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Abstract— This paper presents a new estimation algorithm
called cubature information filtering for nonlinear systems. The
proposed algorithm is developed from an extended information
filter and a recently developed cubature Kalman filter. Unlike
the extended Kalman filter, the proposed filter does not require
the evaluation of Jacobians during state estimation. The efficacy
of the proposed algorithm is demonstrated by simulation
examples on frequency demodulation and localization problem
and is compared with unscented information filtering.

I. INTRODUCTION

Nonlinear state estimation has been an active research

area for several decades. State estimation plays a major

role in several practical applications like fault detection

and isolation, guidance, navigation, control system design,

communication, etc., where either the sensors are expensive

or it is difficult to measure the states. The extended Kalman

filter (EKF) has been an important approach for nonlinear

state estimation over the last five decades. An algebraically

equivalent form of EKF, the extended information filter

(EIF), has been proposed in the literature to cope with some

of the issues of EKF [13,5]. In EIFs, the parameters of

interest are the information states and the inverse of covari-

ance rather than states and covariance. Information filters

are easy in initialization compared to conventional Kalman

filters and the update stage is computationally economic. EIF

has indeed several advantages over EKF; for more details

see [5,13]. But, both EKFs and EIFs are only suitable for

‘mild’ nonlinearities where the first-order approximations of

the nonlinear functions are suitable and require analytical

Jacobians for state estimation. To overcome these limitations,

an unscented Kalman filter (UKF) has been proposed [15],

which has the ability to deal with some of the issues of EKF.

UKF uses the deterministic sampling approach to capture the

mean and covariances with sigma points and in general been

shown to perform better than EKF in nonlinear estimation

problems. There are a few other nonlinear estimation tech-

niques found in the literature, namely, Rao-Blackwellised

particle filters (RBPF) [7], which are improvised version of

particle filters, Gaussian filters [8], state dependent Riccati

equation (SDRE) filters [9], sliding mode observers [10], etc.

In the recent literature [1], the cubature Kalman filter

(CKF) has been proposed for nonlinear state estimation. CKF

is a Gaussian approximation of Bayesian filter, but provides
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a more accurate filtering estimates than existing Gaussian

filters. CKF is shown to be more efficient than UKF [1]. The

applicability and effectiveness of CKF for sensor data fusion

for positioning is given in [12]. Our work is motivated from

[1], where CKF is developed as the closest known direct

approximation to the Bayesian filter and from [2], in which

the unscented transformation in sigma point filters is fused

into the EIF architecture for multiple sensor fusion.

In this work, we propose a cubature information filter by

embedding CKF with EIF architecture for nonlinear systems

and demonstrate its applicability for estimating the frequency

modulation (FM) model states and localization problem.

The rest of the paper is structured as follows. Section II

includes the preliminaries of the EIF and CKF, and Section

III describes the proposed cubature information filtering.

Section IV is devoted to numerical simulations and Section

V concludes the paper.

II. EXTENDED INFORMATION FILTER AND CUBATURE

KALMAN FILTER

This section presents a brief introduction to EIF and CKF.

For detailed formulation and derivation of these filtering

algorithms, please see for example [5] for EIF and [1] for

CKF.

A. Extended information filter

EIF is an algebraic equivalent of EKF, in which the pa-

rameters of interest are information states and the inverse of

covariance matrix (information matrix) rather than states and

covariance. EIF can be represented by a recursive process of

time update and measurement update. The EIF equations are

summarized below.

