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Abstract— Stability analysis of non-uniformly sampled-data
feedback control systems is considered. An algorithm is pro-
posed based on the property that the exponential stability is
implied by the existence of a switched Lyapunov function for
the associate discrete-time systems. In order to reduce the
computational complexity, the algorithm is proposed taking
account of the dimensions of LMIs to be solved. It is shown
that the proposed algorithm constructs a bimodal switched
Lyapunov function in a finite step if one exists.

I. INTRODUCTION

Motivated by networked control systems with packet loss

(See, e.g., [10]) and embedded control systems with incom-

plete real-time property (See, e.g., [13]), analysis and design

problems for sampled-data systems with uncertainly time-

varying sampling intervals have been studied in these days

[1], [2], [4]–[9], [11], [12], [14]–[28]. It is obvious that

the problems are much harder than those for the standard

periodic sampling case, and that robustness plays a crucial

role in the study.

Since quadratic stability of the associate discrete-time

system implies exponential stability of the sampled-data

system [28], one can discuss the stability in the discrete-

time domain, as in most of recent studies. Then the main

difficulty to be solved is the fact that the discrete-time system

is time-varying and uncertain. Improving the approximation

by gridding in earlier studies [1], [21], [28], the recent

studies take the robustness into account to guarantee the

stability. In particular, (i) a robust control approach based on

a linear fractional transformation (LFT) uncertainty modeling

[6], [8], [24], (ii) a robust control approach based on a

polytopic uncertainty modeling [1], [2], [11], [12], and (iii)

a robust linear matrix inequality (LMI) approach [19], [20]

have been proposed. We note that numerical experiences in

the references suggest that these discrete-time approaches

are less conservative than other approaches constructing

continuous-time Lyapunov functions in, e.g., [4], [5], [7],

[14]–[18], [23], [25]–[27]. On the other hand, since these

discrete-time approaches are based on the sufficient condition

of the quadratic stability of the discrete-time system, they

cannot avoid the common conservatism.

It is pointed out recently in [9] that the existence of a

switched Lyapunov function [3], which was proposed for sta-

bility analysis of switched systems, for the associate discrete-

time system implies exponential stability of the sampled-data

system. This fact suggests that less conservative analysis

could be achieved by modeling the associate discrete-time
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system as a switched system so that each mode has smaller

uncertainty. Indeed it has been shown by using numerical

examples in [9] that the stability analysis based on the

switched Lyapunov function reduces the conservatism in the

analysis based on the quadratic stability. We emphasize the

fundamental difference between [9] and other discrete-time

approaches in terms of the stability criteria. Hence it is

desirable to develop a concrete method for stability analysis

based on the switched Lyapunov function for the associate

discrete-time system.

The reference [9], however, only suggests the usefulness

of switched Lyapunov functions and no concrete algorithm

is provided. In order to develop a concrete algorithm, we

need a method to model the associate discrete-time system

as a switched system. It is, however, not trivial. It might be

natural to chop the range of sampling intervals into pieces

and determine each mode of the switched system by each

piece, but it is not obvious how we should chop. Moreover

we have to take care the total size of LMIs to be solved. One

could extend algorithms developed for quadratic stability

analysis. Indeed a direct extension of the algorithm in [6]

has been suggested in [9], however, such a naive extension

can result an intractable total size of LMIs. We will see this

later more in detail.

The purpose of this paper is to provide a concrete algo-

rithm for stability analysis of the non-uniformly sampled-

data feedback control systems based on the existence of

a switched Lyapunov function for the associate discrete-

time system. The proposed algorithm constructs a bimodal

switched Lyapunov function for the associate discrete-time

system in a finite step, if one exists, by solving LMIs

of reasonable dimensions in compare to the LMIs in the

algorithm of [6].

This paper is organized as follows: The problem is for-

mulated in Section II. A stability analysis algorithm is

proposed in Section III and its usefulness is demonstrated

in Section IV.

II. PROBLEM SETUP

Consider the sampled-data feedback system T depicted in

Fig. 1. The plant is given by the state-space representation

ẋ(t) = Ax(t) +Bu(t),

where u and x respectively denote the control input and

the states. The sampled-data x(τk) (k = 0, 1, 2, . . .) of x
are obtained by the sampler S, where τk denotes the k-

th sampling instant. The control input u is determined as
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-

Fig. 1. Non-uniformly sampled data system T

a sampled-data feedback by using a static gain F and a zero

order hold H synchronized with the sampler:

u(t) = Fx(τk), ∀t ∈ [τk, τk+1).

