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Abstract— This paper presents a new iterative learning
strategy to control wet clutches. These are complex hydraulic
systems that are commonly used in automatic transmissions
of heavy duty vehicles, and their control aims at performing
fast and smooth engagements. Learning is used to overcome
the need for complex models and to maintain performance
despite large variations in the system behavior. Classical it-
erative learning control techniques can however not be em-
ployed directly since reference trajectories corresponding to
the performance requirements are unavailable. Instead, the
presented iterative learning strategy translates the performance
requirements directly into an objective function and constraints,
hence constituting a numerical optimization problem. After
each engagement, this problem is solved in order to find
the control signal for the next engagement, using a piecewise
linear model for the clutch. Learning is included by using the
measured response data to update the models and constraints
used by the optimization problem.

The presented strategy is successfully validated on an experi-
mental test bench containing wet clutches. The learning process
is shown to converge towards the desired engagement quality,
and a demonstration is given of the robustness with respect to
changes in the operating conditions.

I. INTRODUCTION

Many mechatronic applications are characterized by com-
plex, non-linear behavior. An extensive effort is then required
to derive accurate models for the purpose of control. When
the behavior also changes over time, the models have to be
extended to account for this, or some tuning of the controllers
is needed to maintain robust performance.

When similar or repetitive operations have to be carried
out, learning can be introduced to address these issues. By
gradually improving the performance with respect to the
previous trial, good results can be obtained at the cost of
a convergence period.

It also becomes possible to operate during normal machine
operation, and automatically correct for variations in the
system behavior [1]. However, typical learning techniques
such as iterative learning control (ILC) focus on improving
tracking control, and are of little use when no appropriate
reference trajectories for the measured variables are avail-
able. Other techniques can be applied in these situations,
by parameterizing the control signal and then learning the
best parameter values using methods from machine and
reinforcement learning. However, since these techniques are
often model-free, long convergence periods can be required.
In addition, it is difficult to guarantee the performance during
this time, which is a disadvantage when the controllers have
to learn online.
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Fig. 1. Presented two-level control scheme: At the high level, the
models and constraints for the optimization problem are updated after each
engagement. At the low level, these are used to optimize the control signal
for the next engagement.

This paper considers the control of wet clutches. These
are mechanical devices often found in transmissions of
heavy duty applications, used to engage or disengage the
load from the engine. They are a good example of the
mechatronic applications described above, with non-linear
and time variable dynamics. Their behavior also exhibits
two distinct phases, each with different dynamics. For such
a clutch, the goal is to engage as fast as possible, without
causing discomfort for the operator. Since good reference
trajectories corresponding to these specifications are unavail-
able, classical learning techniques are difficult to implement.
In this paper an alternative approach is presented which uses
the performance specifications directly in order to formulate
a numerical optimization problem. Before each engagement,
this problem is solved to determine the control signal, using
a piecewise-linear model. Numerical values are assumed to
be known for the variables at the transitions and for all other
constraints. The optimized control signal is then applied to
the system, and the measured response is used to adapt
the models and constraints before the next control signal
is calculated. This results in a two level control structure,
as illustrated in figure 1, with the optimization procedure on
the low level, being fed models and constraints by recursive
estimators and learning laws on the high level.

The remainder of the paper is organized as follows: First,
wet clutches and their control are discussed in section II.
Next, more details on the different elements of the presented
strategy and their application to clutches are given, with
a discussion on the optimization procedure, the recursive
model estimation, and the learning laws for the constraints
in sections III, IV and V respectively. Section VI presents
an experimental validation of the learning strategy on a wet
clutch system. Finally, section VII ends the paper with some
conclusions and suggestions for further work.
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Fig. 2. Schematic representation of a wet clutch and its components.

