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Abstract 

This paper presents a novel approach for modeling 
and control of Programmable Logic Controller based 
Networked Control Systems (PLC-based NCS). The 
approach allows control design of NCS using formal 
discrete modeling and simulation. This involves three 
steps. The first step is to design a structure-conserving 
hierarchal timed model for the whole PLC-based NCS 
using Colored Petri Nets (CPNs). The aim is to 
generate by simulation extensive sampled time delay 
data records that are used to analyze and model delay 
behavior. The second step is the bridge between formal 
modeling and simulation and NCS control design. It 
uses Direct and/or Hidden Markov Models (DMM, 
HMM) to describe mathematical models of NCS 
delays. The paper introduces a new concept of Mutual 
Markov modeling to analyze the interaction between 
the two induced delays, namely, the sensor-to-
controller time delay τsc and the controller-to-actuator 
time delay τca. In the third step, the proposed mutual 
Markov models are used to design a single mode-
dependent state feedback controller using jump linear 
systems (JLS) approach. The control design solves a 
stability condition using Linear/Bilinear Matrix 
Inequalities (LMI/BMI). A numerical example is 
provided to demonstrate the proposed procedure. 

1. Introduction 

Networked Control Systems (NCS) are a type of 
distributed control systems where sensors, actuators 
and controllers are interconnected by real-time 
communication networks. Fig. 1 shows a schematic 
representation of a typical NCS with Programmable 
Logic Controller (PLC) as a system controller. Several 
advantages of these systems include: reduced systems 
wiring, increased system agility and ease of system 
diagnosis and maintenance. 

Depending on the devices sharing the network and 
the volume of information interchanged, the sender 
waits a variable time until the medium is granted to it. 
The stochastic nature of the shared resource occupation 
means random access times. These times will be 
denoted as sensor-to-controller delay (τsc) which is the 
random access time in the sensor-controller (SC) link 

and controller-to-actuator delay (τca) in the controller-
actuator (CA) one. These delays are sources of 
potential instability. In addition, especially in time-
driven platforms such as PLC-based NCS, as the 
controller-plant communication uses a non-exclusive 
medium; it is difficult for the control device to 
precisely determine the sampling and actuation 
instants. The lack of synchronization between 
controller and plant causes a significant worsening of 
the system response  [5]. 

 

Fig. 1. Block diagram of PLC-based NCS. 

The term Networked Control Systems (NCS) in 
recent literature refers to the interdisciplinary research 
area, combining both network and control theory, in 
order to guarantee the stability and performance of an 
NCS  [2],  [16]. In contrast Networked Automation 
System (NAS) combines network and formal modeling 
tools to guarantee certain time performances for time 
critical automation tasks  [7], [10], and  [13]. NAS-based 
NCS or without loss of generality PLC-based NCS 
perform not only open loop automation tasks but also 
closed loop control tasks for time critical tasks such as 
position and motion control. The main difference 
between open loop NAS and closed loop NCS lies in 
the fact that in NAS the occurrence of an event is 
assumed to happen at random time and the system 
response (delay) to such an event is determined 
independently of other events while in NCS 
consecutive delays of sampled sensor signals (Ts in the 
dashed circle connected to the remote analog input unit 
in Fig. 1) are of interest. 

The NAS/NCS system controller as shown in the 
figure is composed of two modules: The first module is 
the CPU/processor module which executes the control 
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tasks in time-based (cyclical) execution with a program 
scan time Tp. It reads input values from controller input 
buffer, executes the user control program, and finally 
writes control signals to controller output buffer. The 
second module is the input/output communication 
module that scans remote input/output units with Tc 
input/output scan time. The two scan cycles are not 
synchronized and the modules exchange data through 
an internal backplane bus. 

In such PLC-based NCS, there is a time driven 
nature of all activities in the system such as sampling 
process signals, input/output scanning and execution of 
control program. Due to this nature, it is expected that 
network induced delays exhibit special periodic 
characteristics which is the main motivation to address 
this sub-class of NCSs. 

