
  

  

Abstract—This paper presents a new global optimization 
algorithm for energy-efficient control allocation (CA) scheme, 
which was proposed for improving operational energy efficiency 
of over-actuated systems.  For a class of realistic power and 
efficiency functions, a Karush-Kuhn-Tucker (KKT) based 
algorithm is proposed to find all the local optimal solutions, and 
consequently the global minimum through a further simple 
comparison among the entire realistic local minima.  This 
KKT-based algorithm is also independent on the selections of 
initial conditions by transferring the standard nonlinear 
optimization problem into classical eigenvalue problems.  
Numerical examples about practical electric ground vehicles 
with in-wheel motors are utilized to demonstrate the 
effectiveness of the proposed global optimization algorithm for 
the energy-efficient CA problems.  

I. INTRODUCTION 
VER-ACTUATED systems, in which the number of 
actuators is greater than the degrees of freedom, have 

attracted increasing attention recently [1]-[5].  Many existing 
physical systems, such as marine vessels [6][7], airplanes 
[8][9][10], and ground vehicles [11]-[16], can be classified as 
over-actuated systems because redundant actuators are 
utilized to improve system performance, reliability and 
reconfigurablity.  

In order to coordinate the redundant actuators and control 
the over-actuated systems in an elegant configuration, the 
main challenge is to handle the actuator redundancy and 
physical constraints simultaneously.  Control allocation (CA), 
as a feasible and promising method, is commonly employed 
in over-actuated systems to optimally allocate the desired 
virtual (generalized) control efforts among all the available 
actuators within their respective constraints, see surveys 
[6][9] and the references therein.  Many different CA 
algorithms, such as direct allocation [17], daisy-chain 
allocation [18], (redistributed) pseudo-inverse allocation 
[14][19], optimization-based allocation [8], and adaptive 
allocation [20] have been proposed based on different 
methods to distribute the virtual control. 

Although the aforementioned CA methods have different 
strengths and limitations, numerical optimization-based 
algorithms are becoming more and more widely used in CA 
[7][8][13][21]-[23].  Sørdalen [7] adopted the magnitude of 
actuation as a secondary optimization term in CA formulation 
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in order to achieve minimum control effort.  Bodson [8] 
summarized and evaluated error minimization, control 
minimization, and mixed error and control optimization 
problems for optimization-based CA methods.  Härkegård 
[21] suggested a dynamic CA method by penalizing virtual 
control at previous sampling time in the secondary 
optimization term.  Moreover, Zaccarian [23] described a 
dynamic CA by inserting a dynamic system as an allocator 
between the high-level controller and low-level actuators. 

Within the aforementioned optimization-based allocation 
methods, the optimal algorithms to solve various CA 
problems were similar although the problem formulations 
were different. Standard numerical algorithms, such as 
quadratic programming, active-set, and fixed-point, were 
applied to solve various equivalent nonlinear programming 
problems of CA.  However, local minima were usually 
obtained by adopting these standard numerical algorithms for 
general nonlinear programming CA problems.  On the other 
hand, the selections of the initial conditions of these standard 
algorithms also strongly influence the acquisition of the 
global minimum.  Although there are no uniform 
optimization algorithms for general nonlinear programming 
problems, this paper proposes a global and 
initial-condition-independent algorithm for energy-efficient 
CA [26] based on Karush-Kuhn-Tucker (KKT) conditions.  
In the expression of energy-efficient CA problems, a special 
nonlinear programming is considered since the secondary 
optimization term, standing for the power consumption of 
systems, usually consists of polynomial and/or fractional 
functions.  By utilizing this kind of characteristics, the 
nonlinear programming procedure for energy-efficient CA 
can be transferred into classical eigenvalue problems, which 
are initial-condition-independent, based on the KKT 
conditions.  Thus, all the physically meaningful eigenvalues 
are obtained as local minima of energy-efficient CA 
problems.  Through simple comparisons and exclusions, a 
global minimum can be obtained.  

The remainder of this paper is organized as follows.  In 
section II, both single-mode and dual-mode of the 
energy-efficient CA schemes are reviewed and briefly 
described.  The KKT condition based algorithm is proposed 
to find the global minimum for the energy-efficient CA in 
section III.  In section IV, numerical examples based on 
electric ground vehicle with in-wheel motor dynamics and 
experimental data are presented to show the effectiveness of 
the proposed global optimization methods.  Conclusive 
remarks and future work are presented in section V.  
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II. REVIEW ON ENERGY-EFFICIENT CONTROL ALLOCATION 
In this section, the main ideas and formulations of 

single-mode and dual-mode energy-efficient CA are 
reviewed for self-completeness.  For more details and 
discussions on energy-efficient CA, the literature [26] is 
referred. 

