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Abstract— In this paper, we introduce a theoretical frame-
work for coupled distributed estimation and motion control of
mobile sensor networks for collaborative target tracking. We
use a Fisher Information theoretic metric for quality of sensed
data. The mobile sensing agents seek to improve the information
value of their sensed data while maintaining a safe-distance
from other neighboring agents (i.e. perform information-driven
flocking). We provide a formal stability analysis of continuous
Kalman-Consensus filtering (KCF) algorithm on a mobile
sensor network with a flocking-based mobility control model.
The discrete-time counterpart of this coupled estimation and
control algorithm is successfully applied to tracking of two types
of targets with stochastic linear and nonlinear dynamics.

Index Terms— mobile sensor networks, distributed Kalman
filtering, target tracking, collaborative localization, information-
driven control

I. INTRODUCTION

Collaborative tracking of multiple targets (or events) in an

environment arise in a variety of surveillance and security

applications and intelligent transportation. Most of the past

research on target tracking has been focused on the use

of centralized algorithms that run on static multi-sensor

platforms [1]. Centralized Kalman filtering plays a crucial

role in such target tracking algorithms.

The existing distributed algorithms for target tracking

using mobile sensor networks are extremely limited to a few

instances [7], [10], [2]. In [9] the KCF algorithm of the first

author is successfully used for multi-target tracking using a

camera network.

In this paper, we present a systematic analysis framework

for mobile sensor networks with a flocking-based mobility

control model that run a novel distributed Kalman filtering

algorithm [8] for collaborative tracking of a single target.

The sensors in our framework have an information value

function Ii = f(ρi) where ρi denotes the target range and

defined as the distance between the agent and the predicted

position of target γ. In addition, f(ρ) is a decreasing function

of the target range. According to this model of quality of

sensed data, the information value of a sensor increases as

the sensor comes closer to the target. This notion of the

information value that was also used in [7] is the same as

the trace of the Fisher Information Matrix (FIM) of sensed

data for target tracking applications [3], [4].

We propose a solution to the problem of collision-free

tracking of a mobile target via mobile sensor networks

using a combination of the flocking and Kalman-Consensus

Filtering algorithms [6], [8] of the first author.

The major challenge in analysis of the resulting coupled

estimation and control algorithm for mobile sensor networks

that we call information-driven flocking is that each sensing

agent αi has its own dedicated γ-agent called γ̂i (See [5],

for the definition of α- and γ-agent). The state of γ̂i is

the estimate of the state of target γ by agent i and the n
different estimates γ̂i of the target are distinct. In the flocking

algorithms presented in [5], all n γ-agents are the same. This

change results in a perturbed structural dynamics of the flock

where the perturbation terms depend on the estimation errors.

Our main result is to establish that the coupled distributed

estimation and control algorithm for a mobile sensor network

has a combined cost (Lyapunov function) that is monotoni-

cally decreasing in time and guarantees reaching a consensus

on estimates of the state of the target by all mobile sensors.

We also introduce a cascade nonlinear normal form and

stability analysis for structural dynamics of mobile sensor

networks performing information-driven flocking.

The outline of the paper is as follows. Some basic nota-

tions and problem setup are discussed in Section II. Our main

theoretical results on distributed target tracking algorithms

for mobile sensor networks are provided in Section III. Our

experimental results are presented in Section V. Finally,

concluding remarks are made in Section VI.

II. PRELIMINARIES: NOTATIONS AND PROBLEM SETUP

Consider n mobile sensors αi with the dynamics
{

q̇i = pi

ṗi = ui

(1)

where qi, pi, ui ∈ R
d and the goal to track the state of a

mobile target γ with dynamics

ẋ = Ax+Bw; x ∈ R
m (2)

The sensing agents make the following partial-state noisy

measurements of the state of γ

zi = Hix+ vi, i = 1, 2, . . . , n; zi ∈ R
l (3)

where the matrices A, B, and Hi are generally time-varying

and of appropriate dimensions and w and vi are zero-mean

Gaussian noise.
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Let G = G(q) be the proximity graph (network) of the mo-

bile sensors. The set of vertices of G is V = {1, 2, . . . , n}.