The set of sampling periods {τk}∞k=0 is uncertain but as-

sumed to satisfy τ0 = 0 and

hℓ ≤ τk+1 − τk ≤ hu, ∀k ∈ {0, 1, 2, . . .}
for a given 0 < hℓ < hu <∞. The purpose of this paper is

to verify the stability of T .

The evolution of x at the sampling instants is described

by the associate discrete-time system Td:

ξ[k + 1] = Φτk+1−τkξ[k], Φh := eAh +

∫ h

0

eAτdτ BF.

Here ξ[k] := x(τk). Since it has been pointed out that

quadratic stability of Td implies exponential stability of T
[28], several methods are proposed for analysis and design

for T based on the fact [1], [2], [6], [8], [11], [12], [19], [20],

[24]. The following property shown in [9], however, suggests

the conservatism of the approach based on quadratic stability:

Property 1: The following two conditions are equivalent:

(i) T is exponentially stable.

(ii) Td is exponentially stable.

Namely we could introduce more flexibility to verify the

stability of Td. Along this line, let us consider the following

condition related to a switched Lyapunov function [3] for

Td:

Condition 1: There exist hs ∈ (hℓ, hu) and positive

definite matrices X1 = XT
1 > 0, X2 = XT

2 > 0 such that

ΦhXiΦ
T
h −Xj < 0, ∀h ∈ Hi (1)

for all i, j ∈ {1, 2}, where

H1 := [hℓ, hs], H2 := [hs, hu].

The following lemma with Condition 1 is used in [9] for

stability analysis of T :

Lemma 1: T is exponentially stable if Condition 1 holds.

Lemma 1 is coincident with the stability criterion based on

quadratic stability of Td [28] when X1 = X2, and hence is

expected to be less conservative. In fact, the reduction of the

conservatism is shown in [9] by using numerical examples.

Thus this article considers the following problem:

Problem 1: For a given T , verify if there exists a triplet

(X1, X2, hs) satisfying Condition 1.

Note that Problem 1 contains at least two difficulties of

(i) how to find an hs and (ii) how to verify the condition for

the infinitely many h. In particular the difficulty (i) has not

been discussed in [9].

Remark 1: A multi-modal version of Lemma 1 is used in

[9]. This article focuses on the bimodal case.

III. MAIN RESULTS

This section provides the main results of this paper. We

first discuss how to solve the difficulties in Problem 1 in

Section III-A. Then we develop a method to solve the

difficulties by using LMIs taking account of computational

complexity. Finally we propose a stability analysis algorithm

in Section III-C.

A. Extending the LFT Modeling Approach

References [6], [24] cast stability analysis of T to a robust

quadratic stability analysis of the feedback connection of Σ:

Σ :

{

ξ[k + 1] = Φh0
ξ[k] + w[k]

z[k] = Ψh0
x(τk)

and ∆(θk) for a given h0 > 0, according to the fact that Td is

a feedback connection of Σ and ∆(θk). Here ξ[k] = x(τk),
θk := τk+1 − τk − h0, and

Ψh := AΦh +BF, ∆(θk) :=

∫ θk

0

eAtdt. (2)

The method is extended in [9] to solve the difficulty (ii)

of Problem 1. The following lemma can be implied from

[9, Theorem 1]. The derivation from [9, Theorem 1] is

straightforward so it is omitted.

Lemma 2: Suppose that there exist positive definite ma-

trices X1 = XT
1 > 0, X2 = XT

2 > 0,

G := {h1, h2, . . . , hN} ⊂ [hℓ, hu], hi < hi+1, (3)

k ∈ {1, 2, . . . , N − 1}, γ > 0, and σ > 0 satisfying that

hi+1−hi ≤ θL(γ)+θU (γ), ∀i ∈ {1, 2, . . . , N−1}, (4)

h1 − hℓ ≤ θL(γ), hu − hN ≤ θU (γ) (5)

and

Mh(Xi, Xj , γ, σ) < 0, ∀h ∈ Gi, (6)

for all i, j ∈ {1, 2}, where

G1 := {h1, . . . , hk}, G2 := {hk+1, . . . , hN} (7)

and

Mh(X, Y, γ, σ)

:=

[

Φh σI
1
σΨh 0

] [

X 0
0 I

] [

Φh σI
1
σΨh 0

]T

−
[

Y 0
0 γ2I

]

.