A. Single-mode energy-efficient CA 
A general over-actuated dynamic system is described as 

follows, 
𝑥̇ = 𝑓(𝑥) + 𝑔(𝑥)𝑣𝑑
𝑣𝑑 = 𝐵𝑢
𝑦 = ℎ(𝑥)

, 
 
(1) 

where the system state vector is represented by 𝑥 ∈ 𝑅𝑛 , 
𝑦 ∈ 𝑅𝑚  is the system output vector, 𝑣𝑑 ∈ 𝑅𝑚  is the virtual 
control vector, 𝐵 ∈ 𝑅𝑚×𝑝 is the control effectiveness matrix, 
and 𝑢 ∈ 𝑅𝑝 is the system actuator vector.  For over-actuated 
systems,  𝑝 > 𝑚 holds as the number of actuators is greater 
than the number of virtual control signals.  Thus, there is no 
unique solution for 𝑢 in general and CA is often utilized to 
address the 𝑅𝑝 → 𝑅𝑚 optimal mapping problem. 

For over-actuated systems in which each actuator has only 
one actuation mode and one corresponding efficiency 
function, the energy-efficient control allocation is formulated 
as 
min  𝐽 = ‖𝑊𝑣(𝐵𝑢 − 𝑣𝑑)‖ + 𝜆𝑃𝑐, 
s.t. 𝑢𝑚𝑖𝑛 ≤ 𝑢 ≤ 𝑢𝑚𝑎𝑥, 

(2) 

where 𝑃𝑐 is the total instantaneous power consumption by all 
the actuators.  A small positive parameter 𝜆 is used to balance 
the efforts between reducing CA errors and the power 
consumptions.  The power consumption could be a function 
of actuation forces or torques based on the corresponding 
actuator efficiency functions, which can be expanded as 
follows, 
𝑃𝑐 = ∑ 𝑃𝑐𝑖(𝑢𝑖)

𝑝
𝑖=1 = ∑ 𝑃𝑜𝑖(𝑢𝑖)

𝜂𝑜𝑖(𝑢𝑖)
𝑝
𝑖=1 . (3) 

Within equation (3),  𝑃𝑜𝑖(𝑢𝑖)  and 𝜂𝑜𝑖(𝑢𝑖) are the output 
power function and the efficiency function of the 
𝑖 𝑡ℎ actuator, respectively.  Therefore, the division between 
𝑃𝑜𝑖(𝑢𝑖)  and 𝜂𝑜𝑖(𝑢𝑖)  represents the 𝑖 𝑡ℎ actuator’s power 
consumption 𝑃𝑐𝑖 .  Thus, the formulation of single-mode 
energy-efficient CA is built in (2) and (3). 

B. Dual-mode energy-efficient CA 
When actuators in physical systems have dual working 

modes, such as consuming and gaining energy, and different 
associated efficiency functions/characteristics, the expression 
of the over-actuated dynamic systems described in (1) is 
correspondingly augmented as, 
𝑥̇ = 𝑓(𝑥) + 𝑔(𝑥)𝑣𝑑
𝑣𝑑 = 𝐵𝑎[𝑢𝑇 𝑢′𝑇]𝑇
𝑦 = ℎ(𝑥)

. 
 
(4) 

A virtual actuator vector 𝑢′ ∈ 𝑅𝑞 , 1 ≤ 𝑞 ≤ 𝑝 is introduced 
to represent the 𝑞  dual-mode actuators involved in the 
system.  The augmented matrix 𝐵𝑎 = [𝐵 𝐵𝑞] ∈ 𝑅𝑚×(𝑝+𝑞) is 
the new control effectiveness matrix for the new nonlinear 

system.   
The energy-efficient CA scheme (2) and (3) is modified for 

the new augmented system (4) with dual-mode actuators as  
min  𝐽 = ‖𝑊𝑣(𝐵𝑎[𝑢𝑇 𝑢′𝑇]𝑇 − 𝑣𝑑)‖ + 𝜆𝑃𝑐, 

s.t.  �
𝑢𝑚𝑖𝑛 ≤ 𝑢 ≤ 𝑢𝑚𝑎𝑥
𝑢𝑚𝑖𝑛′ ≤ 𝑢′ ≤ 𝑢𝑚𝑎𝑥′

𝑢𝑖𝑢𝑖′ = 0,   𝑖 = 1, … , 𝑞
� . 