Fig. 2 shows the three-step PLC-based NCS control 
design approach using formal modeling and simulation 
It is a simple place transition diagram showing the 
sequence of steps and the relations among them. First 
step uses Colored Petri Nets (CPN) for modeling and 
simulation of NCS setup. Simulation of CPN models of 
PLC-based NCS generate records of delays patterns 
which facilitate the process of modeling delays 
behavior. 

The formal simulation is proposed as an alternative 
to experimental setups of delay measuring. 
Constructing an experimental setup to measure delays 
in NCS is a very complex and error prone process, 
especially, in industrial controller’s case, where the 
controller may have neither sufficient memory space 
nor an efficient logging software tools. In addition, 
formal based modeling and simulation provides an 
efficient simulation environment from the view point 
of simulation speed in comparison to general purpose 
simulation software tools  [13]. 

In the second step, the data generated from CPN 
model is used to identify delay Markov models to 
obtain a compact mathematical representation of delays 
behavior that can be used for the control design step. In 
this view, the second step can be considered as a bridge 
linking the two research areas: NAS formal modeling 
and simulation from one side and NCS control design 
from the other side. In this step, the paper introduces a 
new concept of Mutual Markov modeling to analyze 
interaction between the types of induced delays, 
namely, the sensor-to-controller time delay τsc and the 
controller-to-actuator time delay τca using direct and/or 
Hidden Markov Models (DMM, HMM).  

In the third step, the obtained mutual Markov 
transition matrices are used to design a state feedback 
controller for the NCS system using jump linear system 
(JLS). JLS control design is an offline controller design 
algorithm i.e. the controller parameters are calculated 
offline and stored in memory for online operation. The 
most recent control approach is the two mode-
dependent control which designs a switching control 

according to the assumption of availability of both of 
the most recent delays τsc(k), τca(k-1). In the single 
mode-dependent design method the controller assumes 
only that delays from sensor-to-controller τsc(k) are 
known at the time of calculation. In this paper, we 
propose a modified version of a single mode-dependent 
control that combines the benefits of the two control 
designs by using only τsc delay information and mutual 
Markov models to compensate for lack of τca delay 
information. 

 

Fig. 2. Steps of NCS control design based 
formal modelling and simulation 

This paper is organized as follows: The next section 
describes the PLC-based NCS induced delays time 
analysis. Section 3 presents the CPN modeling and 
simulation of PLC-based NCS. Section 4 presents the 
mutual Markov modeling approach of PLC-based 
NCS. Section 5 presents the jump linear systems 
control of PLC-based NCS and demonstrates results 
using a numerical example. The concluding section 
comments on results and summarizes main ideas. 
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2. Time analysis of PLC-based NCSs  

Most NCS literature considers the setup with 
assumptions a) time driven sensors that sample the 
plant outputs periodically at sampling instances; b) an 
event driven controller which calculates the control 
signal as soon as the sensor data arrives; c) event 
driven actuators, which means that the plant inputs are 
changed as soon as the control signals become 
available  [3],  [14],  [16]. In this paper, we also use 
assumptions a) and c) which agree with the sampled 
nature of the NCS systems, but assumption b) is 
modified to time-driven execution platforms, which 
constitutes an important category of industrial 
controllers such as PLCs.  

Fig. 3 shows a detailed analysis of delay times in 
PLC-based NCS. The sensor and actuator nodes are of 
time and event nature respectively as previously 
assumed and they are connected to their digital/analog 
input/output (I/O) units. These components induce a 
small processing delay. The conversion time in the 
Analog Input (AI) unit has to be especially considered, 
since it delays sampled sensor values. The upper part 
of the figure shows four sensor samples (with different 
amplitudes and different colors) and the same four 
samples after being stored in the remote analog input 
unit with a processing delay().  