Here θL(γ), θU (γ) are defined by

L1) if µ(−A) = 0 then θL(γ) := γ−1,

L2) else if µ(−A) ≤ −γ then θL(γ) :=∞,

L3) else

θL(γ) :=
1

µ(−A) log
(

1 + γ−1µ(−A)
)

.
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Fig. 2. Alternative representation of Td

U1) if µ(A) = 0 then θU (γ) := γ−1,

U2) else if µ(A) ≤ −γ then θU (γ) :=∞,

U3) else

θU (γ) :=
1

µ(A)
log
(

1 + γ−1µ(A)
)

.

where µ(A) denote the logarithmic norm of A:

µ(A) := λmax

(

A+A∗

2

)

.

Then X1, X2, and any hs ∈ (hk, hk+1) satisfy (1) for all i,
j ∈ {1, 2}.

Remark 2: The symbol σ denotes a trivial multiplier (See

Fig. 2) which will be used later.

Remark 3: The condition (6) represents 2k+2(N −k) =
2N inequalities.

In principle Lemma 2 solves the both difficulties of Prob-

lem 1. Once we fix the candidate of hs, the infinitely many

inequalities in Condition 1 reduce to a finite number of LMIs,

by invoking Lemma 2 with a given σ. Indeed, an LMI based

condition is suggested in [9] for a given candidate of hs and

σ = 1. Moreover it is enough to consider {(hi+hi+1)/2} as

a set of candidates of hs, and one could try all the elements in

turn. For generating G, it is not hard to extend the algorithm

in [6] based on Lemma 2. One might also expect that, once

Td is modeled as a set of finite number of uncertain systems,

it is not hard to apply the method developed in [3] if we

consider a multi-modal switched Lyapunov function.

However a direct application or a straightforward ex-

tension of existing methods should be avoided from the

viewpoint of computational complexity: The grid G may have

a large number of elements. In our numerical experiences

[6], G can contains more than 20 elements. If we apply

the method in [3] to construct a multi-modal switched Lya-

punov function, we have to solve several hundreds (roughly

speaking, the square of the number of the elements in

G) of LMIs simultaneously, that are not tractable. If we

extend the method in [6] to construct a bimodal switched

Lyapunov function in a straightforward fashion, the total size

of resultant LMIs to be solved would be around four times as

large as that in [6], which should be avoided. Hence we need

to develop a computationally cheap and tractable method for

stability analysis by using a switched Lyapunov function.

This will be the subject of the next subsection.

B. Recovering Robustness Considering Total Size of LMIs

In earlier studies based on the associate discrete-time

system Td [1], [21], [28], the range of sampling periods is

approximated by a grid in the range. In other words, Td is

approximated by a set of time-invariant discrete-time systems

related to the grid. If there exists a common quadratic

Lyapunov function for all the time-invariant discrete-time

systems in the set, one could expect that it can play as a

quadratic Lyapunov function of the associate discrete-time

system. There is, however, no theoretical guarantee. In order

to get a rigorous guarantee, the algorithm in [6] constructs a

quadratic Lyapunov function for Td by searching a common

solution to the bounded real LMIs (instead of the Lyapunov

inequalities) for all the discrete-time systems in the set.

In the sequel we will, however, use the approximated set

of systems defined by the gridding to construct a candidate

of a switched Lyapunov function. The purpose is to use

the Lyapunov inequality instead of the bounded real LMI

so that the total size of LMIs to be solved does not grow

much. On the other hand, as opposed to the earlier studies,

we will not ignore the approximation error introduced by

the gridding. Indeed we will see that the candidate of the

switched Lyapunov function satisfies a robustness property

derived from Lemma 2.

As a preliminary we pose two trivial properties related to

the following condition:

Condition 2: There exist β > 0, 0 < X1 = XT
1 ≤ I ,

0 < X2 = XT
2 ≤ I , and hs ∈ (hℓ, hu) satisfying

ΦhXiΦ
T
h −Xj ≤ −βI, ∀h ∈ Hi (8)

for all i, j ∈ {1, 2}.
The following two properties are trivial:

Property 2: Conditions 1 and 2 are equivalent.

Property 3: Suppose that Condition 2 holds. Given G in

(3), there exist 0 < X̂1 = X̂T
1 ≤ I , 0 < X̂2 = X̂T

2 ≤ I ,

k ∈ {1, . . . , N − 1}, and β̂ ≥ β such that

ΦhX̂iΦ
T
h − X̂j ≤ −β̂I, ∀h ∈ Gi (9)

for all i, j ∈ {1, 2}, where β is given in Condition 2.