II. WET CLUTCHES

Wet clutches are mechanical devices commonly found in
automatic transmissions of heavy duty applications. When
engaged, they connect the shafts from the engine and the
load and transfer power between them by means of friction.
As illustrated in figure 2, a first set of friction plates is
attached to the ingoing shaft via the drum while a second set
of plates is attached to the output shaft. Both sets are free to
translate axially, and can be pressed together by a hydraulic
piston. In order to engage it is thus required to increase the
pressure in the clutch chamber by controlling the current
to the electromechanical servovalve. The clutch and supply
line then fill up with oil and the pressure increases until it
is high enough to overcome the return spring force. As a
result, the piston starts to move towards the plates. During
this first part of the engagement, called the filling phase, no
torque is transferred. This only commences once the piston
makes contact with the plates. The clutch then enters the
slip phase, as the slip, defined as the difference in rotational
speeds between the shafts, decreases. When the pressure is
high enough the output shaft is accelerated until it rotates
synchronously with the input, and the slip reaches zero.

The requirements for a good wet clutch engagement are
two-fold. Firstly, the driver expects to get a response as
fast as possible. To this end, the output shaft has to start
accelerating and torque transfer has to begin as soon as
possible. Secondly, to avoid severe discomfort when the load
is accelerated it is required to obtain smooth profiles for
the torque and slip, and low absolute values of the jerk [2].
Sending the maximal control current to the servovalve then
becomes impossible, as brutal, uncomfortable engagements
would be obtained. Instead, during the filling phase, when
the piston is traveling freely and no torque is transferred, it
is desired to move the piston very rapidly to a position just
before the friction plates. Before contact is made, it has to be
slowed down, and during the remainder of the engagement
the current has to be regulated carefully to ensure a smooth
engagement.

There are three main difficulties when controlling wet
clutches. First off, their dynamic behavior is non-linear and
difficult to model accurately. During an engagement, two
distinctly different phases can be observed, with a non-linear
transition between the two. Even within each phase, the
dynamics remain non-linear due to phenomena like flow
through small orifices, non-linear springs, friction, etc. A
second issue is the strong variation of the dynamics over
time, due to wear and variations in operating conditions like
the load and oil temperature. This varying behavior makes

robust control of wet clutches a challenging problem [3].
A last difficulty for clutch control is the lack of a piston
displacement sensor. The presence of such a sensor would
simplify the control considerably, as reference trajectories for
the piston displacement can easily be derived and the use of
feedback or ILC [4] then becomes possible. Typical trans-
missions however are only equipped with pressure gauges in
the line to the clutch, and incremental encoders to measure
the rotational speeds of the shafts.

Wet clutch control has already been studied by several
authors. Some have derived full physical models and applied
them to the design of feedback controllers in [5], [6], [7]
and feedforward controllers in [8], [9]. To cope with the
non-linear behavior at the transition from filling to slip, [6]
uses fixed feedforward signals to bring the clutch into the
slip phase, before activating a feedback controller. While this
already reduces the complexity of the required models, a
considerable amount of online tuning is still necessary to
guarantee good performance under all operating conditions.
In a previous work by the author [10], these issues are already
addressed using a learning technique similar to the presented
one. However, only the filling phase of a clutch engagement
was considered. In order to optimize the entire engagement,
this is now extended to both phases, significantly adding to
the complexity of the controller. In addition, a more complete
and formal description of the control strategy is given.

III. LOW LEVEL: OPTIMIZATION PROBLEM

In order to apply the proposed control approach to a wet
clutch engagement, a numerical optimization problem has
to be defined. The goal is to minimize the time required
before the load is synchronized, without exceeding a given
value of the jerk and without violating any other constraints.
To bypass the difficulties related to the transition between
filling and slip phases, the problem is reformulated slightly.
First, the time is minimized required to reach a transitional
state, at which the clutch makes contact with the plates. Next,
starting from this state, the remaining time before the load is
completely synchronized is minimized as well. A good value
of this transitional state is learned by the high level learning
law discussed in section V. In order to solve the optimization
problem, several models are required to simulate the system
behavior. A first set of models relate the control current u
to the measurable pressure p and normalized slip s, with
separate models for the filling and slip phase respectively.
The estimation of these models is discussed in section IV.
Since the piston displacement z is not measurable, section V
discusses another iterative technique to estimate this model.

