̄+
L

to exist, Γ̄L must have full row rank. By inspection

this occurs if and only if R̃ has full row rank, that is, nx.

Sufficiency (⇐). Since N ≥ nx + 1 and the pair (Φ,ΓCϕ )
is controllable, R̃ is a full row rank matrix.

Necessity (⇒) The necessity of conditions 1 and 2 is

shown by contradiction. Assume that the pair (Φ,ΓCϕ ) is

not controllable but that condition 1 holds. As a consequence

of the Cayley-Hamilton theorem, the matrices Φp, where

p ≥ nx, can be expressed as a linear combination of the set

of matrices Φq, q = 1, . . . ,nx −1. Therefore R̃ does not have

full row rank, that is, Rank(R̃)< nx. Conversely, assume that

the pair (Φ,ΓCϕ ) is controllable but that nx > (N−1). Then,

for any integer nϕ < nx/(N − 1), the number of columns of

R̃ is nϕ(N−1)< nx. This contradicts the hypothesis that Γ̄+
L

has a right inverse.

The following theorem provides the solution to the input-

state matching problem.

Theorem 4.1: Under the assumption 3.1, there exists a

controller of the form (3) such that the state of the closed-

loop multirate system matches the state of the desired single-

rate system (4) at the rate 1/Ts, for any pair (F,G) and any

integer nϕ , if and only if

a. N ≥ nx + 1

b. the pair (Ac,Bc) is controllable

c. Rank(Cϕ) = nu

Proof: Sufficiency (⇐). Let conditions a, b and c

hold. We have to show the existence of matrices KL and

LL that satisfy (12) and (13). Let λ⋆ be an eigenvalue of

Φ and let v⊤ 6= 0 be the corresponding left eigenvector,

that is, v⊤Φ = λ⋆v⊤. Since (Ac,Bc) is controllable, by

assumption 3.1 (Φ,Γ) is also controllable. Therefore, it has

to be that v⊤ [Φ−λ⋆I,Γ] 6= 0, that is, v⊤Γ 6= 0. Since Cϕ

is a full row rank matrix, we also have v⊤ΓCϕ 6= 0, that

is, v⊤
[

Φ−λ⋆I,ΓCϕ

]

6= 0. Therefore, the pair (Φ,ΓCϕ ) is

controllable, and by lemma 4.1, the right inverse Γ̄+
L

of Γ̄L

exists. The solution (KL ,LL ) to (12) and (13) is then given

by

KL = Γ̄+
L
(F − Φ̄L ) (16)

LL = Γ̄+
L

G (17)

Necessity (⇒). Since there exists a solution (KL ,LL ) to

(12) and (13), [F − Φ̄L ,G] ∈ Span(Γ̄L ). Since this has to

hold for any pair (F,G) and any integer nϕ , it must be that

Rank(Γ̄L ) = nx +nφ . In other words, Γ̄L must have a right

inverse. By lemma 4.1, this implies that nx ≤ N −1 and that

the pair (Φ,ΓCϕ ) is controllable. Let λ⋆ be an eigenvalue of

Φ and let v⊤ 6= 0 be the corresponding left eigenvector, that

is, v⊤Φ = λ⋆v⊤. The proof will proceed by contradiction.

Assume first that Rank(Cϕ ) = nu but that the pair (Ac,Bc) is

not controllable. Then (Φ,Γ) is not controllable, that is, there

exists an eigenvector of Φ such that v⊤Γ = 0. In turn, this

implies v⊤ΓCϕ = 0, which is a contradiction since the pair

(Φ,ΓCϕ ) is controllable. Conversely, assume that the pair

(Ac,Bc) is controllable but that Rank(Cϕ )< nu. Since the pair

(Ac,Bc) is controllable, also the pair (Φ,Γ) is controllable.

Therefore, v⊤Φ = λ⋆v⊤ and v⊤Γ 6= 0 for every eigenvector-

eigenvalue pair (v⊤,λ⋆) of Φ. However, since Rank(Cϕ )< nu

there may exist an eigenvector v⊤ of Φ such that v⊤ΓCϕ = 0.

