
A Parallel Computing Framework for Air Traffic Flow Management

Yi Cao and Dengfeng Sun

Abstract— The nationwide air traffic flow control for the Na-
tional Airspace System is a complicated large-scale optimization
problem which is significant to the future development of Air
Traffic Management. Based on a Link Transmission Model and
dual decomposition method, the large-scale air traffic flow opti-
mization is decomposed into smaller independent optimization
subproblems and solved using parallel computing. As the model
is solved with a Mixed Integer Linear Programming, searching
for an optimal integral solution usually entails longer runtime
than Linear Programming. To improve the applicability of this
model, a parallel computing framework is developed, which
explores the parallelism of the model in order to increase
the computational efficiency. Heterogeneous computers are
clustered in a Client/Server topology to carry out parallel
computing. By further exploring the multithreading capability
of multi-core computer, the optimization task is distributed to
multiple processors to process in a parallel fashion. Simulation
shows that the parallel computing framework decreases the
runtime of nationwide air traffic optimization from hours
timescale to minutes timescale. Moreover, compared to con-
ventional single thread optimization method, the framework
can achieve expected runtime reduction by deploying more
computer resources without worrying about the increased
complexity of the traffic network, therefore making the near
real-time air traffic flow optimization possible.

I. INTRODUCTION

In the next decade, there will be a significant increase
in air transportation demand in U.S. by a factor of two
to three according to the forecast by Joint Planning and
Development Office (JPDO) [1]. Such a growth inevitably
stresses efficient utilization of the limited airspace which is
one of the critical issues associated with the goal of the Next
Generation Air Transportation System (NextGen). According
to the blueprint of NextGen, all aircraft and airports in U.S.
will be connected to the NextGen network and continually
share information in real time. A National Airspace Sys-
tem (NAS)-wide air traffic optimization platform provides a
decision-making support for the Air Traffic Controller with
regard to efficient allocation of airspace resources, therefore
will improve the airspace utilization efficiency and benefit the
decision-making process. On the other hand, the NAS-wide
air traffic optimization also provides an evaluation platform
for Air Traffic Management (ATM) research, such as airport
operations, aircraft holding policy, en route air traffic control.

However, modeling the behavior of the multicommodity
flow network could be challenging. There are over fifty
thousand aircraft flying in the NAS of the U.S. each day,
and over five thousand every minute during the rush hours.
There are two classes of paradigms in the field of ATM,

Yi Cao and Dengfeng Sun are with School of Aeronautics
and Astronautics, Purdue University. cao20@purdue.edu,
dsun@purdue.edu.

namely Lagrangian Models and Eulerian Models. The former
are trajectory-based model while the latter are aggregate
model [2], [3], [4]. The Lagrangian Models precisely propa-
gate the trajectory of individual aircraft, so the dimension
of the problem is proportional to the number of aircraft
involved in the model. As a result, trajectory-based modeling
generally leads to intensive computation if large number of
aircraft are considered. In contrast, the Eulerian Models focus
on the aggregate properties of the air traffic network [5],
therefore have lower fixed dimensions. As a tradeoff, the
Eulerian Models are not able to provide detailed information
about each individual aircraft in general. To accommodate
the requirements at both microscopic and macroscopic level,
a Large-Capacity Cell Transmission Model (CTM(L)) was
proposed in [6]. It is formulated as a linear discretized
dynamical system whose dimension is independent of the
number of aircraft. By introducing control variables into
the model, CTM(L) is able to model the control strategies
imposed on the en route traffic flow. Another remarkable
advantage of CTM(L) is that it is able to provide detailed
traffic information at both sector and air route levels. How-
ever, billions of state variables are needed for NAS-wide air
traffic optimization which entail computational difficulty in
realistic implementation. To make the large-scale optimiza-
tion problem tractable, [8] introduced a dual decomposition
method to decouple the air traffic network, resulting in
an iterative optimization approach. However, even a 2-hour
traffic optimization may be time consuming. In an effort
to improve the computational efficiency, [9] modified the
CTM(L) by aggregating the aircraft count at a link level,
resulting in a Link Transmission Model (LTM). Due to the
decreased number of state variables by an order of ten, LTM
runs faster than CTM(L).