Consider the discrete nonlinear process and measurement

models as

xk = f(xk−1, uk−1) + wk−1 (1)

zk = h(xk, uk) + vk (2)

where k is a current time index, xk is a state vector, uk is a

control input, zk is the measurement, wk−1 and vk are the

process and observation noises, respectively. The noises are

assumed to be Gaussian-distributed random variables with

zero mean and covariances of Qk−1 and Rk. The predicted

information state vector and the information matrix are given

as

ŷk|k−1 = Yk|k−1x̂k|k−1 (3)

Yk|k−1 = P−1
k|k−1 (4)

= [∇fxY−1
k−1|k−1∇fTx + Qk−1|k−1]

−1
(5)
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and the updated information state vector and the information

matrix are

ŷk|k = ŷk|k−1 + ik (6)

Yk|k = Yk|k−1 + Ik (7)

The information state contribution and its associated infor-

mation matrix are given

ik = ∇hT
x R−1

k [νk +∇hxx̂k|k−1] (8)

Ik = ∇hT
x R−1

k ∇hx (9)

where

νk = zk − h(x̂k|k−1)

and ∇fx, and ∇hx are the Jacobians of f and h evaluated at

x.

Initialization in the information space is easier than in

EKF and the update stage of EIF is computationally simpler

than EKF. Occasionally, EIF is shown to be more efficient

than EKF. But some of the drawbacks inherent in the EKF

still affect the EIF. These include the nontrivial nature

of the Jacobian matrix derivation (and computation) and

linearization instability [5].

B. Cubature Kalman filter

The use of EKF is not the best choice for many practical

applications as it works well only in a ‘mild’ nonlinear

environment, and hence can degrade the performance. The

CKF is the closest known approximation to the Bayesian

filter that could be designed in a nonlinear setting under the

Gaussian assumption. Unlike the EKF, CKF filter does not

require evaluation of Jacobians during the estimation process.

It is an appealing option for nonlinear state estimation when

compared with EKF or UKF [1]. The basic steps required

for CKF are described in this section. One can see [1] for

more details.

The key assumption of the cubature Kalman filter (CKF) is

that the predictive density p(xk|Dk−1), where Dk−1 denotes

the history of input-measurement pairs up to k − 1, and the

filter likelihood density p(zk|Dk) are both Gaussian, which

eventually leads to a Gaussian posterior density p(xk|Dk).
Under this assumption, the cubature Kalman filter solution

reduces to how to compute their means and covariances more

accurately.

Consider the nonlinear system with additive noise defined

by process and observation models in (1) and (2). The

prediction and update stage for CKF is given below.

1) Prediction: In the prediction step, the CKF computes

the mean x̂k|k−1 and the associated covariance Pk|k−1 of

the Gaussian predictive density numerically using cubature

rules. The predicted mean can be written as

x̂k|k−1 = E[f(xk−1, uk−1) + wk−1|Dk−1] (10)

Since wk is assumed to be zero-mean and uncorrelated

with the measurement sequence, we get

x̂k|k−1 = E[f(xk−1, uk−1)|Dk−1] (11)

=

∫

Rn

f(xk−1, uk−1)p(xk−1|Dk−1)dxk−1(12)

=

∫

Rn

f(xk−1, uk−1) (13)

N (xk−1; x̂k−1|k−1, Pk−1|k−1)dxk−1

Similarly, the associated error covariance can be repre-

sented as

Pk|k−1 = E[(xk − x̂k|k−1)(xk − x̂k|k−1)
T |zk−1] (14)

=

∫

Rn

f(xk−1, uk−1)f
T (xk−1, uk−1)N (xk−1;

x̂k−1|k−1, Pk−1|k−1)dxk−1 − x̂k|k−1x̂
T
k|k−1 +Qk−1 (15)

2) Update: The predicted measurement density can be

represented by

p(zk|Dk−1) = N (zk; ẑk|k−1, Pzz,k|k−1) (16)

where the predicted measurement and associated covariance

are given by

ẑk|k−1 =

∫

Rn

h(xk)N (xk; x̂k|k−1, Pk|k−1)dxk (17)

Pzz,k|k−1 =

∫

Rn

h(xk)h
T (xk)N (xk; x̂k|k−1, Pk|k−1)dxk

−ẑk|k−1ẑ
T
k|k−1 +Rk (18)

and the cross-covariance is

Pxz,k|k−1 =

∫

Rn

xkhT (xk)N (xk; x̂k|k−1, Pk|k−1)dxk

−x̂k|k−1 ẑ
T
k|k−1 (19)