However, this contradicts the fact that the pair (Φ,ΓCϕ ) is

controllable.

Remark 4.1 (On the values of N and nϕ): Notice that

conditions a and c of Theorem 4.1 require the selection of

N and nϕ , respectively, such that N ≥ nx + 1 and nϕ ≥ nu.

B. Conditions for ripple-free steady-state response

In this section we investigate under which conditions the

closed-loop multirate system, obtained by designing KL

and LL according to (16) and (17), also exhibits ripple-

free steady-state response to step reference signals. We start

by denoting with M , −(F − I)−1G the (nx + nϕ)× ny

matrix characterizing the steady-state value of the desired

system states, that is, ζ NT [k] → Mr∞ as k → ∞, and by

referring to Ma and Mb respectively as the nx × ny and
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the nϕ × ny partitions of M such that M , [M⊤
a ,M⊤

b ]⊤.

Moreover, denote with Ns , [S⊤a ,S
⊤
b ]

⊤ the matrix whose

columns form a basis for the null space of [Φ− I,Γ], and

hence, [Φ− I,Γ][S⊤a ,S
⊤
b ]

⊤ = 0, where the row-dimensions of

Sa and Sb are nx and nu, respectively.

The following lemma provides preliminary conditions on

the matrix M that are necessary and sufficient in order to

guarantee ripple-free steady-state response to step reference

signals.

Lemma 4.2: Let the conditions of Theorem 4.1 be sat-

isfied, and let KL and LL be given by (16) and (17),

respectively. Under assumption 3.1, the closed-loop system

in Fig. 1 exhibits ripple-free steady-state response to step

reference signals if and only if

Li = Mb −KiM, i = 0, . . . ,N − 1 (18)

Proof: Sufficiency (⇐). As ζ NT [k] → Mr∞, also

ξ T [kN]→ Mr∞ by the state matching condition. Therefore,

xNT [k]→ Mar∞ and ϕT [kN]→ Mbr∞ as k → ∞. If (18) holds,

the result follows by considering that the controller output

uT [kN + i] becomes constant as k → ∞.

Necessity (⇒). The closed-loop system exhibits a ripple-

free response to step reference signals and state matching at

the slow-rate with ζ NT [k]. Therefore, since ζ NT [k] tends to

a constant as k goes to infinity, also ϕT [kN + i] tends to a

constant. Because of the state matching condition, ϕT [kN +
i]→ Mbr∞ as k → ∞. As a result, KiMr∞ +Lir∞ = Mbr∞.

Based on the result given in Lemma 4.2, the following

theorem provides insights on the structure of the matrix M

such that ripple-free closed-loop response is achieved.

Theorem 4.2: Let the conditions of Theorem 4.1 be sat-

isfied, and let KL and LL be given by (16) and (17),

respectively. Moreover, let M̃b be the (N − 1)-blocks ma-

trix where each block is equal to Mb, that is, M̃b ,

[M⊤
b , · · · ,M⊤

b ]⊤, and let R̃ be defined as in (15), that is,

R̃ , [ΦN−2ΓCϕ , · · · ,ΦΓCϕ ,ΓCϕ ]. Under assumption 3.1, the

closed-loop system in Fig. 1 exhibits a ripple-free steady-

state response to step reference signals if and only if

(a) M̃b ∈ Span{R̃⊤} and

(b) the columns of the matrix
[

Ma

Cϕ Mb

]

(19)

are contained in the range space of Ns

Proof: By lemma 4.2 it is necessary and sufficient to

show that LL +KL M = Mb,L where Mb,L , [M̃⊤
b ,M⊤

b ]⊤.