In our previous effort, computational efficiency improve-
ment largely depends on the modeling properties. If the
traffic doubles or triples in near future as anticipated, more
air routes will be added into the current NAS. The complexity
of the air traffic network will increase as a result. Previous
methods will fail to maintain the expected computational
efficiency because of the increased runtime of optimization.
Therefore, it is imperative to seek other method whose
runtime is independent of the complexity of the air traffic net-
work. Nowadays parallel computing technique is becoming
more and more prevalent at different hardware levels, such as
pipeline, multi-cores, multiprocessor computer. Distributed
computation resources are clustered to tackle problems in
fields like finite element structural analysis, computational
fluid dynamics, and Monte Carlo Simulation. Most of these
applications are similar in that the large-scale problems

2011 American Control Conference
on O'Farrell Street, San Francisco, CA, USA
June 29 - July 01, 2011

978-1-4577-0079-8/11/$26.00 ©2011 AACC 2771

are decomposed into smaller subproblems and solved by
heterogeneous computer clusters using parallel computing.
In ATM literature, parallel computing was also success-
fully introduced into solving the traffic flow problem. [10]
employs a classical Lagrangian model, i.e. Bertsimas and
Stock-Patterson (BSP) model, to simulate the traffic, and
applies Danzig-Wolf decomposition to decrease the size of
the problem. [11] proposes a parallel architecture to solve the
problem presented in [10]. Higher computational efficiency
is achieved via multi-threading.

There are two problems facing current TFM research.
First, most models developed in historical works are vali-
dated using traffic at Center level or on limited air routes
only. There are few works addressing traffic flow optimiza-
tion at the nationwide level. Work presented in this paper
aims to fill this gap. Second, due to the limited capability of
earlier optimization tool, early works, such as [10] and [8],
solves the traffic problem via Linear Programming (LP)
relaxation where the solution is expected to be integral.
An empirical rounding method must follow to convert the
fractional variables into integers. This would cause loss of
optimality, and some constraints may be broken as well [10].
Currently, many optimization tools, like CPLEX, support
Mixed Integer Linear Programming (MILP) resolution. Inte-
gral solution can be obtained directly as long as the variables
are defined as integer. However, MILP usually takes longer
runtime to search for the optimal integral solution than LP.
The runtime can be unacceptable if the size of problem is
very big. To offset this negative impact, this paper proposes a
parallel computing framework. By using dual decomposition
method the NAS-wide air traffic optimization is decomposed
into a collection of subproblems path by path based on the
LTM [9]. As each subproblem is a smaller optimization
problem that can be solved independently in a relatively
short runtime, solving them in parallel significantly reduces
the total runtime. The compute-intensive optimization prob-
lem thus can be efficiently solved. Since single machine
has limited computing power, this paper develops parallel
computing using multiple computers, with each computer
running multiple processes. It is expected that by maximizing
the computation capability of hardware higher computational
efficiency can be achieved.

Although the methodology used in this paper is similar
to the work presented in [10] and [11], this paper puts more
emphasis on realistic hardware and software implementation.
Aside from the different traffic model and decomposition
method, the parallel architecture in this study is also achieved
at a higher level, namely multiple computers. This work is
an integration of algorithm, software and hardware.

The rest of the paper is organized as follows. Section II
introduces the dual decomposition method based on the LTM
which is designed for the TFM optimization. Section III
elaborates the integration of hardware and software system.
Section IV presents the simulation results. Computational
efficiency is discussed in this section as well. Concluding
remarks are provided in Section V.