As the problem is solved numerically, the duration of
the control signal before the transition is reached can be
denoted by its number of samples K1, and the duration of
the following synchronization can be denoted by K2. The
optimization problem then has as its goal to minimize the
sum K = K1+K2 in order to minimize the total engagement
time. Since K1 and K2 are not known beforehand, they
are variables for the optimization problem. As this results
in a non-convex problem that is difficult to solve, some
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reformulations are introduced. The first is a feasibility search
which is performed to find K1 [11]. For a fixed duration
K1, it is checked if the problem can be solved and solutions
exist. If so, K1 is reduced, otherwise it is increased. Using
a bisection algorithm the lowest value K∗

1 can then be
found by solving a limited number of simpler subproblems.
The value of K2 is also not minimized directly, but a
different workaround is utilized. A fixed time horizon K∗

2 is
considered, sufficiently large to ensure load synchronization
can be obtained without violating the system constraints, and
the weighted sum of the absolute differences between the
slip and zero is minimized. The optimization problem thus
attempts to get the slip to zero as fast as possible.

This results in a series of convex optimization problems
that have to be solved. Each has a different K1 but the same
large value of K∗

2 , and is given by

min
u(:),x(:)

K∑
k=1

(∣∣s(k)− 0
∣∣ + β

∣∣u(k + 1)− u(k)
∣∣), (1a)

s.t.
x(k + 1) = A1x(k) +B1u(k), k = 1 : K1 − 1, (1b)(
p(k)
z(k)

)
= C1x(k) +D1u(k), k = 1 : K1 − 1, (1c)

ż(K1 −N) ≤ ε, (1d)
z(K1 −N) = zfinal, (1e)
p(K1) = p1, (1f)
x(k + 1) = A2x(k) +B2u(k), k = K1 : K, (1g)p(k)z(k)
s(k)

 = C2x(k) +D2u(k), k = K1 : K, (1h)∣∣∣∣ṡ(k)s̈(k)

∣∣∣∣ ≤ (ṡmax

s̈max

)
, k = K1 : K, (1i)

s(k) ≥ 0, k = K1 : K, (1j)
ulb ≤ u(k) ≤ uub, k = 1 : K, (1k)
ylb ≤ Cx(k) +Du(k) ≤ yub, k = 1 : K. (1l)

As explained, the cost function (1a) penalizes the difference
between the slip and zero. Also added is a regularization
term with a small weight β, introduced to avoid excessive
spikes in the control signal. The dynamics for the first phase
without torque transfer are described by A1, B1, C1 and D1

in (1b) and (1c), while A2, B2, C2 and D2 in (1g) and (1h)
do the same for the second phase. To obtain a good transition
between the two, (1d) and (1e) force the piston to slow down
before making contact with the plates, a fixed number of
samples N before the transition. At the transition itself the
pressure is constrained by (1f) such that enough force on the
plates is built up to transfer a significant amount of torque.
Next, constraints (1i) and (1j) are included to ensure the slip
decreases as fast as possible with limited jerk. Constraints
(1k) and (1l) finally provide upper and lower bounds during
both phases for the current, pressure and position.

The resulting optimization problems (1) are linear and
can be solved with standard solvers. In this paper MOSEK

is used to solve the series of problems is in less than
1 s. However, since the problems are solved in between
engagements no attempts have been made to further reduce
the calculation time.