Using (16) and (17), and considering that (F − I)M+G = 0,

the following holds:

LL +KL M = Γ̄+
L

G+ Γ̄+
L
(F − Φ̄L )M

= Γ̄+
L

(

G+(F − I)M− (Φ̄L − I)M
)

=−Γ̄+
L
(Φ̄L − I)M

=−Γ̄+
L

[

(ΦN − I)Ma +ΦN−1ΓCϕMb

−Mb

]

. (20)

Sufficiency (⇐). Since the columns of the matrix in (19) are

in the range space of Ns,
[

Φ− I,ΓCϕ

]

M = 0. Therefore,

(Φ − I)Ma = −ΓCϕMb. Considering also that (ΦN − I) =
(ΦN−1 + · · ·+Φ+ I)(Φ− I), (20) can be further expanded

as

LL +KL M =

[

R̃⊤(R̃R̃⊤)−1 0

0 I

][

R̃ 0

0 I

]

Mb,L

where the first matrix on the right-hand side is the right

inverse, Γ̄+
L

, of the matrix Γ̄L given in (14). Therefore,

LL +KL M =

[

R̃⊤(R̃R̃⊤)−1R̃ 0

0 I

]

Mb,L

Let (U,V,Σ) be the singular value decomposition of R̃,

that is, R̃ = U [Σ,0]V⊤, where U and V are nx × nx and

nϕ(N − 1)× nϕ(N − 1) unitary matrices, respectively, and Σ
is a square, diagonal, nonsingular nx × nx matrix (because

Rank{R̃}= nx). It is possible to show that

R̃⊤(R̃R̃⊤)−1R̃ =V

[

Σ⊤(ΣΣ⊤)−1Σ 0

0 0

]

V⊤ =V

[

I 0

0 0

]

V⊤

(21)

Therefore, (V,V, I) is the singular value decomposition of

the symmetric and square matrix R̃⊤(R̃R̃⊤)−1R̃. Let V be

partitioned as V = [V1,V2], where V1 is an nϕ(N − 1)× nx

matrix. Then, the matrix R̃⊤(R̃R̃⊤)−1R̃ acts as an identity

operator for all the vectors in the range space of V1, that is,

R̃⊤(R̃R̃⊤)−1R̃V1 =V1. Since also R̃⊤(R̃R̃⊤)−1R̃R̃⊤ = R̃⊤, the

columns of R̃⊤ must be in the range space of V1. However,

since Rank{V1} = Rank{R̃⊤} = nx, Span{V1} ≡ Span{R̃⊤}.

Since by hypothesis M̃b ∈ Span{R̃⊤}, (20) can be rewritten

as LL +KL M = Mb,L .

Necessity (⇒). Because of the state matching at the slow-

rate 1/Ts, and since the closed-loop response is ripple-

free at steady-state, xT [kN + i] → Mar∞ and ϕT [kN + i] →
Mbr∞ for every i = 0, . . . ,N − 1 as k → ∞. Therefore, from

(5), (Φ− I)Mar∞ +ΓCϕMbr∞ = 0, which proves the second

condition of the theorem. Also, since LL +KL M = Mb,L ,

it must be that M̃b ∈ Span{R̃⊤}.

Since M ,−(F− I)−1G, the conditions given in theorem 4.2

place constraints on pair (F,G) of the desired system. Based

on the result given in Theorem 4.2, the following lemma

provides sufficient conditions on the choice of the pair (F,G)
such that a ripple-free steady-state response is guaranteed.

Lemma 4.3: Let the conditions of Theorem 4.1 be sat-

isfied, and let KL and LL be given by (16) and (17),

respectively. Under assumption 3.1, the closed-loop system

in Fig. 1 exhibits ripple-free steady-state response to step

reference signals if

(a) the matrix G of the desired system is given by

G =−(F − I)

[

SaP

0

]

(22)

where Sa is the first row-block of Ns and P is any

(nu × nu) matrix,

(b) the number of Jordan blocks of Φ associated with the

eigenvalue λ = 1 is greater than or equal to nu,

(c) the pair (Ac,Bc) is controllable.
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Proof: Let G be as in (22). Then, M ,−(F − I)−1G =
[(SaP)⊤,0]⊤ implies Ma = SaP and Mb = 0. Notice that, with

this choice of G, the columns of Ma are in the range space of

Sa. Notice that this is a necessary condition for the columns

of the matrix in (19) to be in the range space of Ns. By

Theorem 4.2, and considering that Ma = SaP, for the closed-

loop system to achieve a ripple-free steady-state response

there have to exist matrices Q and Cϕ such that the following

equations are satisfied:

Mb = (ΦpΓCϕ )
⊤Q, p = 0, . . . ,N − 2, (23)

CϕMb = SbP. (24)

The above equations correspond to the conditions (a) and (b)

of Theorem 4.2 rewritten for the case in which Ma = SaP.