II. LINK TRANSMISSION MODEL AND DUAL
DECOMPOSITION METHOD

A. Link Transmission Model
Link Transmission Model is an Eulerian-Lagrangian

Model. It uses the high altitude sectors as the geographic
basis. Each flight path is modeled as an air route connecting
departure airport and arrival airport, as shown in Fig. 1. The
path is segmented by the sector boundaries, each segment
is called a link. A sector contains several links belonging to
different paths. Aircraft flying through the same series of sec-
tors are considered in the same link. Aggregating the aircraft
in the same sector forms the so-called sector count which is
often used as the indicator of traffic conditions in a region.
The NAS is covered by a network composed of variety of
paths. When the aircraft fly across the sector boundaries, they
are considered as flows transitioning between the links.

Fig. 1. Link Transmission Model

The state variable xk
i (t) is defined as the aggregate aircraft

count in link i on path k at instant t, xk
i (t) ∈ Z+. The traffic

flow complies with flow conservation principle, is formulated
as a discretized linear time varying system:

xk
i (t +1) = β

k
i−1(t)x

k
i−1(t)+(1−β

k
i (t))x

k
i (t),

xk
0(t +1) = f k(t)+(1−β

k
0 (t))x

k
0(t).

where f k(t) is the scheduled departure into path k. β k
i (t) is a

transmission coefficient representing the fraction of aircraft
transitioning from upstream link i to downstream link i+1,
hence 0 ≤ β k

i (t) ≤ 1. In optimization problem, optimizing
β k

i (t) amounts to regulating the flow rate. In order to obtain
a linear program, a new state variable is introduced, qk

i (t) =
β k

i (t)x
k
i (t). By definition, qk

i (t) < xk
i (t). then the dynamics

for path k can be rewritten in vector form:

Xk(t +1) = IXk(t)+BQk(t)+C f k(t) (1)

where I is a nk × nk identity matrix. nk is the number of
links on path k. Xk(t) = [xk

0(t),x
k
1(t), · · · ,xk

nk(t)]T , Qk(t) =
[qk

0(t),q
k
1(t), · · · ,qk

nk(t)]T , and

B =


−1
1 −1

. . .
1 −1

, C =


1
0
...
0

,
2772

Qk(t)≤ Xk(t),

qk
i (t), xk

i (t) ∈ Z+.

Unlike the Lagrangian Models, the dimension of LTM is
determined by the number of links on a path rather than
the number of aircraft involved. Thus the overall dimension
of NAS-wide traffic model is proportional to the number of
paths identified in the system.

B. Formulation of TFM optimization

There are various ways to formulate the objective function.
One of the methods is to minimize the total flight time
over all aircrafts in the planning horizon, which reflects the
realistic goal to minimize fuel consumption:

min
K

∑
k=0

T

∑
t=0

nk

∑
i=0

ck
i xk

i (t) (2)

where T is the planning time horizon. K is the number of
paths identified in the NAS. ck

i is the weight imposed on a
link. Airline fairness can be adjusted by imposing different
weights on the links of a flight path.

Current NAS uses Monitor Alter Parameter (MAP) to
restrict the number of aircraft in a sector in order to guarantee
safety [12]. Thus the sector count should not exceed the MAP
value Csi .

0≤ ∑
(i,k)∈Qsi

xk
i (t)≤Csi (3)

where Qsi represents the set of links lying in sector si.
A minimum dwell time in a link is imposed on each

aircraft to ensure a reasonable flow rate. The minimum dwell
time Ti is the average flight time an aircraft needs to pass
through link i, which is derived statistically from historical
flight data.

T ∗

∑
t=T0+T1...+Ti

qk
i (t)≤

T ∗−Ti

∑
t=T0+T1...+Ti−1

qk
i−1(t) (4)

T ∗ ∈ {T0 +T1 · · ·+Ti, . . . ,T}

Equation (4) reflects the fact that the accumulated inflow of a
link is greater than its accumulated outflow at Ti look-ahead
time instant. This amounts to detaining an aircraft in link i
for at least Ti.

It is also assumed that no aircraft is held in the air at
the end of the optimization, i.e. every flight will land in
its destination airport. Therefore the accumulated departures
must be equal to the accumulated arrivals.