The middle part shows the PLC controller. It is 
composed of two interacting scan cycle times Tp, Tc. 
In the middle is the CPU program scan cycle Tp, which 
executes the control program periodically. The PLC 
communication module - with scan cycle Tc - scans 
remote digital/analog IO units. The communication 
scan cycle surrounds the program scan cycle from 
senor data input side and from the control value output 
side, so that it appears twice in the figure. The 
communication module sends request packets () to 
remote IO units with new outputs and receives new 
sensor inputs via acknowledgment packets (). In the 
general case, when the sensor and actuator are not 
connected to the same node, the request times are 
different as shown in the figure. The sampled sensor 
values appear as soon as acknowledgement packets are 
received and may be repeated depending on the 
sampling and IO scan times (see for example the three 
samples of the same amplitude). The control values 
appear after a computational delay τc in the 
communication module buffer. The controller 
calculation delay by definition is included in the delay 
from controller-to-sensor. The lower part of the figure 
shows the remote analog output module with the 
control values sent during IO scanning requests() and 
the actuator with the resulting delayed samples. The 
figure shows delays τsc, τca and the (response time) total 
control delay τtc. It clearly shown in the figure that 
delays depend on the interaction among the three 
periodic times: sampling time Ts, program scan cycle 
Tp, and the input/output scan cycle Tc  [5]. 

3. CPN modeling and simulation 

Colored Petri nets (CPN) are high-level Petri nets 
with graphical form and well-known semantic which 
allows for formal analysis and fast simulation which is 
suitable to model concurrent and resource sharing 
systems as discussed in  [11]. Applications of CPN to 
modeling and simulation of NASs and communication 
channels in estimation of response time in open loop 
schemes can be found for in  [7], and  [10]. CPN models 
of NCS can be built based on object oriented concepts 
as in  [10] or in a structure-conserving component-
based way as introduced in previous work in  [15]. 

 

Fig. 3. Delay analysis in PLC based NCS 

CPN models 
To build the models, CPNtools developed by Kurt 

Jensen at University of Aarhus in Denmark 1982 is 
used with its existing simulation and monitoring 
features. The model explores the main features of PLC-
based execution platforms, such as the interaction 
between client/server for input output scanning and the 
cyclical execution of control algorithms. The model is 
simulated using a dummy sampled signal generator. 
Sensor (input), controller (PLC), and actuator (output) 
signals are recorded for delays calculation. 

In the proposed CPN models, a library of control 
and network components is constructed. The library 
includes: PLC with communication module, Ethernet 
switch, remote analog input/output unit with 
communication interface, and sample process. Each of 
these components is built in a separate window called a 
“Page”. In addition, there is a main page for the overall 
system outline. The main page contains instances of 
the required components. The required control system 
configuration can be built by “cloning” the required 
instances, and connecting them in the same structure as 
the system to be modeled. Consequently, for a user of 
the library there is no need to access component pages. 
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In order to make the paper as a self-contained, we 
consider here the description of the system page of the 
model. A detailed description of the internal structure 
of each component is available in previous works  [12], 
and  [15]. Fig. 4 shows the main system layout of the 
CPN model for a typical PLC-based NCS system. 
Separate analog input/output units are used for sensor 
and actuator signals to model the general case of 
independent sensor/actuator communication nodes. 
The double line rectangles represent compound 
transitions with instance name and instance class 
(small single line rectangles under each transition). 
Ovals represent places to pass parameters and store 
data. The PLC component has four parameters: PLC 
address, CPU scan time, input/output scan time, and 
remote input/output scan list. The Ethernet switch 
(SW) has one parameter which is a list assigning each 
MAC address to a switch port number. The remote 
analog input/output unit (I/O) has one parameter, 
which is the address of the unit. The sample process 
(Process) has one parameter, which is the sample time 
of the process. The time resolution used here is 1µs, 
which means that 10ms scan cycle is entered as an 
integer of value 10000.  

 

Fig. 4. CPN template with PLC, Ethernet 
switch, I/O-module, and sample process. 

CPN models simulation 
By definition, τsc is the time elapsed between 

reading a new data sample from the sensor (i.e. at the 
process) and the start of the execution phase of the 
controller using this sample. τca is defined as the time 
elapsed between the start of the execution phase of the 
controller and the arrival of the new control output at 
the output port of the analog input/output unit, i.e. at 
the process. The data samples are stored with the 
execution time of each transition in an array of 10000 
samples for processing. 