Let r > 0 be the interaction range of every sensor. Then, the

set of edges of G is a time-varying set defined as

E(q) = {(i, j) ∈ E : ‖qj − qi‖ < r} (4)

and the set of neighbors Ni of sensor i on this proximity

network is given by

Ni = {j ∈ V : ‖qj − qi‖ < r}.

The main problem of interest is to design distributed

motion control and estimation algorithms that achieve two

objectives: i) the group of sensing agents improve their

collective information value
∑

i Ii and ii) avoid collisions

during tracking of target γ. We refer to this problem as

“information-driven flocking.” We propose a solution to

this problem using a combination of flocking and Kalman-

Consensus Filtering algorithms [8].

III. DISTRIBUTED TRACKING WITH MOBILE SENSORS

The Kalman-Consensus filtering algorithm (or Algo-

rithm 1) relies on reaching a consensus on estimates obtained

by local Kalman filters rather than distributed averaging-

based Kalman filtering. Algorithm 1 is the discrete-time

analog of the continuous-time Kalman-Consensus filter de-

scribed in the following.

Theorem 1. (Kalman-Consensus Filter [6]) Consider a

sensor network with a continuous-time linear sensing model

in (3). Suppose each node applies the following distributed

estimation algorithm

˙̂xi = Ax̂i +Ki(zi −Hix̂i) + µPi

∑

j∈Ni

(x̂j − x̂i)

Ki = PiH
T
i R

−1
i , µ > 0

Ṗi = APi + PiA
T +BQBT −KiRiK

T
i

(5)

with a Kalman-Consensus estimator and initial conditions

Pi(0) = P0 and x̂i(0) = x(0). Then, the collective dynamics

of the estimation errors ηi = x − x̂i (without noise) is

a stable linear system with a Lyapunov function V (η) =
∑n

i=1 η
T
i P

−1
i ηi. Moreover, V̇ ≤ −2µΨG(η) ≤ 0 where

ΨG(x̂) = x̂
T L̂x̂ =

1

2

∑

(i,j)∈E

‖x̂j − x̂i‖
2

and L̂ = L ⊗ Im is the m-dimensional Laplacian of the

network. Furthermore, all estimators asymptotically reach a

consensus, i.e. x̂1 = · · · = x̂n = x.

The following flocking algorithm is a modified form of

Algorithm 2 in [5].

Algorithm 2: (flocking with n distinct γ-agents) Let

x̂i = col(q̂i,γ , p̂i,γ) be the estimate of the state of target γ
by mobile sensor i obtained via Kalman-Consensus filtering.

Then, each sensing agent αi with dynamics in (1) applies the

Algorithm 1 Kalman-Consensus Filter [8] (message-

passing during one cycle at time index k for node i)

Given Pi, x̄i, and messages mj = {wj ,Wj , x̄j} ,∀j ∈ Ji =
Ni ∪ {i},

1: Obtain measurement zi with covariance Ri.

2: Compute information vector and matrix of node i

wi = HT
i R

−1
i zi

Wi = HT
i R

−1
i Hi

3: Broadcast message mi = (ui, Ui, x̄i) to neighbors.

4: Receive messages from all neighbors.

5: Fuse information matrices and vectors

yi =
∑

j∈Ji

wj , Si =
∑

j∈Ji

Wj .