T

∑
t=0

qk
nk(t) =

T

∑
t=0

f k(t) (5)

Equations (1), (3), (4), (5) together with the objective func-
tion (2) formulate the TFM optimization problem. Solving
this problem yields optimal flow for each flight path as well
as associated flow controls, which can be used for TFM eval-
uation. Given that real traffic controls are generally applied
to an individual aircraft instead of a flow, the flow controls
generated from this model seems inexecutable. [7] develops

a disaggregation method to convert the flow controls into
flight-specific control actions for CTM(L), which can be
easily adapted to LTM as well. But this is out of the scope
of this paper.

C. Dual Decomposition Method

Equation (2) indicates that the number of state variable
is determined by three indices, namely K,T,nk. Consider
a 2-hour NAS-wide TFM optimization with a time interval
of one minute, which typically involves approximately 2400
paths each with 15 links on average, then there are 120×
2400× 15 = 4,320,000 state variables. Moreover, Qk(t) is
also treated as state variable at the same order as Xk(t),
then the number of state variables is up to 8,620,000. It
is difficult to handle a problem of such a high order with
current optimization tool available. However, all constraints
are separable in terms of path except for Equation (3). State
variables of different paths are coupled only by the sector
capacity constraint. [8] introduced the dual decomposition
method to decouple the paths. By introducing Lagrangian
Multipliers, the sector capacity constraints are incorporated
into the objective function. The formulation can be reorga-
nized in terms of path. A detailed induction can be found
in [8] and [9]. Table I summarizes the dual decomposition
algorithm based on LTM. A flowchart of the algorithm is
shown in Fig. 2.

Fig. 2. Flow chart of dual decomposition algorithm

An important feature of the dual decomposition method
is that it fits a parallel computing framework. Taking advan-
tages of nowadays multithreading technique, the optimization
can be allocated to distributed computer resources.

In Step 1 of Table I, each subproblem is a smaller MILP.
The number of state variables is reduced compared to origi-
nal NAS-wide TFM optimization. Thus It is easy to solve by
CPLEX. The prevalent optimization tool CPLEX provides
high-performance APIs for efficient implementation. Most
importantly, CPLEX supports multiprocessing. Computers
with multiprocessor can run several optimizer instances
simultaneously. This feature enables parallel computation.

2773

TABLE I
DUAL DECOMPOSITION ALGORITHM BASED ON LTM

Initialization:
λ 0

si
(t) = λ0,X(0) = X0

Step 1:

for k = 1 : K solve subproblem (for path k):
dk(λ

j
si (t)) = min∑

T
t=0 ∑

nk

i=0[c
k
i +λ

j
si (t)]x

k
i (t)

s.t.

xk
i (t +1) = xk

i (t)+qk
i−1(t)−qk

i (t)

xk
0(t +1) = xk

0(t)+ f k(t)−qk
0(t))

qk
i (t)≤ xk

i (t), qk
i (t) ∈ Z+

0≤ ∑(i,k)∈Qsi
xk

i (k)≤Csi , xk
i (t) ∈ Z+

∑
T
t=0 qk

nk (t) = ∑
T
t=0 f k(t)

∑
T ∗
t=T0+T1...+Ti

qk
i (t)≤ ∑

T ∗−Ti
t=T0+T1 ...+Ti−1

qk
i−1(t)

T ∗ ∈ {T0 +T1 · · ·+Ti, . . . ,T}

Step 2:
Update objective of master problem:

d(λ j
si (t)) = max{−∑

T
t=0 ∑

S
si=0 λ

j
si (t)Csi +∑

K
k=0 dk(λ

j
si (t))}

if d(λ j
si (t)) converge

return X∗ = X(t)
else

g j+1
si (t) =−(∑(i,k)∈Qsi

xk
i (t)−Csi)

λ
j+1

si (t) := (λ
j

si (t)−αig
j+1
si (t))+

goto Step 1

where
si ∈ {0, · · · ,S}, t ∈ {0, . . . ,T},k ∈ {0, . . . ,K}.
g j

si (t) is the subgradient of dual function.
λ

j
si (t) is the Lagrange multiplier, (·)+ denotes the non-negative

part of a number.
α j =

1
j+1 is the subgradient step and j is the iteration index.