(5) 

Since a particular dual-mode actuator can only operate in one 
of the two operating modes at any given time instant, the 
added third term in the constraints ascertains that only one 
operating mode is assigned to a physical actuator by the CA.  
A physical example of dual-model actuator is electric motor 
which can work on both motor mode (consuming energy from 
the system) and generator mode (gaining energy to the 
system). 

Within equation (5), the total power consumption 𝑃𝑐 thus 
can include the instantaneous power consumption and gain 
with respect to the dual operating modes for each of the 
physical actuators.  For example, if 𝑢 denotes the actuator 
energy consuming mode and 𝑢′  represents the actuator 
energy gaining mode, then the total power consumption of all 
the actuators in different modes is formulated as 
𝑃𝑐 = ∑ 𝑃𝑜𝑖(𝑢𝑖)

𝜂𝑜𝑖(𝑢𝑖)
𝑝
𝑖=1 −  ∑ 𝑃𝑖𝑖(𝑢𝑖′)𝜂𝑖𝑖(𝑢𝑖′)

𝑞
𝑖=1 . (6) 

Within equation (6), 𝑃𝑜𝑖  and 𝜂𝑜𝑖  denote the actuator output 
power and efficiency at the energy consuming mode.  While 
𝑃𝑖𝑖  and 𝜂𝑖𝑖 represent the actuator input power and efficiency 
at the energy gaining mode, respectively.  The energy gaining 
mode is inferred by the minus sign in front of virtual actuator 
power consumption.  Therefore, the formulation of the 
dual-mode energy-efficient CA is built in (5) and (6). 
III. KKT-BASED GLOBAL OPTIMIZATION ALGORITHMS FOR 
ENERGY-EFFICIENT CONTROL ALLOCATION 

For both single-mode and dual-mode energy-efficient CA, 
the authors adopted a standard nonlinear optimization 
method, active-set algorithm, to obtain the solutions [26].  
The adopted algorithm, however, cannot guarantee the global 
optimization and are sensitive to the selections of initial 
conditions.  Based on the KKT conditions, a global and 
initial-condition-independent optimization algorithm is 
proposed for energy-efficient CA in the following section. 

A. KKT conditions for the single-mode energy-efficient CA 
In order to develop the optimization algorithm for the 

single-mode energy-efficient CA, the expressions (2) and (3) 
are combined and modified as 
min  𝐽 = ‖𝑊𝑣(𝐵𝑢 − 𝑣𝑑)‖2 + 𝜆𝑃𝑜𝑇(𝑢) 1

𝜂𝑜(𝑢)
, 

s.t.  �𝑢 − 𝑢𝑚𝑖𝑛 ≥ 0
𝑢𝑚𝑎𝑥 − 𝑢 ≥ 0

�. 

(7) 

The square modification for CA errors is good for derivatives 
of the Lagrangian function defined in the following.  
𝑃𝑜(𝑢), 𝜂𝑜(𝑢) ∈ 𝑅𝑝  are the vector forms of output power 
functions and efficiencies, respectively.  

Define the following Lagrangian function 

𝐿�𝑢, 𝜆, 𝜆� = 𝐽(𝑢, 𝜆) − 𝜆𝑇(𝑢 − 𝑢𝑚𝑖𝑛) − 𝜆
𝑇

(𝑢𝑚𝑎𝑥 − 𝑢). (8) 
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Within (8), nonnegative vectors 𝜆 and 𝜆 ∈ 𝑅𝑝 are Lagrangian 
multipliers. Based on the KKT conditions [27], the optimal 
solution 𝑢∗  with certain Lagrangian multipliers 𝜆∗  and 𝜆

∗
  

satisfy the following conditions: 
𝜕𝐿�𝑢, 𝜆, 𝜆�

𝜕𝑢
|𝑢=𝑢∗
𝜆 =𝜆∗

𝜆=𝜆
∗

= 2𝐵𝑇𝑊𝑣
𝑇𝑊𝑣(𝐵𝑢∗ − 𝑣𝑑)

+ 𝜆
𝑃̇𝑜𝑇(𝑢∗)𝜂𝑜(𝑢∗) − 𝑃𝑜𝑇(𝑢∗)𝜂̇𝑜(𝑢∗)