Once the new measurement zk is received, the CKF

computes the posterior density p(xk|Dk) yielding

p(xk|Dk) = N (xk; x̂k|k, Pk|k), (20)

where

x̂k|k = x̂k|k−1 +Gk(zk − ẑk|k−1) (21)

Pk|k = Pk|k−1 −GkPzz,k|k−1G
T
k (22)

with the Kalman gain given as

Gk = Pxz,k|k−1P
−1
zz,k|k−1 (23)

It can be seen that in the above prediction and update

equations, the Bayesian filter solution reduces to computing

the multi-dimensional integrals, whose integrands are of the

form nonlinearfunction × Gaussian. The heart of the

CKF is to find the multi-dimensional integrals using cubature

rules.
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3) Cubature Rules: The cubature rule to approximate an

n-dimensional Gaussian weighted integral is as follows:

∫

Rn

f(x)N (x;µ, P )dx ≈ 1

2n

2n∑

i=1

f(µ+
√
Pξi) (24)

where
√
P is a square-root factor of the covariance P, and

satisfies the relation P =
√
P
√
P

T
; the set of 2n cubature

points are given by {ξi} where ξi is the i − th element of

the following set:

√
n








1
0
...

0


 , . . . ,




0
...

0
1


 ,




−1
0
...

0


 , . . . ,




0
...

0
−1








(25)

These cubature rules are required to numerically evaluate

the multi-integrands in the prediction and update stage of the

CKF. Finally, the evaluated mean and covariance matrices

from (13), (15) and (24) are

x̂k|k−1 =
1

2n

2n∑

i=1

X
∗
i,k|k−1 (26)

Pk|k−1 =
1

2n

2n∑

i=1

X
∗
i,k|k−1X

∗T
i,k|k−1 − x̂k|k−1x̂

T
k|k−1 +Qk−1

(27)

and the predicted measurement and its associated covariances

are given by

ẑk|k−1 =
1

2n

2n∑

i=1

Zi,k|k−1 (28)

Pzz,k|k−1 =
1

2n

2n∑

i=1

Zi,k|k−1Z
T
i,k|k−1 − ẑk|k−1ẑ

T
k|k−1 +Rk

(29)

Pxz,k|k−1 =
1

2n

2n∑

i=1

Xi,k|k−1Z
T
i,k|k−1 − x̂k|k−1ẑ

T
k|k−1 (30)

where X, Z and X
∗ are cubature points of state and measure-

ment equations and propagated cubature points, respectively.

See [1] for a detailed problem formulation and a solution

for CKF.

III. THE CUBATURE INFORMATION FILTER

This section describes the CIF algorithm, which uses CKF

in an EIF framework. The CIF algorithm is summarized in

Algorithm 1. The factorization of the error covariance matrix,

evaluation of cubature points and propagated cubature points

for the process model is required for CIF, and is shown in

(31-33).

Let the information state vector and information matrix

be given by ŷk|k−1 and Yk|k−1. The factorization of the

inverse information matrix is required to evaluate S, which

is required for cubature points propagation.

[Yk−1|k−1]
−1

= Sk−1|k−1S
T
k−1,k−1 (31)

The evaluation of cubature points and propagated cubature

points can then be given as

Xi,k−1|k−1 = Sk−1|k−1ξi + x̂k−1|k−1 (32)

X
∗
i,k−1|k−1 = f(Xi,k−1|k−1, uk−1) (33)

where, i = 1, 2, ..., 2n and n is the size of the state vector.

From (4) and (27), and (3) and (26)

Yk|k−1 = P−1
k|k−1

=

[
1

2n

2n∑

i=1

X
∗
i,k−1|k−1X

∗T
i,k−1|k−1 − x̂k|k−1x̂

T
k|k−1 +Qk−1

]−1

ŷk|k−1 = P−1
k|k−1x̂k|k−1

= Yk|k−1x̂k|k−1

=
1

2n

[
Yk|k−1

2n∑

i=1

X
∗
i,k−1|k−1

]

In the measurement update of CIF, the first two steps

involve the evaluation of propagated cubature points and the

predicted measurement and are given below.