6: Compute the Kalman-Consensus state estimate

Mi =
(

P−1
i + Si

)−1
,

x̂i = x̄i +Mi(yi − Six̄i) + µFiGi

∑

j∈Ni

(x̄j − x̄i),

µ = ǫ/(1 + ‖FiGi‖), ‖X‖ = tr(XTX)
1

2

Fi = I −MiSi,

Gi = AMiA
T +BQBT + PiSiPi

7: Update the state of the Microfilter (x+ is the updated x)

P+
i = AMiA

T +BQBT

x̄+
i = Ax̂i

following distributed control to interact with its neighboring

sensors on G(q):

ui =
∑

j∈Ni

φα(‖qj−qi‖σ)nij+
∑

j∈Ni

aij(q)(pj−pi)+f
γ
i (6)

where fγ
i is a linear feedback for tracking particle γ̂i with

state x̂i:

fγ
i = −c1(qi − q̂i,γ) − c2(pi − p̂i,γ); c1, c2 > 0 (7)

where nij = (qj − qi)/
√

1 + ǫ‖qj − qi‖2 is a subnormal

vector connecting agent i to agent j. Please, refer to [5] for

the definitions of φα, the σ-norm ‖·‖σ , and smooth adjacency

elements aij(q).

Remark 1. According to the flocking framework in [5], there

exists a smooth potential function in explicit form

Uλ(q) =
∑

j 6=i

ψα(‖qj − qi‖σ) +
λ

2

∑

‖qi − qc‖
2 (8)

with qc = 1/n
∑n

i=1 qi such that ui can be stated as a

distributed gradient-based control:

ui = −∇qi
Uλ(q) +

∑

j∈Ni

aij(q)(pj − pi) + fγ
i . (9)
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∇qi
denotes the partial derivative with respect to qi.

Note that the state estimates generated by Algorithm 1 is

directly used in equation (7) of Algorithm 2 for distributed

mobility-control of the sensors. We refer to the combined

Algorithms 1 and 2 as the cascade distributed estimation

and control algorithm for collision-free distributed tracking

of a mobile target γ. The analysis of the this discrete-time

coupled estimation and control algorithm is tremendously

challenging and is one of our future research objectives.

In this paper, we seek to provide the stability analysis

of the continuous-time version of this coupled distributed

estimation and control algorithm.

IV. STABILITY ANALYSIS: COUPLED DISTRIBUTED

ESTIMATION AND CONTROL ALGORITHMS

The formulation of our main analytical result as well as

the following assumptions are inspired by our experimental

observations and consistent collective behavior of a group

of mobile sensors tracking two types of mobile targets: 1) a

linear target and 2) a maneuverable nonlinear target called

particle-in-the-box. Both models of the motion of targets will

be discussed in detail in Section V. The notions of flocks,

structural stability, and cohesion of flocks are used in the

following proposition and defined in [5].

A flock is a connected network of dynamic agents. Flock-

ing is the collective behavior of a network of dynamic agents

with the objective to self-assemble and maintain a connected

network in a collision-free manner.

Assumption 1. Assume there exists a finite time T1 > 0
such that the proximity graph G(q(t)) becomes connected

for all t ≥ T1, i.e. after some finite time a single flock of

sensors forms.

The following definition clarifies that the Laplacian and

algebraic connectivity of the networks used in flocking and

KCF algorithms are not the same.

Definition 1. (Laplacian and λ2 of the proximity networks

in flocking vs. KCF) Let aij(q) be the smooth adjacency

elements of the proximity network of mobile agents with

configuration q = col(q1, . . . , qn). We represent the adja-

cency matrix of flocking with Af (q) = [aij(q)] and its

Laplacian and algebraic connectivity with Lf and λf
2 =

λ2(Lf ), respectively. The adjacency matrix Ae = [ae
ij(q)]

of networked filters in KCF has 0-1 elements, i.e. ae
ij = 1 if

aij(q) > 0 and ae
ij = 0, otherwise. Similarly, we denote the

Laplacian and algebraic connectivity of the networked filters

with Le(q) and λe
2 = λ2(Le), respectively.

Assumption 2. Assume there exist constant thresholds

ǫ1, ǫ2 ∈ (0, 1) such that the algebraic connectivity functions

λf
2 (t) = λ2(Lf (q(t))) and λe

2(t) = λ2(Le(q(t))) along

the trajectory of mobile agents cross the levels ǫ1 and ǫ2,

respectively, at time T2 = T2(ǫ1, ǫ2) > T1 and remain above

those threshold values thereafter, i.e. λf
2 (t) ≥ ǫ, λe

2(t) ≥ ǫ
for all t ≥ T2.