𝜂𝑜2(𝑢∗)
− 𝜆∗ + 𝜆

∗
= 0 

�𝜆𝑖∗�(𝑢∗ − 𝑢𝑚𝑖𝑛)𝑖 = 0,  �𝜆𝑖
∗
� (𝑢𝑚𝑎𝑥 − 𝑢∗)𝑖 = 0, 

𝑢∗ − 𝑢𝑚𝑖𝑛 ≥ 0 , 𝑢𝑚𝑎𝑥 − 𝑢∗ ≥ 0, 𝜆
∗
≥ 0,  𝜆∗  ≥ 0. 

 
 
 
 
(9) 

Generally, the KKT conditions can characterize the global 
optimal solution when the objective/cost function and the 
constraint set are convex.  Although the cost function in (7) is 
not in a convex form, further examinations can be fulfilled to 
exclude the maximum and the local minima.  For the special 
form of energy-efficient CA, the corresponding KKT 
conditions (9) are simple to be checked for obtaining the 
global minimum. 

B. KKT conditions for the dual-mode energy-efficient CA 
Similar to the single-mode case, the expressions (5) and (6) 

are combined and modified so as to develop the optimization 
algorithm for the dual-mode energy-efficient CA. 
min  𝐽 = ‖𝑊𝑣(𝐵𝑎[𝑢𝑇 𝑢′𝑇]𝑇 − 𝑣𝑑)‖2 +

𝜆 �𝑃𝑜𝑇(𝑢) 1
𝜂𝑜(𝑢)

−  𝑃𝑖𝑇(𝑢′)𝜂𝑖(𝑢′)�, 

s.t. 

⎩
⎪
⎨

⎪
⎧
𝑢 − 𝑢𝑚𝑖𝑛 ≥ 0
𝑢𝑚𝑎𝑥 − 𝑢 ≥ 0
𝑢′ − 𝑢′𝑚𝑖𝑛 ≥ 0
𝑢′𝑚𝑎𝑥 − 𝑢′ ≥ 0

𝑢𝑖𝑢𝑖′ = 0

�, 

 
 
(10) 

where 𝑃𝑖(𝑢′), 𝜂𝑖(𝑢′) ∈ 𝑅𝑞  are the vector forms of input 
power functions and efficiencies, respectively. 

Define the corresponding Lagrangian function as 
𝐿�𝑢,𝑢′, 𝜆, 𝜆, 𝜆′, 𝜆′� = 𝐽(𝑢,𝑢′) − 𝜆𝑇(𝑢 − 𝑢𝑚𝑖𝑛) −

𝜆
𝑇

(𝑢𝑚𝑎𝑥 − 𝑢) − 𝜆′𝑇(𝑢′ − 𝑢′𝑚𝑖𝑛) − 𝜆′
𝑇

(𝑢′𝑚𝑎𝑥 − 𝑢′). 

 
(11) 

Within (11), nonnegative vectors 𝜆  and 𝜆 ∈ 𝑅𝑝 , 𝜆′  and 
𝜆′ ∈ 𝑅𝑞 , are Lagrangian multipliers.  Based on the KKT 
conditions [27], the optimal solutions 𝑢∗ and 𝑢′∗ with certain 
Lagrangian multipliers 𝜆

∗
, 𝜆∗ , 𝜆′

∗
 and 𝜆′∗  satisfy the 

following conditions: 
𝜕𝐿�𝑢,𝑢′, 𝜆, 𝜆, 𝜆′, 𝜆′�

𝜕𝑢
|

𝑢=𝑢∗,   𝜆 =𝜆∗,   𝜆=𝜆
∗

𝑢′=𝑢′
∗

,   𝜆′=𝜆′
∗

,   𝜆′=𝜆′
∗

 

= 2𝐵𝑇𝑊𝑣
𝑇𝑊𝑣(𝐵𝑎[𝑢∗𝑇 𝑢′∗𝑇]𝑇

− 𝑣𝑑)

+ 𝜆
𝑃̇𝑜𝑇(𝑢∗)𝜂𝑜(𝑢∗) − 𝑃𝑜𝑇(𝑢∗)𝜂̇𝑜(𝑢∗)

𝜂𝑜2(𝑢∗)
− 𝜆∗ + 𝜆

∗
= 0, 

 
 
 
 
 
 
 
 