The propagated cubature points for measurement model

can be evaluated as

Zi,k|k−1 = h(Xi,k|k−1, uk) (34)

and the predicted measurement can be given as

ẑk|k−1 =
1

2n

2n∑

i=1

Zi,k|k−1 (35)

The information state contribution and its associated in-

formation matrix in (8) and (9) are explicit functions of the

linearized Jacobian of the measurement model. But the CKF

algorithm does not require the Jacobians for measurement

update and hence it cannot be directly used in the EIF

framework. However, by using the following linear error

propagation property [11, 2], it is possible to embed the CKF

update in the EIF framework. The linear error propagation

property for the error covariance and cross covariance can

be approximated as

Pzz,k|k−1 ≃ ∇hxPk|k−1∇hT
x (36)

Pxz,k|k−1 ≃ Pk|k−1∇hT
x (37)

By multiplying P−1
k|k−1 and Pk|k−1 on the RHS of (8) and

(9) we get

ik = P−1
k|k−1Pk|k−1∇hT

x R−1
k [νk +∇hxPT

k|k−1P−T
k|k−1x̂k|k−1]

(38)

Ik = P−1
k|k−1Pk|k−1∇hT

x R−1
k ∇hxPT

k|k−1P−T
k|k−1 (39)

By using (36) and (37) in (38) and (39) we get

Ik = P−1
k|k−1Pxz,k|k−1R−1

k PT
xz,k|k−1P−T

k|k−1 (40)

ik = P−1
k|k−1Pxz,k|k−1R−1

k [υk + PT
xz,k|k−1P−T

k|k−1x̂k|k−1]
(41)

where

Pxz,k|k−1 =
1

2n

2n∑

i=1

Xi,k|k−1Z
T
i,k|k−1 − x̂k|k−1ẑ

T
k|k−1
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The updated information state vector and information matrix

for the CIF can be obtained by using Ik and ik from (40)

and (41) in (6) and (7).

Algorithm 1 Cubature Information Filter

Time Update

1: Evaluate the information matrix and the information state vector

Yk|k−1 = P
−1

k|k−1

ŷk|k−1
= Yk|k−1

1

2n

2n∑

i=1

X
∗
i,k−1|k−1

where,

Pk|k−1 =
1

2n

2n∑

i=1

X
∗
i,k|k−1

X
∗T
i,k|k−1

− x̂k|k−1x̂
T
k|k−1

+Qk−1

Measurement Update

1: Evaluate the information state contribution and its associated informa-
tion matrix

Ik = Yk|k−1Pxz,k|k−1R
−1

k
PT
xz,k|k−1

YT
k|k−1

ik = Yk|k−1Pxz,k|k−1R
−1

k
[υk + PT

xz,k|k−1
YT
k|k−1

x̂k|k−1]

where

Pxz,k|k−1 =
1

2n

2n∑

i=1

Xi,k|k−1Z
T
i,k|k−1

− x̂k|k−1 ẑ
T
k|k−1

2: The estimated information vector and information matrix of CIF are
given as:

Yk|k = Yk|k−1 + Ik

ŷk|k = ŷk|k−1
+ ik

Recovery of Estimated State

x̂k|k = Y
−1

k|k
ŷk|k

The derived CIF algorithm has some of the common

properties of both CKF and EIF. For example, it has a

derivative free filter, state propagation is in the information

space, easy initialization of the filter, etc.

IV. APPLICATIONS OF CIF

In order to show the effectiveness of the proposed al-

gorithm, two examples are included. First example deals

with estimation of frequency and phase of the frequency

demodulation model, and the second example deals with

simultaneous localization and mapping (SLAM).