Fig. 5 shows the resulting delay sequences for 
sampling times Ts=1ms, 40ms. In the case of 1ms 
(extremely small sampling time), delays of arrived 
samples to the analog output module are calculated 
whereas other missed samples are considered as vacant 
sampling. Delays can be represented directly against 
time or represented against the number of successfully 
transmitted samples (as shown in fig.). The fig. shows 

a sort of periodicity in the delay patterns. A correlation 
between τsc and τca is also visible. These impressions 
will be justified using Markov modeling of delays 
independently for each delay and a composite model 
for both delays. Due to space limitation, just one 
sampling time of 1ms - which is the smallest sampling 
time - will be used in section 5 to model delays using 
Markov modeling. 

 

Fig. 5. Sensor-to-controller delays, 
controller-to-actuator delays, and total 

control delays for 1ms, 40ms input 
sampling for the system shown in Fig. 4. 

4. Markov Modeling 

In this paper, an approach is proposed for modeling 
induced network delays separately and to address the 
correlation between the two types of delays using 
mutual Markov models. We calculate the probability 
density function (pdf) of the CPN-model generated 
data, and then depending on the number of delay 
values and the pdf diagram, we select a direct or hidden 
Markov model using the number of distinct areas in the 
pdf diagram as the number of hidden states in the 
Markov model. 

Proposed Markov modeling Procedure 
A Markov model is a finite state model that 

describes a probability distribution over a number of 
possible sequences. The model states might correspond 
to network load states that lead to network induced 
delays. Each state emits observation and the states are 
connected by state transmission probabilities  [4]. 

Given a sequence of observations Oseq, it’s assumed 
a hidden sequence of states Sseq corresponding to this 
observations sequence as shown below: 
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Where Oseq, Sseq are the observation and its 
corresponding state respectively at sample time k, 
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a discrete observation 

set, and  Mk sssSs ,...,, 21)(   a discrete state set. The 

Markov model λ for the system can be written as: 
),,( 0 BA , with the state transition probability 

matrix
 

  )|Pr( )()1( ikjkij ssssaA   , the state ob-

servations prob. matrix
 

  )|Pr( )()( ikjkij ssoobB  , and 

the initial state prob. vector
 

  )Pr( )1(0 ii ss   . 

Markov modeling results 
The proposed approach is demonstrated using delay 

sequences shown in Fig. 5 separately. Fig. 6 shows the 
probability distribution of delays τsc, and τca in the case 
of 1ms input sampling. τsc delays can be classified into 
two regions: small delays region {4, 5, 6, 7, 8, 9} with 
high probability and high delays region {10, 11} with 
small probability. Therefore, it is reasonable to model 
τsc with a 2-state, 8-observation HMM λsc model.  

 

Fig. 6. Probability density distribution for 
τsc, and τca for 1 ms input sampling. 

Using Maximum likelihood (ML) estimate and a 
Baum-Welch, the HMM λsc model parameters for the 
sensor-to-controller delay τsc are given by: 
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Where τsc delay equation can be written as (rect [] 
denotes a uniform distribution on this interval): 

 







2)(

1)(

]11,10[

]9,4[

ssrect

ssrect

k

k

sc
 

In a similar way, a 2-state, 6-observations HMM λca 
for the controller-to-actuator delay τca can bestimated 
as: 
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The important part of the proposed Markov 
modeling procedure is the ability to model the 
correlation between the two delays. The idea which is 
previously mentioned in  [1]- which to the best of 
author’s knowledge is not followed in literature - is 
used to estimate a composite/mutual model for the two 
delays. The idea is to interleave alternatively the two 
delay sequences; τsc τca beginning with τsc to make a 
single composite/mutual new delay sequence, and to 
estimate a Markov model for the new sequence using 
the previous proposed method. As shown in Fig. 7, the 
number of states of the mutual model will be 
Mm=Msc+Mca and state transitions will go from a state 
in the τsc model to a state in the τca model and vice 
versa without inter-model state transitions. This model 
is called a 2-state advance by input sample 
transmission i.e. for each input sample the model 
evolves two times, one for τsc delay estimation and the 
other for τca delay estimation. The HHM λm parameters 
are estimated for our case using the same ML and 
Baum-Welch to: 

 

 

Fig. 7. State diagram of the composite 
HMM λcom for τsc and τca delays. 
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The Mutual model Am can be decomposed into new 
separate Markov models λ´ca/sc, λ´sc/ca. The new models 
are interesting especially λ´ca/sc in estimating τca given 
τsc. Since the τca delay is unknown at the time of control 
value calculation, in contrary to the τsc delay, which 
could be calculated in the case of time stamped sensor 
signals.  