𝜕𝐿�𝑢,𝑢′, 𝜆, 𝜆, 𝜆′, 𝜆′�
𝜕𝑢′

|
𝑢=𝑢∗,   𝜆 =𝜆∗,   𝜆=𝜆

∗

𝑢′=𝑢′
∗

,   𝜆′=𝜆′
∗

,   𝜆′=𝜆′
∗

 

= 2𝐵𝑞𝑇𝑊𝑣
𝑇𝑊𝑣(𝐵𝑎[𝑢∗𝑇 𝑢′∗𝑇]𝑇

− 𝑣𝑑)
− 𝜆 �𝑃̇𝑖

𝑇(𝑢′∗)𝜂𝑖(𝑢′∗)

+ 𝑃𝑖𝑇(𝑢′∗)𝜂̇𝑖(𝑢′∗)� − 𝜆′∗ + 𝜆′
∗

= 0, 
𝑢𝑖𝑢𝑖′ = 0, 
�𝜆𝑖∗�(𝑢∗ − 𝑢𝑚𝑖𝑛)𝑖 = 0,  �𝜆𝑖

∗
� (𝑢𝑚𝑎𝑥 − 𝑢∗)𝑖 = 0, 

�𝜆′𝑖∗�(𝑢′∗ − 𝑢′𝑚𝑖𝑛)𝑖 = 0,  �𝜆′𝑖
∗
� (𝑢′𝑚𝑎𝑥 − 𝑢′∗)𝑖 = 0, 

𝑢∗ − 𝑢𝑚𝑖𝑛 ≥ 0 , 𝑢𝑚𝑎𝑥 − 𝑢∗ ≥ 0, 𝑢′∗ − 𝑢′𝑚𝑖𝑛 ≥ 0 , 
𝑢′𝑚𝑎𝑥 − 𝑢′∗ ≥ 0,  𝜆

∗
≥ 0,  𝜆∗  ≥ 0, 𝜆′

∗
≥ 0,  𝜆′∗  ≥ 0,  

 
 
 
 
 
 
(12) 

Again, although the KKT conditions, in general, cannot 
guarantee the global optimal solution of the non-convex cost 
function (10), further examinations can be fulfilled to exclude 
the maximum and the local minima.  For the special form of 
energy-efficient CA, the corresponding KKT conditions (12) 
are simple to be checked for obtaining the global minimum. 

IV. NUMERICAL EXAMPLES AND DISCUSSIONS 
In this section, the aforementioned KKT conditions for both 

single-mode and dual-mode energy-efficient CA are applied 
to numerical examples.  These examples are abstracted from 
practical electric ground vehicle in-wheel/hub motor models 
and experimental data [28], from which the assumption and 
validation of the aforementioned formulation are verified.  

In-wheel motor technology has become mature and allows 
fast and accurate torque control for each of the electric ground 
vehicle (EGV) wheels.  Electric concept cars with 
independently actuated in-wheel motors such as the GM Geo 
Storm and Volvo ReCharge have already proceeded into the 
prototyping and/or pre-market phases.  Thus, in-wheel/hub 
motors have strongly potential applications in automotive 
industry, see [13][26] and references therein.  Compared with 
the conventional vehicle drivetrain architectures where 
driving and braking actions of different wheels are coupled, 
EGVs with independently actuated in-wheel motors can offer 
higher control flexibility and many potential advantages [29].  
Consequently, the efficiency and control allocation problem 
are meaningful to be investigated. 

 
Figure 1.  The efficiency curve fitting of an in-wheel BLDC 
motor and its controller based on experimental data.  
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The output efficiency function 𝜂𝑜(𝑢)  of an in-wheel BLDC 
motor and its controller is expressed by fitting the 
experimental data shown in Figure 1.  Two linear functions 
are adopted to approximate the rising and falling portions of 
the entire experimentally measured data. 

𝜂𝑜(𝑢) = � 𝑎11𝑢 + 𝑏11, 0 ≤ 𝑢 < 20,
𝑎12𝑢 + 𝑏12, 20 ≤ 𝑢 ≤ 100,

� (13) 

where 𝑎11, 𝑏11, 𝑎12 and 𝑏12 are coefficients, listed in Table 1. 