A. Frequency Demodulation

Consider the case of demodulating the frequency modula-

tion (FM) signal. The discrete nonlinear FM model [16] can

be given by
[

ωk

ϕk

]
=

[
µωk−1

arctan(λϕk−1 + ωk−1)

]
+ [w] (42)

and the output model can be given by

[
yk

]
=

[
cos(ϕk)
sin(ϕk)

]
+ [v] (43)

The two states ω and ϕ, represents the frequency and

the phase of the signal, y denotes the observations, and
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Fig. 1. Error of the FM model states using UIF and CIF. Solid line
and dotted lines represents error in states using CIF and UIF algorithms,
respectively.

w and v are the process and measurement noises with

covariances Q and R. The parameters used in the simulations

are µ = 0.9, λ = 0.99, and standard deviations of process

and measurement noises are 1 and 0.002, respectively. By

choosing the standard deviation of process noise as 1, the

states behaviour is substantially nonlinear. The objective is to

estimate the frequency message ωk from the noisy in-phase

and quadrature observations yk [16]. The estimation of the

FM model states is done by using two estimation algorithms,

unscented information filtering (UIF) algorithm [2] and the

proposed CIF. The UIF is the closest counterpart of CIF, as

both are Bayesian filters built in Gaussian domain and both

uses the information domain for the state propagation. To

compare these two state estimation algorithms for FM model,

100 independent Monte-Carlo simulations were performed,

and the average of these 100 simulations have considered

for the analysis. All the filters were initialized randomly.

The tuning parameters used for UIF filter are α = 0.001,

κ = 0, and β = 3. One can note that, CKF or CIF algorithms

does not require these tuning parameters for state estimation.

The Fig.1 shows the error between the actual states and

the estimated states. One can see that the average error in

both the states are slightly higher in case of UIF algorithm

as compared to the proposed CIF algorithm. It is hard to

see the effectiveness of the proposed algorithm from Fig.1.

Hence, we have used the root-mean square error (RMSE) of

the frequency and phase (of the FM model) as performance

metric to compare the proposed method with UIF. Fig.2

shows the RMSE of both the algorithms, once can see that

the overall RMSE of the UIF is higher than the proposed

CIF algorithm. The average values of RMSE (over simulated

time interval) are 4.0541 and 4.4337 using CIF and UIF

algorithms, respectively.

3612



0 200 400 600 800 1000
3

3.5

4

4.5

5

5.5

Time (s)

R
M

S
E

 o
f 

ω
 a

n
d

 φ

 

 
CIF UIF

Fig. 2. RMSE of ω and ϕ using UIF and CIF. Solid line represents RMSE
using CIF and dotted line represents RMSE using UIF.

B. SLAM

SLAM is the process of simultaneously building a map

and locating a vehicle in it, and can be used for autonomous

navigation [3]. SLAM can be performed by storing the

vehicle poses and landmarks in a single state vector, and

estimating it by a recursive process of prediction and update.

In SLAM, the vehicle typically starts at an unknown location

without a priori knowledge of landmark locations. The vehi-

cle is mounted with a sensor which is capable of identifying

the landmarks. The most common sensor used for SLAM

is a laser, which takes the observation of the landmarks

and outputs the range and bearing of the landmarks. While

continuing in motion, the vehicle builds a complete map of

landmarks and uses these to provide estimates of the vehicle

location. By using the relative position between the vehicle

and landmarks in the environment, both the positions of the

vehicle and the positions of the features or landmarks can be

estimated simultaneously. The basic EKF SLAM package is

available in [17], and is modified for this work. The different

models used for the SLAM application are given below.

1) Vehicle Model: The vehicle model used in this paper is

the common bicycle model, assuming that the control inputs

are given by the wheel velocity, Vk−1, and steering angle,

γk−1 and L is the distance between the front or rear set of

wheels and the time interval ∆T denotes the time from k−1
to k [6], [4]. The vehicle’s state vector represents its location

and orientation.