The following theorem shows that if there exists a bi-

modal switched Lyapunov function for Td, it can be obtained

as that for the discrete-time switched system defined by

the set of time-invariant discrete-time systems related to a

sufficiently fine grid:

Theorem 1: Suppose that Condition 1 holds. Given G in

(3), there exist β̂ ≥ β, 0 < X̂1 = X̂T
1 ≤ I , 0 < X̂2 = X̂T

2 ≤
I and k ∈ {1, . . . , N−1} satisfying (9) for all i, j ∈ {1, 2},
where β is given in Condition 2. Moreover X1 = X̂1, X2 =
X̂2, and hs ∈ (hk, hk+1) satisfy Condition 1 if G satisfies

(4) and (5) for γ > γ0, where γ0 is defined by

γ0 := min
r∈(0, 1)

max
h∈[hℓ, hu]

‖Ψh‖
√

1

rβ

(

1 +
‖Φh‖2
(1− r)β

)

. (10)

The proof is found in the appendix.

Remark 4: Although Theorem 1 is based on the LFT

uncertainty modeling approach [6], [8], [24], it is expected

that alternative results can be derived based on the polytopic

uncertainty modeling approach [1], [2], [11], [12] or the

robust LMI approach [19], [20], by appropriately changing
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the condition “if G satisfies (4) and (5) for γ > γ0” so that

corresponding robustness property is guaranteed.

Theorem 1 guarantees that in principle one can find a set

of (X1, X2, hs) satisfying Condition 1 in a finite step if one

exists. A concrete algorithm will be provided in the next

subsection, and the outline is as follows: Once G is fixed, it

is enough to consider {(hi+hi+1)/2} as a set of candidates

of hs, and one could try all the elements in turn. Hence one

should clarify how to find a candidate of (X̂1, X̂2) for a

given candidate of hs. For the purpose let us consider the

following optimization problem:

Problem 2 (OPβ): Given finite sets G1, G2 ⊂ [hℓ, hu].
Maximize β over (X1, X2, β) subject to










0 < X1 = XT
1 ≤ I, 0 < X2 = XT

2 ≤ I,

ΦhX1Φ
T
h −Xj ≤ −βI, ∀j ∈ {1, 2}, h ∈ G1,

ΦhX2Φ
T
h −Xj ≤ −βI, ∀j ∈ {1, 2}, h ∈ G2.

The problem OPβ is obviously an LMI optimization prob-

lem. For each k ∈ {1, . . . , N−1}, G1 and G2 are determined

as in (7). By solving OPβ for the fixed G1 and G2, the

optimizer (X1, X2, β) is obtained. Since β is maximized

in OPβ, it can play the role of β̂ in Theorem 1 as long as

it is strictly positive, and hence the optimizer (X1, X2) can

be used as a candidate of (X̂1, X̂2).

If the optimized β is not strictly positive for some k,

hs ∈ (hk, hk+1) does not satisfy Condition 1 by invoking

Property 3:

Property 4: Given G in (3) and k ∈ {1, . . . , N − 1}.
Suppose that there do not exist 0 < X̂1 = X̂T

1 ≤ I , 0 <
X̂2 = X̂T

2 ≤ I , and β̂ > 0 satisfying (9) for all i, j ∈ {1, 2},
where G1 and G2 are defined in (7). Then there do not exist

X1 = XT
1 > 0, X2 = X2 > 0, and hs ∈ (hk, hk+1)

satisfying (1) for all i, j ∈ {1, 2}.
Let us consider the case of the maximal β of OPβ is

strictly positive. One can also check whether the maximizer

(X1, X2) and hs ∈ (hk, hk+1) satisfy Condition 1 by

invoking Lemma 2. In particular there exist γ > 0 and σ > 0
satisfying Mh(Xi, Xj , γ, σ) < 0 if and only if there exist

α > 0 and δ > 0 satisfying

[

Φh I
Ψh 0

] [

Xi 0
0 αI

] [

Φh I
Ψh 0

]T

−
[

Xj 0
0 δI

]

< 0 (11)

which is convex in (α, δ). Indeed σ and γ are respectively

given by σ =
√
α and γ =

√

δ/α. Thus one can find a

candidate of (X̂1, X̂2).
Note that X̂1 and X̂2 can be obtained by solving OPβ

which contains simultaneous Lyapunov inequality-like LMIs.