Table 1 Efficiency Function Parameters 
Symbol Values 
𝑎11 0.0372 
𝑏11 0.122 
𝑎12 -0.0025 
𝑏12 0.9181 

Multiple reasons make the piece-wise linear function (13) 
as the efficiency fitting function.  The first one is the 
consideration of computational effort.  From either (9) or 
(12), the KKT conditions offer algebra equations or 
eigenvalue problems to obtain the optimal values.  The 
simpler efficiency fitting function makes the computational 
cost less.  The second reason is due to the DC characteristics 
of the BLDC motors.  The piece-wise linear function (13) can 
sufficiently describe the rising and falling trend along with 
the increase of motor torque.  Last but not the least, although 
the motor speed also slightly affects the motor efficiency as 
can be seen from Figure 2, the efficiency curves are similar 
within a large range of rotational speeds [28].  Moreover, 
motor rotational speed can be reasonably assumed to be a 
constant at each instantaneous time for CA due to the short 
sampling period. 

 
Figure 2.  The driving efficiency map of an in-wheel BLDC 
motor based on experimental data.  

The power consumption of the in-wheel motor is given by 
𝑃𝑜(𝑢) = 𝑢𝜔0, (14) 

where 𝜔0  is a given rotational speed and 𝑢  stands for the 
motor torque. Without loss of generality, two in-wheel BLDC 
motors are considered for the longitudinal speed control of a 
bicycle vehicle model under straight line driving conditions.  
Different scaling ratios are applied to the efficiency curve in 
Figure 1 to generate different efficiency functions for two 
motors and two working modes.  In the case of single-mode 
actuation (both in-wheel motors drive), the control 

effectiveness matrix 𝐵 = [1 1]𝑇.  In the case of dual-mode 
actuation (both in-wheel motors can drive and regenerative 
brake), the control effectiveness matrix 𝐵𝑎 = [1 1 1 1]𝑇.  The 
boundary of the actuator are 𝑢𝑚𝑖𝑛 = 0 and 𝑢𝑚𝑎𝑥 = 100 for 
driving and 𝑢′𝑚𝑖𝑛 = −100  and 𝑢′𝑚𝑎𝑥 = 0  for regenerative 
braking.  

A. Single-mode energy-efficient CA 
In the numerical example for single-mode energy-efficient 

CA, the rotational speed 𝜔0 = 400 rpm, which is about 50 
km/h for a passage car with common tire effective radius 
around 0.3 meter.  The penalty coefficient 𝜆 is set to be 0.001 
and the weighting matrix 𝑊𝑣 was set to be an identity matrix 
for the optimization problem.  The scaling ratio for efficiency 
of the second in-wheel motor was 0.9. 

Substituting (14) into (9) and letting 𝜆∗ = 𝜆
∗

= 0  for 
nontrivial solutions, the following equations are obtained, 
2(𝑢1∗ + 𝑢2∗ − 𝑣𝑑) + 𝜆 𝑃̇𝑜1(𝑢1

∗)𝜂𝑜1(𝑢1
∗)−𝑃𝑜1(𝑢1

∗)𝜂̇𝑜1(𝑢1
∗)

𝜂𝑜1
2 �𝑢1

∗�
= 0, 

2(𝑢1∗ + 𝑢2∗ − 𝑣𝑑) + 𝜆 𝑃̇𝑜2(𝑢2
∗)𝜂𝑜2(𝑢2

∗)−𝑃𝑜2(𝑢2
∗)𝜂̇𝑜2(𝑢2

∗)
𝜂𝑜2
2 �𝑢2

∗�
= 0. 

 
(15) 

Since the efficiency function (13) is piece-wise linear, the 
equations (15) have to be solved by combining different 
efficiency functions.  Basically, four pairs of two algebraic 
equations are obtained.  In order to solve two algebraic 
equations with two variables, like (15), classical eigenvalue 
problems can be formulated.  Thus, the optimization problem 
are transferred into multiple eigenvalue problems to find the 
optimal 𝑢1∗  and 𝑢2∗ .  Compared with the trivial solutions 
(boundary values of actuators), the global optima can be 
finally obtained.  Given different virtual control 𝑣𝑑 , the 
following CA results without considering choice of initial 
values are obtained.  