[
xvk

]
=




xvk−1
+∆TVk−1 cos(φvk−1

+ γk−1)
yvk−1

+∆TVk−1 sin(φvk−1
+ γk−1)

φvk−1
+∆TVk−1

sin (γk−1)
L




In the above equations, the process noise wk−1 is eliminated.

One popular way to include the process noise in the process

model is to insert the noise terms into the control signal u

such that

uk−1 = unk−1
+ wk−1 (44)

where unk−1
is a nominal control signal and wk−1 is a

zero mean Gaussian distribution noise vector with covariance

matrix, Q.

2) Landmark Model: In the context of SLAM, a landmark

is a feature of the environment that can be observed using

vehicle’s sensor. Different kinds of landmark are used in

SLAM like point landmarks, corners, lines, etc. In our case,

we assumed the landmarks as point features. For the SLAM

algorithm, the feature states are assumed to be stationary.

Landmarks can be represented by the following expression

xmk
= xmk−1

(45)

The SLAM map is defined by an augmented state vector

formed by the concatenation of the vehicle and feature map

state.

xa(k + 1) =
[

xTvk xT
m(k+1)

]T
(46)

3) Sensor Model: In this paper, it is assumed that the

sensor is equipped with a range-bearing sensor that takes

observations of the features of the environment. Laser and

sonar sensors are two examples of range-bearing sensors that

can be used on a vehicle. Given the current vehicle position

xvk and the position of an observed feature xmk
, the range

and bearing can be modelled as

zik =




√
(xvk − xik)

2
+ (yvk − yik)

2

arctan
yv

k
−yi

k

xv
k
−xi

k


+

[
vrk
vθk

]

(47)

where ‘i’ denotes the feature number.

In the following numerical experiments, the velocity of

the vehicle is 3m/s, the maximum steering angle is −30◦ <
γ < 30◦ and the maximum rate of change in steer angle

is 20 deg/sec. The controls are updated every 0.025 sec-

onds and observations occur every 0.2 seconds. The range-

bearing sensor has a forward-facing 180◦ field-of-view and

maximum range of 30 metres. The process and observation

noises for both the filters are σv = 0.3m/s, σγ = 3◦ and

σr = 0.1m,σθ = 1◦, respectively. The trajectory of the

vehicle is known and sixty two landmarks were randomly

spread, the simulation scenario is shown in Fig. 3.

The CIF SLAM is compared with its closest counterpart,

the unscented information filter (UIF) [2] SLAM. The SLAM

results with CIF and UIF are shown in Fig. 4. The few peaks

in the figure are because of the steering angle constraints. The

average norm error of the CIF and UIF SLAM are 0.1294

and 0.3553, respectively. Hence, the CIF SLAM performance

is better than the UIF SLAM. One can note that purpose

of this paper is to propose the new estimation algorithm,

and to verify its effectiveness. The estimation of the SLAM

states using the proposed approach in a very large-scale

environments is beyond the scope of the paper. However,

one of our future works is to verify the CIF SLAM using

real robots or by using the real data-sets like Victoria Park

data-set, etc.

The obvious structure of the CIF, makes it suitable for

multiple sensor fusion and the square root version of CIF
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SLAM. Solid line represents CIF SLAM and the dashed line represents UIF
SLAM.

can be used for numerical stability. One may note that,

the objective of this paper is to embed the EIF and CKF

frameworks to form an efficient filter which has the desired

properties of both the filters and the sparsity analysis of the

CIF is beyond the scope of this work. One of our future work

is to perform convergence-, stability-, and computational

complexity analysis of the proposed CIF.

V. CONCLUSIONS

In this paper, we have proposed a cubature information

filter for nonlinear systems. The proposed filter is derived

from an extended information filter and the recently devel-

oped cubature Kalman filter. The CIF have the following

desirable properties:

1) It does not require the evaluation of Jacobians during

the prediction and update stage.

2) CIF is expressed in information space and hence can

be easily initialized compared to the CKF or EKF.

3) The update step of CIF is computationally simpler

than CKF or EKF and the update structure makes it a

promising approach for decentralized data fusion.