III. INTEGRATION OF DISTRIBUTED AIR
TRAFFIC FLOW OPTIMIZATION SYSTEM

In this section, a platform, which includes hardware and
software integration, for the parallel computation is intro-
duced.

A. Hardware topology

Based on the master problem-subproblems structure of
the dual decomposition method, a Client/Server model is
used, as shown in Fig. 3. In the one-to-many deployment,
the workload is balanced to maximize the efficiency. The
server is responsible for disseminating data, distributing
subproblems to each client, receiving optimal results and
updating the parameters. Each client simply concentrates on
solving subproblems. The Client/Server model is connected
via WAN or LAN. Internet-based distributed system provides
considerable flexibility in system deployment. a) Compati-
bility of heterogeneous computer resources via TCP/IP or
UDP/IP protocol. b) Extensibility using existing network. c)
High data throughput. Therefore, Internet-based structure is
widely accepted in many ATM researches.

Fig. 3. System topology

B. Software

A Client/Server software architecture is depicted in Fig. 4.
To accelerate the computation, both Server and Client run
multiple processes with each playing different roles, e.g.
communication, synchronization, solving subproblems. De-
tails are provided as follows.

In the Server end, there are three processes.
• A Communication thread is responsible for sending and

receiving data. It monitors the data transfer request from
internal Master thread and external Clients. When a
request is received, this module conducts data buffering.
Since large data blocks are sent using UDP which
is not a reliable connection, it is the Communica-
tion thread’s responsibility to guarantee reliable data
sending/receiving through error checking mechanism.
Resending is issued upon request.

• A Master thread controls the progress of the whole
optimization. It evenly divides the original problem
into blocks of jobs and sends to the Clients. When
each iteration is finished, the Master thread updates
the Lagrangian Multipliers λsi(t) using the feedback of
optimal traffic flow X∗(t).

• A Database thread provides an access to the database.
To set up the LTM, information regarding to links, paths
and sectors are needed. All the information is extracted
offline from historical flight record using data mining
and stored in the database. This thread responds to
inquiry from theMaster thread and Clients, feedback is
buffered to the shared memory or to the Communication
thread respectively.

The Client has a similar configuration as the Server.
• A Communication thread is the same module as in the

Server.
• A Parent thread receives a block of subproblems from

the Server and redirects the job to the Child thread
for processing. In this second level job distribution,
the Parent thread does not evenly distribute the job to
each Child thread, but allocates jobs according to the
computation workload of each subproblem to achieve
the workload balance. It continuously sends new jobs
to those idle Child threads, thus maximizes the compu-
tational efficiency.

• Several Child threads receive subproblems from the

2774

Parent thread and perform optimization. Given that
each thread would compete for the CPU time, the
number of Child threads should match up to the Client’s
multithreading capability. In a multi-core machine, the
efficiency could be maximized if each processor is busy
on executing the computation all the time.

Fig. 4. Software architecture: Client/Server model

The software design has to give consideration to the
following aspects.
• Data communication. In the WAN/LAN environment,

data communication is via TCP/IP or UDP/IP. The
communication is propagated via Socket. Two commu-
nication channels are established for data transmission
between the Server and the Client. One is command
channel, the other is data transmission channel. The
command channel is used for synchronization purpose.
A set of commands are defined. The Client/Server act in
a request-reply mode. Since commands are short mes-
sages which must be correctly received, the command
channel uses TCP/IP. The data transmission channel
uses UDP to transfer large data blocks, such as the data
from the database, updated parameters and optimized
traffic data. In order to ensure reliable data transmission,
the Hand-shaking is established via command channel
before initiating a data transmission. Likewise, error
checking must be done after each receival. Resending
request is issued in case of long network latency or
incorrect data receival.