Since Mb = 0 (because of the structure of G), equations (23)

and (24) are satisfied for any matrix P if Sb = 0. Therefore,

it remains to show that Sb = 0.

By definition, the matrices Sa and Sb are such that

[Φ− I,Γ]
[

S⊤a ,S
⊤
b

]⊤
= 0. Since the pair (Ac,Bc) is control-

lable, the dimension of the null space of [Φ− I,Γ] is always

nu. Let nJ1
≥ nu be the number of Jordan blocks of Φ

associated with the eigenvalue λ = 1. Then, every basis for

the null space of (Φ− I) has cardinality equal to nJ1
≥ nu.

Let NΦ−I be a (nu × nu)-matrix whose columns generate a

linearly independent set in the null space of (Φ− I). Then,

the columns of the matrix [N ⊤
Φ−I ,0nu×nu ]

⊤ form a basis for

the null space of [Φ− I,Γ]. In other words, Sb = 0.

Remark 4.2 (On the steady-state regulation error): Since

the pair (F,G) of the desired system is supposed to be

selected in order to achieve zero steady-state regulation error

to a step reference signal, it has to be H(I −F)−1G = I. If

G is designed through (22), it is straightforward to show

that zero steady-state regulation error can be achieved only

if P = (CcSa)
−1. In turn, this is always possible considering

that the square matrix (CcSa) is nonsingular (since Sa

and Cc are full column-rank and full row-rank matrices,

respectively).

Remark 4.3 (On the condition (b) of Lemma 4.3): The

condition (b) of Lemma 4.3 is a consequence of the internal

model principle for constant exogenous signals. However,

it differs from the analogous sufficient condition provided

in [5] for multirate systems, where the number of Jordan

blocks associated with the eigenvalue λ = 1 is required to

equal the number ny of controlled outputs.

It is important to note that the condition (b) of Lemma

4.3 does not require the presence of any continuous-time

integrators in the forward path of the control system, but only

of digital integrators updating at the fast rate 1/T . Therefore,

as shown in Fig. 2, if the continuous-time plant does not

embed those integrators a fast-updating digital linear time-

invariant precompensator D in cascade with the plant can

be designed to provide them. The theory shown in this work

can then be applied by considering the precompensator D as

being part of the plant. However, in order to do so, such a

precompensator has to be designed so that the cascade system

made of the discretized plant (5) and the precompensator D

C ZOH (sI −Ac)
−1Bc

Ts

x
Cc

rNT uT

xNT

y
D

CONTROLLER

Fig. 2: Control system structure including the precompen-

sator D

remains controllable. If we denote with nJ1
the number of

Jordan blocks of Φ associated with the eigenvalue λ = 1, it

is possible to show that a suitable precompensator has the

following state-space representation (AD ,BD ,CD ,DD ):

AD , Inu−nJ1
, BD ,

[

Inu−nJ1
0(nu−nJ1

)×nJ1

]

CD ,

[

Inu−nJ1

0nJ1
×(nu−nJ1

)

]

, DD , Inu

(25)

For convenience, in the following we will refer to the system

F , (AF ,BF ,CF ,DF ) as the cascade connection of D with

the plant (5), and hence such that

AF =

[

Φ ΓCD

0 AD

]

,BF =

[

ΓDD

BD

]

,CF =
[

Cc 0
]

,DF = 0.

V. CONTROLLER DESIGN PROCEDURE AND EXAMPLE

In this section we show a step-by-step procedure to apply

the obtained results, and an example based on a double

integrator system.