Assumption 3. The parameters c1, c2 > 0 in the tracking

feedback fγ
i of the flocking algorithm satisfy c1 < c2 < 1

and c2 > 1 − ǫ1 where ǫ1 is defined in Assumption 2.

Here is our main analytical result:

Proposition 1. Consider a network of n mobile sensing

agents with dynamics (1), the sensing model in (3), and

the proximity graph G(q) with the set of edges (4). Suppose

that the agents apply the Kalman-Consensus filter in (5) to

obtain n estimates x̂i of the state of a mobile target γ with

dynamics (2). These state estimates of the target determine

the states of n γ-agents γ̂i. Suppose that every sensing agent

i tracks its associated γ-agent γ̂i by applying the flocking

algorithm in (6). Let Σe and Σc be the collective dynamics

of the n networked estimators and mobility-controlled agents,

respectively, and denote their cascade with Σ. Then, the

following statements hold:

(i) Σ can be separated into three subsystems that consist of

the structural and translational dynamics of the group

of mobile sensors in cascade with the error dynamics

of the Kalman-Consensus filter.

(ii) Given Assumption 1, the agents form a cohesive flock

in finite time.

(iii) Suppose that Assumptions 1 through 3 hold. Then, the

solutions of the structural dynamics of the flock of

mobile sensors are asymptotically stable.

(iv) Given the assumptions in part (iii), all estimators

asymptotically reach a consensus on the state estimates

of the target x̂1 = · · · = x̂n (for the error dynamics of

KCF with zero noise).

The proof of proposition 1 is relatively lengthy; therefore,

we present the proof in separate parts.

A. Proof of Part (i):

Let us first determine the error dynamics of the Kalman-

Consensus filter in (5). The estimation error of sensor i is

defined as ηi = x− x̂i, thus error dynamics of (5) (without

noise) is in the form:

η̇i = Fiηi + µPi

∑

j∈Ni

(ηj − ηi)

with Fi = A−KiHi. Defining block diagonal matrices F =
diag[Fi] and P = diag[Pi] and η = col{ηi}, one can rewrite

the last equation as

η̇ = Fη − µPL̂eη = Feη (10)

where Fe = F − µPL̂e. According to Theorem 1, the error

dynamics η̇ = Feη is stable and has a quadratic Lyapunov

function V (η) = ηTP−1η =
∑

i η
T
i P

−1
i ηi.

The flocking dynamics of the agents can be written as


















q̇i = pi

ṗi = −∇qi
Uλ(q) +

∑

j∈Ni

aij(q)(pi − pi)

− c1(qi − q̂i,γ) − c2(pi − p̂i,γ)

(11)
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or


















q̇i = pi

ṗi = −∇qi
Uλ(q) +

∑

j∈Ni

aij(pi − pi)

− c1(qi − qγ + qγ − q̂i,γ) − c2(pi − pγ + pγ − p̂i,γ)

After defining the block matrix C = [c1Im c2Im], one can

express the last equation in a form with an input ηi:







q̇i = pi

ṗi = −∇qi
Uλ(q) +

∑

j∈Ni

aij(q)(pi − pi) + fγ
i − Cηi

with a linear tracking feedback

fγ
i = −c1(qi − qγ) − c2(pi − pγ).

This enables us to express the dynamics of Σ as the cascade

of its estimation and control subsystems Σe and Σc:

Σc :

{

q̇i = pi

ṗi = −∇Uλ(q) −D(q)p+ fγ − Ĉη

Σe : η̇ = Feη

(12)

where D(q) = c2I + L̂f (q) is a positive definite damping

matrix, f = col{fγ
i }, and Ĉ = C ⊗ In is a constant matrix.

System (12) is the cascade normal form of estimation and

control subsystems of a mobile sensor network in which its

sensing agents apply the flocking algorithm for mobility con-

trol and the Kalman-Consensus filter for distributed tracking.