• Synchronization. The Server is responsible for synchro-
nizing the work of the Clients by sending synchro-
nization command. Internal thread synchronization is
accomplished through mutex, signal and shared mem-
ory. Given that the data transfer is a duplex commu-
nication, internal and external accesses may compete
for the public buffer resources. mutex provides lock
mechanism to prevent reading/writing “dirty” data. The

internal communication is via signal. Other option such
as Message Passing Interface is equivalent in terms
of efficiency, but signal is more suitable for Object-
Oriented programming when one defines the action for
a thread.

IV. SYSTEM VALIDATION
In this section, a 2-hour NAS-wide air traffic is used

to validate the proposed framework. Ten Dell Workstations
construct a small prototype of the proposed distributed opti-
mization system. Each workstation is configured with a 2.8
GHz 8-processors INTEL i7 CPU and 16G RAM. Among the
ten workstations, one serves as the Server, the rest serve as
the Clients. The system is deployed in a LAN, each with an
independent IP address. The LTM is implemented as a MILP
using C++ under Linux environment. The optimization tool
used is CPLEX 12.1. The traffic data are extracted from the
ASDI/ETMS which provides historical traffic records. The
peak hours traffic on Mar 1, 2005 is used in which 2326
paths and 3054 flights were involved. Uncontrolled air traffic
sets up the baseline for comparison purpose. The NAS-wide
TFM optimization is executed with different Client/Server
deployments. The correctness of the output will be verified
first, then the computational efficiency will be shown.

The LTM is validated via output form the dual decom-
position algorithm. Fig. 5 shows the value of objective
function for the master problem which converges within 50
iterations. That means the whole optimization approaches
the global optimum in an iterative manner. Fig. 6 shows the
optimal air traffic flow of two sectors. As can be seen, the
sector capacity constraint is well respected in optimized air
traffic. In contrast, the uncontrolled air traffic exceeds the
sector capacity sometimes during the peak hours. It is worth
noting that the optimized air traffic has relatively balanced
workload. Congestion in ZID74 is alleviated while traffic in
ZNY75 is increased due to delayed aircraft. Clearly, delay
is the tradeoff. In current LTM, delay is the only control to
mitigate the congestion. If acceleration is allowed, the delay
may be reduced. However, more sophisticated modeling and
flight information are required to achieve such goal.

Fig. 5. Master problem objective converges

Fig. 7 presents the computational efficiency improvement
by deploying different numbers of Clients and running
different numbers of optimizer instances on each Client.
In all cases, the program run 50 iterations to guarantee

2775

(a)

(b)

Fig. 6. Optimized sector counts in two selected sectors

convergence. There are 2326 paths identified in the planning
time horizon corresponding to 2326 subproblems. The lowest
value of runtime is achieved by 9 clients each with 12
threads, which is around 6 minutes.

The monolithic version means that the Server and Client
are running on the same workstation. Therefore the parallel
computing is achieved simply by running multiple threads.
As expected, the more optimizers are executed simultane-
ously, the more runtime is saved. But the saving is nonlinear.
Initially, when the thread number is one or two, the usage
of CPU is not maximized. Hence the increase of efficiency
is notable. When the thread number nearly reaches the
number of processors, the CPU is in full workload. Hence,
the runtime reduction decreases. When the thread number
exceeds the processor number, threads have to compete for
CPU, then the computing power of a single machine reaches
its bottleneck. For further gain of efficiency, multiple Clients
must be deployed, as Fig. 7 indicates. Similarly, in y axle
direction, the saving nonlinearly increases. Overhead for
synchronization between the Client and the Server partially
accounts for this observation. As client number increases, the
Server has more Clients to respond. Another reason lies in
the unbalanced workload. The Server evenly distributed the
jobs to each Client, but the workload of each subproblem
may differ a lot. A path with more links takes longer time
for optimization. All Clients have to wait for the one with
the heaviest workload at the end of each iteration. The more
Clients is added, the more likely the workload is uneven.
Thus more time is needed for synchronization. Ideally, the
efficiency is maximized when the workload between Clients
is homogeneous and the overhead of job distribution is
commensurate with the computation of optimization. Even
so, there should be a bottleneck for the parallel framework.
From the trend shown in Fig. 7, it can be seen that the