IV. HIGH LEVEL: RECURSIVE MODEL ESTIMATION

Models need to be supplied to the low level optimization
problem, such that the output variables can be predicted for a
given control input. To avoid having to derive complex and
accurate models a priori, a recursive estimation scheme is
employed. After each engagement the batch of measured data
is used to update the model parameters, while also taking into
the account the previous models. The estimation is performed
using data measured online, using real control signals. As a
result, simplified models with limited ranges of validity can
be tuned to predict the behavior precisely for these types
of control signals, and yield a good prediction accuracy. If
needed, a piecewise structure can be used, using a succession
of simplified models instead of a single more complex one.

In this section, models for the pressure and slip are
discussed, as sensors are available to compare the predicted
variables with the measured ones. This is not the case for
the piston displacement, which is modeled in a different
way discussed in section V. For the recursive estimation
of the pressure and slip models, many different techniques
and model structures can be used. Most existing recursive
estimators however are aimed at calculating a single param-
eter update after each sample. In those cases the dataset is
typically very small, while the available timeframe to find
the update is very short. In the proposed situation an entire
batch of data is available after each iteration, and plenty of
calculation time before the next iteration. With this in mind, a
novel batch recursive estimator for discrete time output error
models has been derived in [10]. It has similar properties to
the regular recursive output error estimator described in [12].
The main difference is that many consecutive parameter
updates are calculated for each batch of data instead of just
one. An improved convergence rate is thus obtained at the
cost of an increase in computational load.

This method is applied to the estimation of three different
models. A first model predicts the pressure during the
filling phase, while the other two predict the pressure and
slip respectively during the slip phase. Each of the three
estimation algorithms uses only a part of the measured data,
corresponding to the conditions under which they will be
used to predict the outputs in the optimization problem. The
model structures are fixed a priori. In this case, the models
are of third order, with the same small delay.

V. HIGH LEVEL: ITERATIVE LEARNING LAWS

A. Iterative learning of position model

Since no position sensor is available, a regular recursive
identification of the model relating control current and piston
displacement can not be applied. It is however possible to
estimate the time when the piston makes contact with the
plates, based on a change in the measured rotational speeds
when torque transfer commences. This value tstart can be
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Fig. 3. Dimensionless learning function C of the high level controller.

compared with the contact time predicted in the optimization,
t∗start = (K∗

1 −N)Ts. Based on the difference, the position
model is then updated such that it manages to predict the
contact time more accurately.

In this paper, a model with a first order low pass behavior
is used. The pole is fixed at 1Hz, based on measurements
performed on a similar test setup equipped with a position
sensor. The gain γ of the model is a variable that is
adapted by the high level controller to improve the predic-
tion accuracy, rescaling the model to better correspond to
the measured contact time. This is done according to the
following ILC-type learning law:

1

γi+1
=

1

γi
+ ρ C

( t∗start − tstart
σ

)
. (2)

In this equation, C is a dimensionless saturated function, and
ρ and σ are gains used to translate the error in time to a
correction on the inverse of the dimensionless gain γ. In
this case, 1/γ is updated instead of γ because 1/γ can be
interpreted as a measure for the travel distance.

The profile of C, shown in figure 3, is chosen to bound
the corrections, but also to ensure that small deviations do
not lead to unnecessary changes. When γ remains fixed,
the control signal for the fist phase remains more or less
unchanged, which makes convergence easier for the latter
parts of the engagement process.

Since γ can be used to capture both the uncertainty on
the travel distance as on the dynamics, zfinal in (1e) can be
chosen freely.