This is contrast to the algorithm in [6], where LMIs related

to (11) are directly solved. Namely one can expect com-

putational complexity reduction in the present algorithm in

compare to that in [6]. In addition, the condition (11) will

be checked without solving LMIs in the algorithm below.

It is not trivial in general to conclude that no (X1, X2,

hs) satisfying Condition 1 exists. Note that β in Condition 2

cannot be obtained a priori and hence one cannot numerically

verify if (4) and (5) are satisfied for the β. The following

Corollary shows that one can conclude either (a) there is no

(X1, X2, hs) satisfying Condition 1 or (b) the decay rate is

slower than the specified level, if one cannot find (X1, X2,

hs) satisfying Condition 1 by using a fine grid:

Corollary 1: Let β > 0 and G in (3) be given. Suppose

that G satisfy (4) and (5) for γ0 in (10) determined by the

given β. If there are no X1 = XT
1 > 0, X2 = X2 > 0,

k ∈ {1, 2, . . . , N − 1}, γ > 0, and σ > 0 satisfying (6) for

all i, j ∈ {1, 2}, there do not exist X1, X2, and hs satisfying

(8) for the given β and all i, j ∈ {1, 2}.

C. Algorithm for Stability Analysis

This subsection provides an algorithm for solving Prob-

lem 1 based on the discussions above. The algorithm obtains

either one of the following three outcomes in a finite steps:

(a) (X1, X2, hs) satisfying Condition 1

(b) a conclusion that Condition 1 does not hold.

(c) a conclusion that either Condition 1 does not hold or

the decay rate is slow in the sense of Corollary 1.

Now we are ready to state the algorithm for stability analysis.

We will use the following definition:

Wh(X, Y, σ) :=
1

σ2
Ψh

(

X −XΦT
h

×
(

ΦhXΦT
h − Y + σ2I

)−1
ΦhX

)

ΨT
h .

Algorithm 1: Given: T , 0 < εγ << 1, 0 < εθ << 1,

0 < εh << 1, r ∈ (0, 1);

Step 0 (initialization)

G1 ← {hℓ}, G2 ← {hu};
Step 1 (find a candidate of the pair X1 and X2)

Solve OPβ;

if β ≤ 0 then

G ← G1 ∪ G2, k = 1;

do

G1 ← the set of the smallest k elements of G,

G2 ← G \ G1,

solve OPβ;

k ← k + 1;

while (β ≤ 0 and k < (# of elements in G)− 1)

if k = (# of elements of G)− 1 then

Condition 1 does not hold;

return

end

end

Step 2 (verification)

hs1 ← hℓ, hs2 ← hu;

repeat

β1 := − max
j∈{1, 2}

λmax(Φhs1
X1Φ

T
hs1
−Xj);

γ1 := (1 + εγ) max
j∈{1, 2}

λ1/2
max

{

Whs1

(

X1, Xj ,
√

rβ1

)}

;

hs1 ← hs1 + θU (γ1);

until (θU (γ1) < εθ(hu − hℓ))
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repeat

β2 := − max
j∈{1, 2}

λmax(Φhs2
X2Φ

T
hs2
−Xj);

γ2 := (1 + εγ) max
j∈{1, 2}

λ1/2
max

{

Whc2

(

X2, Xj ,
√

rβ2

)}

;

hc2 ← hc2 − θL(γ2);

until (θL(γ2) < εθ(hu − hℓ))

if (hs2 ≤ hs1) then

hs ← (hs1 + hs2)/2;

(X1, X2, hs) satisfies Condition 1;

return

end

if (|hi − hj | ≤ εh(hu − hℓ), ∀hi, hj ∈ G1 ∪ G2) then

No (X1, X2, hs) found with the specified fineness of G;

More information from Corollary 1;

return

end

G1 ← G1 ∪ {hs1 + (hs2 − hs1)/3};
G2 ← G2 ∪ {hs2 − (hs2 − hs1)/3};
goto Step 1

Remark 5: In Step 1, Td is approximated by a discrete-

time switched systems with finite modes and then a switched

Lyapunov function is searched for the approximated system.

There exists a switched Lyapunov function for Td only if

there exists one for the approximated system. See Property 4.

Remark 6: Step 2 verifies if there exist hs1 and hs2 such

that X1 and X2 found in Step 1 satisfy

ΦhXiΦ
T
h −Xj < 0, ∀h ∈ Hi,

for all i, j ∈ {1, 2} and hs ∈ [hs2, hs1] by invoking

Lemma 2. Note that (6) is verified by checking the maximal

eigenvalue of Wh, which is much cheaper than solving LMIs

related to (11).