According to [5], since fγ
i is a linear feedback, the

flocking dynamics Σc can be further decomposed as the

cascade of structural and translational dynamics of particles.

The position and velocity of the center of mass (CM) of the

particles is given by

qc =
1

n

∑

i

qi, pc =
1

n

∑

i

pi.

Consider a moving frame centered at qc. Then, the position

and velocity of agent i can be written as xi = qi − qc and

vi = pi − pc. We refer to the dynamics of the motion of the

group of agents in the moving frame coordinates as structural

dynamics. The structural and translational dynamics of Σc

can be written as

Σs :

{

ẋ = v

v̇ = −∇Uλ(x) −D(x)v + δ − δ̄ ⊗ 1n

with 1n ∈ R
n representing the column vector of ones and

Σt :

{

q̇c = pc

ṗc = −c1(qc − qγ) − c2(pc − pγ) + δ̄

where the perturbation terms δ = col{δi} and δ̄ depend on

the target estimation errors by the sensors and are defined as

δi = −c1(qγ − q̂i,γ) − c2(pγ − p̂i,γ) = −Cηi

δ̄ =
1

n

∑

i

δi = −Cη̄; η̄ =
1

n

∑

i

ηi =
1

n
(1T

nη)

The normal form of Σ can be written as follows

Σs :

{

ẋ = v

v̇ = −∇Uλ(x) −D(x)v − Ĉη + C(1T
nη) ⊗ 1n

Σt :

{

q̇c = pc

ṗc = −c1(qc − qγ) − c2(pc − pγ) − C(1T
nη)

Σe : η̇ = Feη

B. Proof of parts (ii) to (iv)

The solutions of the structural dynamics in cascade with

Σe is called cohesive for all t ≥ 0 if the position of all

agents remains in a ball of radius R0 for t ≥ 0. Note that

this cascade nonlinear system is globally Lipschitz and all

of its solutions are bounded for arbitrary initial conditions.

The global Lipschitz property is a byproduct of the design

of the smooth potential function Uλ(q) which has a globally

bounded gradient. This implies that over the interval [0, T ]
the solutions of the cascade system and therefore the position

of all agent remain bounded. For all t ≥ T , the proximity

graph G(q(t)) is connected and thus has a finite diameter

d(t) ≤ (n − 1) at any time t. Define the diameter of the

flock as

dmax(t) = max
j 6=i

‖qj(t) − qi(t)‖, t ≥ T

Then, dmax = d(t)r ≤ (n − 1)r and by setting R0 = (n −
1)r/2 the position of the agents remain cohesive for all t ≥ T
inside a ball of radius R0.

To establish stability of the flock, we need to construct an

energy-type Lyapunov function ϕ for the cascade of Σs and

Σe. Let Hλ(x, v) = Uλ(x)+ 1
2‖v‖

2 be the Hamiltonian of the

unperturbed structural dynamics Σs and V (η) = ηTP−1η be

the Lyapunov function of Σe. We propose the following Lya-

punov function for the cascade nonlinear system (Σs,Σe):

ϕ(x, v, η) = Hλ(x, v) +
k

2µ
V (η) (13)

Before computing ϕ̇, let us state a simple inequality. For

an n ×m matrix M and two vectors x ∈ R
n and y ∈ R

m,

the following inequality holds:

|xTMy| ≤
1

2
(‖x‖2 + ‖My‖2) ≤

1

2
(‖x‖2 + σ2

max(M)‖y‖2)

In the special case of M = C = [c1Im c2Im], we have

|xTCy| ≤
1

2
(‖x‖2 + c23‖y‖

2).

where c3 = max(c1, c2). By direct differentiation, we obtain

ϕ̇ = Ḣλ +
k

2µ
V̇ (η).

From Theorem 1 and Assumptions 1 and 2, for all t ≥ T2,

one gets

V̇ (η) ≤ −2µ(ηT L̂eη) ≤ −2µλ̄e
2‖η‖

2

where λ̄e
2 = mint≥T2

λ2(Le(q(t)) always exists based on

Assumption 2.
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Now, let us compute Ḣλ(x, v, η). We have

Ḣλ = −vT L̂f (x)v − c2‖v‖
2 −

∑

i

(vT
i Cηi + vT

i δ̄).