B. Iterative learning of pressure setpoint

When the pressure and position models predict the system
behavior sufficiently accurate, the optimized control signal
gently brings the piston into contact with the plates at the
end of the filling phase. After K1 samples, constraint (1f)
forces the pressure to be equal to the transitional pressure
p1. Here, the value of p1 is chosen to ensure that the slip
phase has certainly begun at this point, and the slip is already
decreasing. The slip model in (1h) is then only required to
predict the slip during the remainder of the engagement, and
the transition can be omitted. This makes it easier to find a
simple but accurate model. Therefore, it is chosen to learn
the value of p1, such that the normalized slip already drops
down to 0.9 after K1 samples. The difference between the
observed value s1 and 0.9 is used to update the transitional

Electromotor

Controlled transmission Load transmission

Flywheel

Fig. 4. Test setup: (from left to right) electromotor, controlled transmission,
torque sensor, load transmission and flywheel.

pressure p1, using an ILC-type learning law similar to (2):

p1,i+1 = p1,i + τ C
(s∗1 − s1

ς

)
. (3)

In this equation, τ and ς are gains that translate the error in
slips to a pressure correction in bar. This law ensures that the
transitional pressure p1 is adapted to the load automatically,
without measuring the transferred torque. When for example
a heavier load has to be accelerated, more torque is needed
to get the desired slip reduction, and hence a higher value
of the pressure p1 will be obtained.

VI. EXPERIMENTAL VALIDATION

The developed control strategy has been validated on
the experimental test bench shown in figure 4. It consists
of an SOHB TE10 transmission, containing the wet clutch
which is to be controlled. On the left, an induction motor
(30 kW) is connected to drive the system. On the right,
the combination of a SOHB RT20000 transmission and a
flywheel (2.5 kgm2) are used to vary the load observed by
the controlled transmission. A sensor is installed to measure
the transferred torque, but it is only used to illustrate the
engagement quality, as this type of sensor is usually not
available on industrial transmissions. The experiments are
performed with an engine that is controlled at a fixed speed,
while at each trial the output is accelerated from zero up to
synchronous speed by engaging the clutch for first gear in
the controlled transmission. The calculations are performed
in MATLAB, using MLIB to communicate with a dSPACE
1103 control board.

A. Performance analysis

In a first run of experiments the operating conditions
are fixed to evaluate the learning process and the achieved
performance, with the oil cooled to 40 ◦C and the observed
inertia set to 8.4 kgm2. The control is initialized with
suboptimal values for γ and p1. For the recursive estimators
a feedforward engagement is performed, such that a first
estimation of the model parameters for all three models can
be made. Using these newly estimated models and the initial
values for γ and p1, the first control signal is optimized and
applied to the system.

The results obtained after applying this first control signal
are shown by the black lines in figure 5, where from
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Fig. 5. Improving performance during learning process for engagements with an inertia of 8.4 kgm2 and oil at 40 ◦C. Shown from left to right are the
pressure, slip and torque during iterations 1 (black), 3 (grey) and 10 (dashed).
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Fig. 6. Evolution of 1/γ (black) and p1 (grey) as a function of iterations.
Both are iteratively adapted by the high level controller based on the
observed performance.

left to right the pressure, slip and torque are shown. The
torque rapidly increases to a high initial value, but then
dips before it increases again. As a result, the slip changes
abruptly yielding a high absolute value of the jerk, and hence
discomfort for the operator. Afterwards, the clutch opens
again as the pressure is too low and hence the torque is
insufficient to synchronize the load.

Over the course of the following engagements the high
level controller compensates for this and the performance
improves. This is illustrated by the grey lines in figure 5,
showing the performance during the 3rd iteration. The torque
peak has almost been removed, but the clutch is still not
engaging as desired. The dashed lines show the results after
10 iterations, when the learning process has converged. A
good engagement quality is now obtained, with smooth
profiles for both the slip and torque, ensuring operator
comfort without reducing the responsiveness of the system.