Table 2 Single-mode energy efficient CA results 

𝑣𝑑 
(N*m) 

𝑢1∗ 
(N*m) 

𝑢2∗  
(N*m) 

𝑃𝑐𝑒  
(Watt) 

𝑃𝑐𝑠 
(Watt) 

10 10 0 847.9 1436 
20 20 0 967.4 1790 
40 20 20 2040 2040 
60 38.87 21.11 3120 3147 
80 48.61 31.37 4296 4324 

In Table 2, the symbol 𝑃𝑐𝑒  stands for the instantaneous 
power consumption by using energy-efficient CA and the 
symbol 𝑃𝑐𝑠 represents the instantaneous power consumption 
by using a standard CA method, which has an equal torque 
distribution on two in-wheel motors.  From the values in the 
4th and 5th columns, the energy-efficient CA algorithm indeed 
costs less power than the standard CA method.  It is 
interesting to observe the case of 𝑣𝑑 = 40 .  The power 
consumptions of two allocation methods are the same 
because the average torque distribution happens to be the 
most energy efficient one, which can be seen from Figure 1 
and the efficiency scaling assumption. 

Moreover, when the virtual control 𝑣𝑑  is small, the 
energy-efficient CA algorithm automatically determines only 
the first in-wheel motor is used because of a higher efficiency.  
Along with the increase of the virtual control, the first 
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in-wheel motor cannot guarantee to be working alone in a 
high-efficiency regime.  Thus, a part of the virtual torque is 
distributed to the second in-wheel motor to make both motors 
work in high-efficiency regimes, consequently to optimize 
the total consumed power.  The CA results listed in Table 2 
are obtained without giving any initial values of 𝑢1 and 𝑢2 by 
solving the equivalent eigenvalue problem.  The global 
optimization of the distribution torques 𝑢1∗ and 𝑢2∗  are verified 
from the following plot in Figure 3. 

 
Figure 3.  Power consumption of single-mode energy-efficient 
CA with two actuators.  

Figure 3 shows the cost function of optimization problem 
(2) and (3) by inserting efficiency and power expressions (13) 
and (14) in.  Each curve in Figure 3 represents different 
virtual control from 10 to 80, the same as those in Table 2.  On 
each curve, the corresponding virtual control is equal to the 
sum of distributions on two motors.  Except the case of 
𝑣𝑑 = 40, all the labels on the left side show the distribution 
results of the standard CA and all the labels on the right in 
Figure 3 represent the global optimization points.  Although 
these global minimum points vary on the non-convex curves, 
the proposed KKT-based algorithm accurately finds all of 
them from the equivalent eigenvalue problems.  If a standard 
active-set algorithm is applied to solve the nonlinear 
optimization problem, the global minimum points may not be 
found by inappropriate choices of initial conditions and only 
local minima are obtained.  

B. Dual-mode energy-efficient CA 
The same values for rotational speed 𝜔0, weighting matrix 

𝑊𝑣, and the penalty coefficient 𝜆 as those in the single-mode 
case were adopted for the numerical example in dual-mode 
energy-efficient CA.  Assuming that two in-wheel motors 
(front and rear) with the same type (such as BLDC) have the 
similar efficiency profile, the scaling ratio for the driving 
efficiency of the rear motor is 0.9.  Moreover, the 
regenerative braking efficiency is usually less than the 
driving efficiency. Thus, the scaling ratio for the regenerative 
braking efficiency of each motor is set as 0.9 of the 
corresponding driving efficiency. 

Substituting (14) into (12) and letting 𝜆∗ = 𝜆
∗

= 𝜆′
∗

=
𝜆′∗ = 0 for nontrivial solutions, the following expressions are 
obtained, 

2(𝐵𝑎𝑢∗ − 𝑣𝑑) + 𝜆 𝑃̇𝑜1(𝑢1
∗)𝜂𝑜1(𝑢1

∗)−𝑃𝑜1(𝑢1
∗)𝜂̇𝑜1(𝑢1

∗)
𝜂𝑜1
2 �𝑢1

∗�
= 0, 

2(𝐵𝑎𝑢∗ − 𝑣𝑑) + 𝜆 𝑃̇𝑜2(𝑢2
∗)𝜂𝑜2(𝑢2

∗)−𝑃𝑜2(𝑢2
∗)𝜂̇𝑜2(𝑢2

∗)
𝜂𝑜2
2 �𝑢2

∗�
= 0, 

2(𝐵𝑎𝑢∗ − 𝑣𝑑) −
𝜆 �𝑃̇𝑖1(𝑢1′∗)𝜂𝑖1(𝑢1′∗) + 𝑃𝑖1(𝑢1′∗)𝜂̇𝑖1(𝑢1′∗)� = 0, 
2(𝐵𝑎𝑢∗ − 𝑣𝑑) −
𝜆 �𝑃̇𝑖2(𝑢2′∗)𝜂𝑖2(𝑢2′∗) + 𝑃𝑖2(𝑢2′∗)𝜂̇𝑖2(𝑢2′∗)� = 0, 
𝑢1∗𝑢1′∗ = 0, 𝑢2∗𝑢2′∗ = 0. 