For a slower input sampling, the same approach is 
used with exception that the number of delay elements 
is small, which suggests to use a direct Markov 
modeling (DMM) for τsc or τca. The mutual model in 
this case can be composed of two different Markov 
models i.e.  DMM can be used to model τsc delays and 
HMM to model τca delays or vice versa. 
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5. Jump Linear Model of PLC-based 
NCSs 

 
 

Fig. 8 Control system setup 

First consider the control system setup in. Fig. 8. 
The discrete-time linear time invariant plant model is 

ሺ݇ݔ  1ሻ ൌ ሻݔሺܣ   ሺ݇ሻݑܤ
Where ݔሺ݇ሻ ∈ ሺ݇ሻݑ,ࡾ ∈  , A, B are known realࡾ

matrices with appropriate dimension. It is assumed that 
there are random bounded delays in both SC and CA 
links, where 0  ߬௦ሺ݇ሻ, ߬ሺ݇ሻ  ݀. 
One of the main difficulties in NSCs control is the 
design of stabilizing state feedback control according 
to the available delay information in the controller 
node at sample k. The most known control approach is 
the two mode-dependent control which designs a 
switching control according to the assumption of 
availability of both of the most recent delays ߬௦ሺ݇ሻand 
߬ሺ݇ െ 1ሻ. This assumption may require additional 
hardware to feed the controller with ߬ሺ݇ െ 1ሻ or a 
delayed version of it i.e ߬ሺ݇ െ ߬௦ሺ݇ሻ െ 1ሻ. In this 
approach the switching control values are designed 
offline using independent Homogenous Markov model 
probability transition matrices or their Kronecker 
matrix product for the two delay types  [2], [14], [16]. 
The calculated values are stored in controller memory 
to be selected according to the delays at sample k. In 
contrast; this paper uses the single mode-dependent 
control, in which switching control is designed 
depending only on the value of  ߬௦ሺ݇ሻ. The approach 
uses the proposed mutual Markov model probability 
matrix ܲ/௦ ൌ ൛ൟ instead the probability matrix of 
߬ሺ݇ െ 1ሻ  to compensate for the lack of information 
about the CA link delay at the control calculation time 
of sample k, where: 
 ൌ pr ሺτୡୟሺkሻ τୱୡሺkሻሻ,   ∑ p୧୨

த
୨ୀൗ  for all i, j ≤ d . 

The control law can be written as: 
ሺ݇ሻݑ ൌ ሺ݇ݔ൫߬௦ሺ݇ሻ൯ܭ െ ߬௦ሺ݇ሻሻ  
The augmented state variable is given by: 
ሺ݇ሻݔ ൌ ሾݔሺ݇ሻ் ݔሺ݇ െ 1ሻ் … ሺ݇ݔ െ ݀ሻ்ሿ், then the 
closed loop system is: 
ሺ݇ݔ  1ሻ ൌ ቀܣሚ  ൫߬௦ሺ݇ሻ൯ቁܥ൫߬௦ሺ݇ሻ൯ܭ෨ܤ  ,ሺ݇ሻݔ

 
 

                       
, 
   
                             

C(τsc,ca(k)) has all elements being zero except for 
τsc(k)th block being an identify matrix. This closed loop 
system equation corresponds to a discrete-time jump 
linear system (JLS) in the form: 
ሺ݇ݔ   1ሻ ൌ     ሻݐሺݔ൫߬௦ሺ݇ሻ൯ܣ
The mean square stability of the above system 
(Theorem 3.1 in  [2]) is equivalent to existence of 
symmetric positive definite matrices Q0,Q1,…,Qd 
satisfying the following condition: 

 

for all 0≤j ≤d 
 

where ܣመ ൌAi+BiKiCi and β=1/α is the decay rate. 
A similar V-K iteration algorithm as in  [2] is used here 
to solve the previous bilinear matrix inequalities (BMI) 
using Lmilab of robust control toolbox of Matlab, 
Penbmi [6] and Yalmip [8].The algorithm is as follows: 
 
 Design a LQR controller K for the plant without 

considering delays in the loop. Let Ki=K, i=0, 1,.., 
d, use initial probability matrix P0. 