One reason for the poor initial performance are the badly
selected values for γ and p1. Figure 6 shows their evolution
as a function of the number of iterations. Since the initial
value for γ is too low, the true piston displacement is under-
estimated and the piston has already bumped into the plates
before any attempt is made to slow it down. To compensate,
the high level controller increases the value of γ such that
the piston displacement and the moment when contact with
the plates occurs are predicted more accurately. At the same
time, the value of p1 is adapted based on the measured slip, to
ensure enough torque is transferred to accelerate the load and
reach a slip of 0.9. As can be seen from figure 6, the value
of p1 is reduced, lowering the pressure acting on the friction
plates and hence reducing the transferred torque during the
initial parts of the engagement. Both parameters converge by
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Fig. 7. Increasing prediction accuracy as a function of iterations. The top
figure shows the measured and predicted pressures during the 1st (dashed
black) and 10th iteration (solid black). The bottom figure shows the same
for the measured and predicted slips.

iteration 10. This evolution also illustrates the difficulty in
choosing good values a priori, as relatively small changes
can change the performance drastically.

Another reason for the poor initial performance is the
inaccuracy of the models used to predict the pressure and
slip. Their first estimate is based on data from a feedforward
run, different from the control signals applied after the
optimization. The validity of the models is thus limited. The
black lines in the top part of figure 7 illustrate this for the
pressure, showing a large deviation between the measured
(solid) and predicted values (dashed). The accuracy is even
worse for the slip, shown in the bottom part of figure 7.
Here, the moment when the slip starts decreasing is predicted
incorrectly, and consequently the entire predicted profile dif-
fers strongly from the measured one. Over the course of the
next iterations, the models are re-estimated based on more
representative data, and the prediction accuracy increases.
When the values for γ and p1 converge by iteration 10,
the conditions for the model estimation remain unchanged
and the models converge as well. The prediction accuracy
at this time is indicated by the grey lines in figure 7, where
the deviations between the measured (solid) and predicted
(dashed) values are reduced significantly.
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Fig. 8. Demonstration of robustness. The performance after convergence is shown for the test case with an inertia of 8.4 kgm2 and oil at 40 ◦C (black),
an inertia of 8.4 kgm2 and oil at 70 ◦C (grey) and an inertia of 28.6 kgm2 and oil back at 40 ◦C (dashed).

B. Robustness analysis
To demonstrate the robustness to changes in the oil tem-

perature and load, two more tests are performed. First, the
same load is used but the oil temperature is increased to
70 ◦C. Next, the oil is cooled to 40 ◦C again but the observed
inertia is increased to 28.6 kgm2. The controllers are allowed
time to converge and the results after convergence are shown
in figure 8. For comparison, the solid black line also shows
the performance of the 10th iteration at the fixed conditions
of the previous section.

The performance at the elevated oil temperature is shown
by the grey lines in figure 8. The main difference with
respect to the case at 40 ◦C is the shorter duration of the high
pressure part in the beginning of the engagement. The lower
viscosity at higher oil temperatures means the oil flows more
easily into the clutch and less effort is required displace the
piston. Afterwards, the signals look similar since the amount
of flow is small once the piston reaches the plates, and the
dependency on the oil temperature is low.

Figure 8 also shows the results of the engagements with
the increased inertia. The pressure and torque differ signif-
icantly from those with the lower inertia, as more torque is
needed to accelerate the larger load, and hence more pressure
has to act on the friction plates. In order to compensate, the
high level controller automatically increases p1 and adapts
the slip model. As a result, the observed slip profile looks
similar to the one at the lower inertia.

VII. CONCLUSION

This paper proposes an iterative learning strategy for
wet clutch control aimed at fast and smooth engagements.
The control signals are found by solving an optimization
problem of which the objective function and constraints are
a direct translation of the performance requirements. After
each engagement, the models and constraints are updated
using the measured data and the optimization problem is
solved again to generate the control signal for the next. This
strategy is an alternative to classical iterative learning control,
aimed at those applications where the requirements cannot
readily be translated into appropriate reference signals or
where the required sensors are not available.

An experimental validation is presented, showing how the
models and constraints evolve, and how the engagement
quality improves as a result. The robustness with respect to
variations in the operating conditions is also demonstrated.

In the future, the proposed approach will be applied to
gearshifts, where two clutches are controlled simultaneously,
such that one engages while another disengages.
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