 
 
 
(16) 

Like the process in the single-mode case, similar steps were 
implemented to solve (16) by plugging in the piece-wise 
linear efficiency function (13).  Then, comparison with trivial 
solutions will give the global optimal solutions.  Given 
different virtual control 𝑣𝑑, the following CA results without 
considering choices of initial values are obtained.  

Table 3 Dual-mode energy efficient CA results 

𝑣𝑑 
(N*m) 

𝑢1∗ 
(N*m) 

𝑢2∗  
(N*m) 

𝑢1′∗ 
(N*m) 

𝑢2′∗ 
(N*m) 

𝑃𝑐𝑒  
(Watt) 

4 20 0 0 -16 575.7 
8 20 0 0 -12 733.6 
10 20 0 0 -10 797.4 
20 20 0 0 0 967.4 

In Table 3, the symbol 𝑃𝑐𝑒  stands for the instantaneous 
power consumption by using energy-efficient CA.  From the 
values in the 2nd and 5th columns, the energy-efficient CA 
algorithm distributes torques to the driving mode of the front 
motor and the regenerative braking mode of the rear motor 
when the virtual control is small.  Since if only the front 
motor is actuated, the efficiency is very low for small 𝑣𝑑.  By 
exciting the regenerative braking mode of the rear motor, not 
only the rear motor gains energy at a relative high-efficiency 
rate, but the front motor also works at a higher efficiency 
point to consume less power.  Thus, the total consumption 
power is less than the single motor actuation case.  It is 
interesting to observe the case of 𝑣𝑑 = 10 .  The power 
consumption of the dual-mode algorithm is less than that of 
the single-mode case for the same virtual control, which 
displays the necessity and advantage of the dual-mode 
energy-efficient CA algorithm.  

 
Figure 4.  Power consumption of dual-mode energy-efficient CA 
with two actuators.  

Along with the increase of the virtual control, only the most 
efficient mode in the first motor is excited because the 
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equivalent efficiency of the regenerative braking and driving 
case is lower than the single-motor driving case, which can be 
seen from the 5th row in Table 3.  By further increasing the 
virtual control, the dual-mode energy-efficient CA enters the 
single-mode distribution algorithm.  The CA results listed in 
Table 3 are obtained without giving any initial values by 
solving the equivalent eigenvalue problem.  The global 
optimization of the distribution torques 𝑢1∗ , 𝑢2∗ , 𝑢1′∗ and 𝑢2′∗ 
are verified from the plot in Figure 4. 

Figure 4 shows the cost function of optimization problem 
(5) and (6) by inserting efficiency and power expressions (13) 
and (14) in.  Each curve in Figure 4 represents different 
virtual control from 4 to 20, the same as those in Table 3.  On 
each curve, the corresponding virtual control is equal to the 
sum of distributions on the two motors.  All the labels on the 
right in Figure 4 represent the global optimization points.  
Although these global minimum points vary on the 
non-convex curves, the proposed KKT-based algorithm 
accurately finds all of them from the equivalent eigenvalue 
problem.  If a standard active-set algorithm is applied to solve 
the nonlinear optimization problem, the global minimum 
points may not be found by inappropriate choices of initial 
conditions and only local minima are obtained.   

Moreover, Figure 4 only gives the power consumption 
under the actuation that the first motor drives and the second 
motor brakes because the other working pair, the first motor 
braking and the second motor driving, consumes more power 
due to the lower driving efficiency of the second motor.  

V. CONCLUSIONS AND FUTURE WORK 
This paper introduces a new global optimization method 

for energy-efficient control allocation (CA).  By considering 
the specific nonlinear formulation of the cost function, a 
KKT-based algorithm is proposed to find the global optimal 
solution of the energy-efficient CA problem.  This 
KKT-based algorithm does not rely on the choices of initial 
conditions.  Numerical examples about electric ground 
vehicles with in-wheel motors exhibited the effectiveness of 
the proposed global optimization energy-efficient CA 
algorithm.   

The real-time implementation of this algorithm will be 
improved and tested in a platform of electric ground vehicles. 
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