The efficacy of the proposed algorithm is verified by

simulations. The CIF algorithm is applied for state estimation

of FM model and for SLAM application. The proposed algo-

rithm is also compared with the UIF for both applications.

It is also shown that the CIF, when applied to FM model

estimation and SLAM, outperforms UIF.

ACKNOWLEDGEMENT

This work is supported by the UKIERI (UK-India

Education and Research Initiative) programme.

REFERENCES

[1] I. Arasaratnam and S. Haykin, “Cubature Kalman Filters,” IEEE Trans-
actions on Automatic Control, vol. 54, no. 6, 2009, pp. 1254-1269.

[2] D.-J Lee, “Nonlinear Estimation and Multiple sensor fusion using
unscented information filtering,” IEEE Signal Processing Letters, vol.
15, 2008, pp. 861-864.

[3] M.W.M.G. Dissanayake, P. Newman, S. Clark, H. F. Durrant-Whyte,
and M. Csorba, “ A Solution to the Simultaneous Localization and
Map Building (SLAM) Problem,” IEEE Tramsactions on Robotics and
Automation, vol. 17, no.3, 2001, pp. 229-241.

[4] T. Bailey, J. Nieto, J. Guivant, M. Stevens and E. Nobot, “Consistency
of EKF-SLAM Algorithm”, in Proceedings of the Intelligent Robots
and Systems, 2006, pp. 3562-3568.

[5] A.G.O. Mutambara, “Decentralized Estimation and Control for Multi-
sensor Systems,” CRC Press, 1998.

[6] S. J. Julier, and J. K. Uhlmann “ Unscented filtering and nonlinear
estimation,” Proceedings of the IEEE, vol. 92, no.3, 2004, pp. 401-422.

[7] S. Arulampalam, S. Maskell, N. Gordon, and T Clapp “ A tutorial on
particle filters for on-line nonlinear/non-Gaussian Bayesian tracking,”
IEEE Transactions on Signal Processing, vol. 50, no. 2, 2002, pp. 174-
188.

[8] K. Ito and K. Xiong, “Gaussian Filters for Nonlinear Filtering Prob-
lems,” IEEE Transactions on Automatic Control, vol. 45, no. 5, 2000,
pp. 910-927.

[9] C. P. Mracek, J. R. Cloutier, and C. A. DSouza, “A New Technique for
Nonlinear Estimation,” Proceedings of IEEE Conference on Control
Applications, 1996, pp.338-343.

[10] C. Edwards, S. K. Spurgeon and R. J. Patton, “Sliding mode observers
for fault detection and isolation,” Automatica, vol. 36, no. 4, 2000, pp.
541-553.

[11] G. Sibley, G. Sukhatme, and L. Matthies, “The iterated sigma point fil-
ter with applications to long range stereo,” in Proceddings of Robotics:
Science and Systems, Philadelphia, PA, 2006.

[12] C. Fernandez-Prades, and J. Vila-Valls, “Bayesian Nonlinear Filtering
Using Quadrature and Cubature Rules Applied to Sensor Data Fusion
for Positioning,” in Proceedings of IEEE International Conference on
Communications, Cape Town, 2010.

[13] B.D.O. Anderson and J.B. Moore, “Optimal Filtering,” Prentice-Hall,
1979.

[14] P.S. Maybeck, “Stochastic Models, Estimation and Control,” Academic
Press, vol. 1, 1979.

[15] S. Julier, J.K. Uhlmann “A New Method of the Nonlinear Transfor-
mation of Means and Covariances in Filters and Estimators,” IEEE
Transactions on Automatic Control, vol. 45, no. 3, pp. 477-482, 2000.

[16] G.A. Einicke and L.B. White, “Robust Extended Kalman Filtering,”
IEEE Transactions on Signal Processing, vol. 47, no. 9, 1999, pp. 2596-
2600.

[17] [Online]. Available: http://www-personal.acfr.usyd.edu.au/tbailey/
software/slam simulations.htm. Jan. 2010.

3614