 Repeat  
a. V-step. Given the controllers Ki, solve the LMI 

feasibility problem for all j=0,1,…,d with α=1 
to find Qi, i=0,1,…,d. 

b. K-step, given Qi found in V-step, solve the 
eigenvalue problem to find Ki, which maximize 
the decay rate (min α) of the closed loop. 

c. Use the new value of α. 
until the desired mutual probability Pca/sc (λ´ca/sc) 
with min α is reached or V-step is not feasible. 
 

In this algorithm, using the mutual Markov probability 
requires a less number of iterations to reach to a 
feasible solution in comparison to previous agorithms. 
In addition, it doesn’t depend on ߬ሺ݇ െ 1ሻ or a 
delayed version of it. The following subsection gives a 
demonstration numerical example. 

Numerical example 

Consider the cart and inverted pendulum problem 
which is a fourth order unstable system. The state 
variables are ሾݔ ݔሶ ሶߠ ߠ  ሿ்.with 0.1=(0)ߠ rad and all other 
initial state variables are zero. The parameters are the 
same as used in  [2]; m1=1kg, m2=0.5kg, L=1m, the 
sampling time is Ts=20ms. Assume the system is 
controlled using a PLC with parameters Tp=Tc=20ms. 
The induced random delays resulted from CPN model 
simulation measured in number of samples are 
ሺ߬௦ሻܯ ൌ ሺ߬ሻܯ ൌ ሼ1,2ሽ with mutual transition 
probability matrix: 
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First we design an LQR using weighting matrix Qx=I4 
For the state and Ru=1 for the control signal. We get 
K=[0.9147  2.3520  39.5869  10.9682] 
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After solving the BMI stability condition using the 
proposed algorithm for ten steps results min α=0.9823 
and K1=[2.2854  6.5253  60.6805  22.0100],  
K2=[ 0.2486  0.0001  0.0027  7.5940].  

The algorithm used for solving the previous 
condition shows good results as it can be considered a 
robust algorithm i.e. it converges shortly to a feasible 
solutions compared to previous algorithms, which need 
a long time and may not result to a feasible solution 
 [2], [16]. The algorithm depends only on ߬௦ሺ݇ሻ and 
need not to use assumptions for ߬௦ሺ݇ሻ. 
Fig. 9 shows the response of the initial pendulum 
position for a random delays sample according to the 
required transition probabilities. As seen the blue line 
(continuous line without marking) is the ideal system 
response with LQR and without delays. The green one 
(dashed with circles) is the normal control system with 
LQR and with delays. The red one (dotted line with +) 
is the response with single mode-dependent control 
with delays. It is noticed in this probability sample that 
the proposed control is close to ideal response, also the 
regular LQR can stabilize the system but there is no 
guarantee to stabilize all the random sequences because 
it is not a feasible solution for the BMI stability 
condition. 

 

Fig. 9. Pseudo random induced network 
delays and system response 

6. Conclusion 

The paper presented a comprehensive procedure for 
modeling and control of PLC-based networked control 
systems. First a structure-conserving CPN model is 
built concentrating on the effect of client/server 
input/output scanning and program execution cycles 
for typical NCS cyclic controllers. By simulating the 
CPN model, sequences of delays are calculated. 

Second, Markov analytical models are obtained for 
both sensor-to-controller τsc and controller-to-actuator 
τca delays independently and in mutual/composite way 
to benefit from the correlation between the two delays. 

The proposed mutual Markov delay models are used 
in the third part to design a switching single mode-
dependent JLS control law for the system. A numerical 
example is presented to demonstrate the procedure. 
The results show that the proposed control design 

algorithm is efficient in solving the stability conditions 
in comparison to previous ones. 
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