Note that |vT
i Cηi| ≤

1
2 (‖vi‖

2 + c23‖ηi‖
2) thus

∑

i

|vT
i Cηi| ≤

1

2
(‖v‖2 + c23‖η‖

2).

In addition, vT
i δ̄ = 1

n

∑

j v
T
i Cηj . Hence

|vT
i δ̄| ≤

1

2

∑

j

(‖vi‖
2 + c23‖ηj‖

2) =
n

2
‖vi‖

2 +
1

2
c23‖η‖

2

and
∑

i

|vT
i δ̄| ≤

1

2
(‖v‖2 + c23‖η‖

2).

Based on the above upper bounds, we get

Ḣλ ≤ −vT L̂f (x)v − c2‖v‖
2 + ‖v‖2 + c23‖η‖

2.

Given the fact that

vT L̂f (x)v ≥ λ2(L(x))‖v‖2

and setting λ̄f
2 = mint≥T2

λ2(Lf (x(t))), one concludes

ϕ̇ ≤ (1 − c2 − λ̄f
2 )‖v‖2 + (c23 − kλ̄e

2)‖η‖
2 < 0, ∀(v, η) 6= 0

if the following two conditions hold:

{

λ̄f
2 > 1 − c2

λ̄e
2 > c23/k

(14)

Given the definition of λ̄f
2 and λ̄e

2 and Assumption 2, we

have λ̄f
2 = ǫ1 and λ̄e

2 = ǫ2. By choosing k ≥ 1/ǫ2 and

c2 > 1 − ǫ1 (as in Assumption 3) both conditions will be

satisfied. Thus

ϕ̇(x, v, η) < 0, ∀(v, η) 6= 0

Based on LaSalle’s invariance principle, for any set of initial

conditions, the solutions of the cascade system (Σs,Σe)
asymptotically converge to the largest invariant set in

E = {(x, v, η) : ∇Uλ(x) = 0, v = 0, η = 0} = Es × {0}

where Es is the equilibria of the unperturbed structural

dynamics. From the equilibria in Es, only the local minima

of Uλ(x) are asymptotically stable.

The proof of part (iv) is a byproduct of the above stability

analysis: the estimation errors ηi asymptotically vanish for

all sensors and therefore all state estimates become the same.

Remark 2. If in addition to Assumptions 1 through 3,

Conjectures 1 and 2 in [5] hold, then almost every solution of

the structural dynamics of the flock asymptotically converges

to a quasi α-lattice. In all of our experimental results, we

have observed finite-time self-assembly of quasi α-lattices.

V. EXPERIMENTAL RESULTS

In this section, we apply our coupled distributed estimation

and control algorithm—namely, KCF plus flocking—to two

types of targets: 1) a target with a linear model which is

a particle moving in R2 and 2) a maneuvering target with

nonlinear dynamics. The later target remains in a rectangular

region (box) for all time t ≥ 0.

A. Linear Target

Consider a particle in R
2 with a linear dynamics

x(k + 1) = Ax(k) +Bw(k)

with

A =

[

I2 ǫI2
0 I2

]

, B =

[

(ǫ2/2)I2
ǫI2

]

.

where ǫ = 0.01 is the discretization step-size. The sensor

makes noisy measurements of the position of the target, i.e.

zi(k) = Hi(k)x(k) + vi(k); Hi = [I2 0].

The noise statistics for zero-mean Gaussian signals w(k) and

vi(k) are

E[w(k)w(l)T ] = Qkδkl, E[vi(k)vj(l)
T ] = Ri(k)δklδij .

where δkl = 1 if k = l and δkl = 0, otherwise. According

to the model of information value in [7], the measurement

error covariance matrix of sensor i is Ri = 2
f(ρi)

I2 where

f(ρi) is the information value function

Ii = f(ρi) = 2I0(a+ b+ (a− b)
ρi − l

√

1 + (ρi − l)2
)−1 (15)

where ρi = ‖Hix̄i − qi‖ , I0 = 0.1, and a > b > 0. In our

experiment, we use a mobile sensor network with n = 20
agents. The parameters of Ri are a = 8b, b = 1, and l = 10d.