- Step 1. Obtain the discrete equivalent representation,

(Φ,Γ), of the continuous-time controllable plant (2),

where Γ is a full column rank matrix.

- Step 2. If the number of Jordan blocks of Φ associ-

ated with the eigenvalue λ = 1 is nJ1
< nu, design a

digital precompensator D as given in (25). Also, take

(Φ,Γ,Cc) = (AF ,BF ,CF ) as the new plant.

- Step 3. Let nx be the dimension of the square matrix

Φ (which may include the precompensator dynamics as

explained in Step 2), and select N to satisfy assumption

3.1 and N ≥ nx + 1.

- Step 4. Find a basis, Ns , [S⊤a ,S
⊤
b ]

⊤, for the null space

of the matrix [Φ− I,Γ].
- Step 5. Select the dimension nϕ for the controller (3)

such that nϕ ≥ nu.

- Step 6. Choose any matrix F for the desired stable

system (4) and select the matrix G as in (22) with

P = (CcSa)
−1.

- Step 7. Select Cϕ to be any full row rank matrix.

- Step 8. Construct the matrices Φ̄L , Γ̄L and compute

the right inverse Γ̄+
L

= Γ̄⊤
L
(Γ̄L Γ̄⊤

L
)−1.

- Step 9. After computing the matrices KL and LL

according to (16) and (17), obtain the controller matrices

Kx,i, Kϕ,i and Li as given in (10).

- Step 10. For implementation purposes, the actual con-

troller is given by the cascade of C with D , as shown

in Fig. 2.
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A. Example

Consider a double-integrator system with state-space rep-

resentation

Ac =

[

0 0

1 0

]

, Bc =

[

1

0

]

, Cc =
[

0 1
]

Since nx = 2 it is required to choose N ≥ 3. For simplicity,

let us consider the case N = 3 and T = 1. The zero-order

hold equivalent of the plant operating at the fast rate 1/T is

given by

Φ =

[

1 0

T 1

]

, Γ =

[

T

5T 2

]

, Cc =
[

0 1
]

Notice that Φ has enough Jordan blocks associated with

the eigenvalue λ = 1, and hence, there is no need for the

precompensator D . A basis for the null space of [Φ− I,Γ]
is Ns = [0,1,0]⊤. Therefore, Sa = [0,1]⊤ and Sb = 0. Let us

consider a controller of order 1 (that is nϕ = nu = 1), let

the matrix F of the desired system (4) be zero-valued, and

let G be selected according to (22). Hence, the state-space

representation of the desired system is given by:

F =





0 0 0

0 0 0

0 0 0



 , G =





0

1

0





Let Cϕ = 1. Then, the matrices Kx,i, Kϕ,i and Li of

the controller (3), designed according to (16) and (17),

are given by Kx,0 = [−5/(2T),−1/(10T2)], Kϕ,0 = −2,

L0 = 1/(10T2), Kx,1 = [3/(2T),1/(10T2)], Kϕ,1 = 1, L1 =
−1/(10T2), Kx,2 = [0,0], Kϕ,2 = 0, L2 = 0. The step re-

sponse of the closed-loop multirate system comprising the

continuous-time plant and the digital controller is compared

with the response of the desired system as shown in Fig. 3.

From Fig. 3 it is clear that the state of the closed-loop system

matches at every measurement sampling instant the state of

the desired system (4), and that the response of the closed-

loop system is ripple-free at steady-state.

VI. CONCLUSIONS

In this work we addressed the input-state matching prob-

lem for multirate systems. In particular, given any desired

single-rate LTI system operating at the measurement up-

date rate, we provided conditions and a controller design

procedure for which the closed-loop system state matches

the state of the desired system at that measurement update

rate. Moreover, we showed that, if the input matrix of the

desired system is properly selected, a ripple-free steady-state

response of the closed-loop system can be obtained. Despite

the constraints on the input matrix of the desired system, the

developed design procedure gives full freedom on the choice

of the closed-loop eigenstructure.
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