runtime reduction from 6 clients to 9 clients is relatively
small. It can be predicted that it is impossible to reduce
the runtime without limit by adding more clients. The lower
bound for the runtime is the overhead.

Fig. 7. Comparison of the runtime by different Client deployments

V. CONCLUSIONS AND FUTURE WORK
This paper introduces a parallel computing platform used

to improve the computational efficiency for NAS-wide TFM
optimization. It boosts future NAS-wide ATM research in
that the runtime of large-scale optimization problem is
reduced from hours timescale to minutes timescale. Most
importantly, the runtime reduction is independent of the
complexity of the traffic network. The proposed framework
can be easily adapted to the challenge of ever-changing air
traffic problem.

REFERENCES

[1] JPDO Progress Report, December, 2006.
[2] A.M. Bayen, P. Grieder., G. Meyer, C.J. Tomlin., “Lagrangian Delay

Predictive Model for Sector-Based Air Traffic Flow,” Journal of
Guidance, Control, and Dynamics, Vol. 28, No. 5, September-October
2005.

[3] P.K. Menon, G.D. Sweriduk, T. Lam, G. M. Diaz, and K.D. Bilimoria,
“Computer-aided Eulerian air traffic flow modeling and predictive
control,” AIAA Conference on Guidance, Navigation, and Control ,
Providence, RI, August 2004, AIAA Paper 2004-2683.

[4] B. Sridhar, T. Soni, K. Sheth, and G.B. Chatterji, “An Aggregate Flow
Model for Air Traffic Management,” Journal. Journal of Guidance,
Navigation, Control. Dynamic, pp.992-997, Jul-Aug. 2006.

[5] B. Sridhar, and P.K. Menon, “Comparison of Linear Dynamic Models
for Air Traffic Flow Management,” Proceeding. 16th Int. Federal
Automation, Control Conference (IFAC) World Congress, Prague,
Czech Republic, Jul.4-8, 2005.

[6] D. Sun, and A.M. Bayen, “Multicommodity Eulerian-Lagrangian
Large-Capacity Cell Transmission Model for En Route Traffic,” Jour-
nal of Guidance, Control and Dynamics. Vol. 31. No.3. May-Jun 2008.

[7] D. Sun, B. Sridhar, S. Grabbe, ”Disaggregation Method for an Aggre-
gate Traffic Flow Management Model,” Journal of Guidance, Control,
and Dynamics, Vol. 33, No. 3, May-June 2010.

[8] Sun, D., Clinet, A., and Bayen, A.M., “A Dual Decomposition
Method for Sector Capacity Constrained Traffic Flow Optimization,”
Transportation Research-Part B, 2010 (submitted for publication).

[9] Y. Cao, D. Sun, “ Performance Comparison of Two Aggregate Air
Traffic Models,” AIAA Conference on Guidance, Navigation and
Control, Toronto, Canada, August 2010.

[10] Rios, J., Ross, K., “Massively Parallel Dantzig-Wolfe Decomposition
Applied to Traffic Flow Scheduling,” AIAA Guidance, Navigation, and
Control Conference, Chicago, Illinois, August 10-13, 2009.

[11] Rios, J., Ross, K., “Parallelization of the Traffic Flow Management
Problem,” AIAA Guidance, Navigation and Control Conference and
Exhibit, Honolulu, Hawaii, August 18-21, 2008.

[12] “Facility Operation and Administration,” February 2010, Order JO
7210.3W, U.S. Department of Transportation, Federal Aviation Ad-
ministration.

2776