The interaction range of the agents in the flock is r = 1.2d
and their desired inter-agent distance is d = 7. For the KCF

algorithm, P0 = 100I4, x0 ∼ N (0, σ2I4) with σ = 60, and

Q = 100I2.

Fig. 1 shows the MSE of tracking error over 10 random

runs, the average information value, and the algebraic con-

nectivity plots during tracking. From Fig. 1 (c), one can

readily verify that Assumptions 1 through 2 hold.

B. Maneuvering Nonlinear Target: Particle-in-the-Box

We also consider a maneuvering target with the following

nonlinear dynamics:

x(k + 1) = A(x(k))x(k) +Bw(k) (16)

where x(k) = (q1(k), p1(k), q2(k), p2(k))
T denotes the state

of the target at time k. The target moves inside and outside

of a square field [−l, l]2. Matrix A(x) is defined as

A(x) = M(x) ⊗ F1 + (I2 −M(x)) ⊗ F2

F1 =

[

1 ǫ
0 1

]

, F2 =

[

1 ǫ
−ǫc1 1 − ǫc2

]

,

M(x) =

[

µ(x1) 0
0 µ(x3)

]

.
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Fig. 1. Experimental results for the linear target: (a) MSE for distributed
target tracking, (b) average information value, (c) λ2 plots for flocking
(smooth blue curve) and Kalman-Consensus filtering (piecewise constant
red curve), and (d) a target trajectory and fused estimates of 20 sensors.

where F1 and F2 determine the dynamics of the target

inside and outside of the region, respectively, and µ(z) is

a switching function taking 0-1 values defined by

µ(z) =
σ(a+ z) + σ(a− z)

2

σ(z) =

{

1, z ≥ 0;
−1, z < 0

In addition, matrix B is given by

B = I2 ⊗G, G =

[

ǫ2σ0/2
ǫσ0

]

.

where ǫ = 0.03 is the step-size, σ0 = 2, a = 45, l = 50, c1 =
7.5 and c2 = 10 are the parameters of a PD controller, and

the elements of w(k) are normal zero-mean Gaussian noise

with Q = 100I2. The initial condition of the target is x0 ∼
N (0, σ2I4 with σ = 2 and P0 = 100I2. The parameters

of the information value function in (15) are I + 0 = 0.1,

a = 10b, b = 1, l = 10d and d = 7. We consider a mobile

sensor network with n = 30 nodes with a linear sensing

model and

Hi =

[

1 0 0 0
0 0 1 0

]

.

Fig. 2 illustrates the tracking estimation error, average

information value, and the algebraic connectivity plots for

the nonlinear target. Similarly, Assumptions 1 and 2 hold

based on Fig. 2 (c).

VI. CONCLUSIONS

We introduced a theoretical framework for coupled dis-

tributed estimation and flocking-based control of mobile

sensor networks for collaborative target tracking. The mobile

sensing agents seek to improve the information value of

their sensed data while avoiding inter-agent collisions. We
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Fig. 2. Experimental results for the nonlinear target: (a) MSE for distributed
target tracking, (b) average information value, (c) λ2 plots for flocking
(smooth blue curve) and Kalman-Consensus filtering (piecewise constant
red curve), and (d) a target trajectory and fused estimates of 30 sensors.

demonstrated that the coupled dynamics of the combined

distributed estimation and control algorithm has a separable

cascade nonlinear normal form. Then, we provided the

stability analysis of the structural dynamics of a flock with n
dedicated γ-agents in cascade with the error dynamics of the

continuous-time KCF. Based on out experimental results, the

discrete-time counterpart of the information-driven flocking

algorithm is effectively applicable to tracking both a linear

and a nonlinear maneuverable target.
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