IV. NUMERICAL EXAMPLES

This section demonstrates the effectiveness of the pro-

posed algorithm by numerical examples. Let us consider the

following parameters for T :

A =









0 1 0 0
0 0 1 0
0 0 0 1
0 −1 −3 −3









, B =









0
0
0
1









,

F = −
[

1 2 2 1
]

, hℓ = 0.100, hu = 3.293.

By checking the quadratic stability of Td, one can verify that

there is no X = X∗ > 0 satisfying

Φ0.32XΦT
0.32 −X < 0

and

Φ3.13XΦT
3.13 −X < 0

simultaneously. In other words, Td is not quadratically stable.

Hence we emphasize that most of methods in the literature

cannot conclude stability of T .

0 10 20 30 40
−2

−1

0

1

2

t

x1(t)

Fig. 3. Initial value responses

We have also computed initial value responses for 100

sets of randomly generated x(0), which is normalized, and

{τk} with hℓ = 0.32 and hu = 3.14. The results are shown

in Fig. 3, where the initial value responses of the first state

x1 are plotted. We observe the convergence of x1. Similar

convergences of all the other states are observed.

On the contrary to the quadratic stability based analysis,

the proposed algorithm can find a switched Lyapunov func-

tion determined by

hs2 = 2.3311, hs1 = 3.0532,

X1 =









0.3423 −0.1151 −0.0741 −0.0034
−0.1151 0.1978 −0.0688 −0.0294
−0.0741 −0.0688 0.1738 −0.0894
−0.0034 −0.0294 −0.0894 0.2181









,

X2 =









0.7566 −0.3331 −0.2036 0.0623
−0.3331 0.4277 −0.1971 0.0654
−0.2036 −0.1971 0.5439 −0.3131
0.0623 0.0654 −0.3131 0.3031









.

This demonstrates the usefulness of the proposed algorithm.

V. CONCLUDING REMARKS

We have developed an algorithm for stability analysis of

non-uniformly sampled-data feedback system which con-

structs a bimodal switched Lyapunov function [3] for the

associate discrete-time system. The proposed algorithm con-

structs a bimodal switched Lyapunov function in a finite

step if one exists, and composed of two stages: In the first

stage a candidate of (X1, X2, hs) is obtained by solving

LMIs of reasonable dimensions, and it is verified if the

candidate satisfies Condition 1 without solving LMIs. Hence

the algorithm is tractable.

Open issues include to extend the proposed algorithm to

multi-modal case. It is not difficult to generalize Theorem 1

to multi-modal case, but it is not trivial how to extend the

whole algorithm.
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APPENDIX

Here we provide a proof of Theorem 1.

The first statement is a direct consequence of Properties 2

and 3. Hence we prove the second statement.

What we should prove is that there exists σ > 0 satisfying

Mh(X̂i, X̂j , γ, σ) < 0 (12)

for all γ > γ0, h ∈ Gi, and i, j ∈ {1, 2}.
One can verify that (12) is equivalent to

ΦhX̂iΦ
T
h − X̂j + σ2I < 0, (13)

Wh(X̂i, X̂j , σ)− γ2I < 0 (14)

where Wh is defined in Section III-C. Since (9) holds, (13)

is satisfied if σ2 ≤ β̂. Let us take σ =
√
rβ with r ∈ (0, 1)

where β is determined in Condition 2.

Since r ∈ (0, 1), (9) also implies

ΦhX̂iΦ
T
h − X̂j + rβI ≤ −(1− r)β

which is equivalent to

−(ΦhX̂iΦ
T
h − X̂j + rβI)−1 ≤ 1

(1− r)β
I.

Hence one has

Wh(X̂i, X̂j ,
√

rβ)

≤ 1

rβ
Ψh

(

X̂i +
1

(1− r)β
X̂iΦ

T
hΦhX̂i

)

ΨT
h

≤ 1

rβ
‖Ψh‖2







∥

∥

∥X̂i

∥

∥

∥+

∥

∥

∥X̂i

∥

∥

∥

2

‖Φh‖2

(1− r)β






I

≤ 1

rβ
‖Ψh‖2

(

1 +
‖Φh‖2
(1− r)β

)

I

≤ γ2
0I < γ2I.

Thus (14) is obtained. This completes the proof.
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