
  

Abstract — This paper addresses a robust H∞ filtering 
problem for networked systems that are subject to both random 
transmission delays and packet dropouts. To start with, a data 
transmission model is established by employing random series 
with Bernoulli distributions. A sufficient condition for robust 
stability with H∞ constraints is derived for the filtering error 
system. The robust filter is designed in terms of the feasibility of 
a linear matrix inequality (LMI). The numerical examples are 
provided to show the effectiveness of the data transmission 
model and the proposed filtering method. 

I. INTRODUCTION 
ITH the rapid advances in networking and 

communication technologies, networked systems are 
becoming ubiquitous across an increasing number of 

fields including industry, environment, economic, military, 
and so on. State estimation over networks plays a key role in 
applications such as remote sensing, space exploration, and 
sensor networks [1-3]. However, the use of a shared network 
in contrast to using several dedicated independent 
connections present some new challenges: the inevitable 
transmission delays such as network-induced delays, packet 
dropouts, and missing measurements. The transmission 
delays and dropouts are of random nature. In this case, the 
data in networked systems lose causality and are uncertain. 
Moreover, transmission delays and dropouts are two major 
factors leading to the degradation of system performance. 
Thus, to investigate the modeling and filter designing for 
networked systems is of great significance. 
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Different aspects of networked filter design have been 
studied extensively in the literature. The modeling of the 
transmission delays and data dropouts has been investigated 
in a number of recent studies ([4-7]). In general, two common 
approaches are employed to develop stochastic models for 
time delay and data dropout. One is Markov chains. The other 
is binary random series. Some studies utilized Markov chains 
to model packet dropouts (see [4][6] and the references 
therein). The main problem of the Markov chain approach is 
to how to identify the number of states in a Markov chain and 
how to get the transient probability in the hidden Markov 
models. The binary random series approach has received 
much attention due to its practicality and simplicity. A 
common practice is to use Bernoulli distribution to model 
data transmission process in networked systems. Most related 
studies have considered the situation that only time delay or 
packet dropout is present.  

There are some recent works that have considered the 
problem of state estimation in networked systems. References 
[8] and [9] formulated the multiple random packet dropouts 
by representing the dropout as a Bernoulli distributed 
parameter in the system model. Stochastic H2 and H∞ norms 
of the estimation error systems were defined and robust filters 
were proposed. Reference [10] studied optimal estimators, 
which included filter, predictor and smoother via an 
innovation analysis of a stochastic parameter uncertainty 
model. A recent reference [11] studied a type of 
linear-minimum-variance filter for packet dropouts in the 
case that packet dropouts are Bernoulli distributed. The 
aforementioned studies have focused on data dropout, 
without consideration of transmission delay. References [8][9] 
stated that transmission delays and packet dropouts could be 
treated within the framework proposed therein, though no 
explicit results were presented. Furthermore, reference [12] 
proposed a robust filtering scheme for nonlinear networked 
systems with delays and packet dropouts, but the 
communication delays and dropouts were incorporated in the 
system model, instead of in the measurement. Reference [13] 
introduced a weighted H∞ performance index to investigate 
the filter design problem for networked systems with multiple 
sensors, which focused more on the dropouts and bounded 
the transmission delays.   

In this paper a robust H∞ filtering problem for networked 
systems that are subject to both random transmission delays 
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and packet dropouts is considered. The main contributions of 
this paper are summarized as follows: 1) a new data 
transmission model in networked systems is proposed to take 
into account random delays and packet dropouts, via 
Bernoulli process; 2) stochastic analysis is conducted to 
enforce H∞ performance for the proposed model; 3) the robust 
stability condition is derived with the filter parameters 
designed by LMI technique. 

Notation: nR  denotes the n-dimensional Euclidean space 
and mnR ×  the set of all mn ×  real matrices. 'A  denotes the 
transpose of matrix A . YX ≤  or YX < , respectively, 
where X and Y are symmetric matrices, means that XY −  
is positive (semi-) definite. I  is the identity matrix with a 
compatible dimension. In symmetric block matrices, ∗  is 
used as an ellipsis for terms induced by symmetry. 

}{⋅E stands for the mathematical expectation of }{⋅ . 

}var{⋅ stands for the variance of }{⋅ . 

I.  DATA TRANSMISSION MODEL 
Figure 1 depicts the relationship between the plant and its 

filter in a networked environment. The plant is a discrete-time 
linear system subject to random disturbances and the sensor 
data are contaminated with noise. The aim of robust filtering 
is that designing the filter to minimize the H∞-norm for the 
transfer function from the noise signals to the filtering errors. 

Plant Network
delays & dropouts

Filter

z�

w�
y� y

ˆẑ Lx=+
-
ˆe z z= −�

+

 
Fig 1.  Plant and Filter in Networked Systems                            

The plant can be represented by the following equations: 
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where n
k Rx ∈~  is the state vector; m

k Ry ∈~  is the 

system output; n
kz R∈�  is the signal needed to be estimated; 

m
ky R∈  is  the result which ky� is transmitted through 

network, i.e. the filter input; kw~  is system noise which 

include dynamic noise and measurement noise; 0a , 0b , 0c , 

0d , 0L  are constant matrices with appropriate dimensions.  

The system output ky~  passes through the network and 
there may be random delays and dropouts. We adopt two 
random series }{ kδ and }{ kγ to describe delay and dropout 

happening situation, moreover assume that kδ  and kγ  are 

independent of each other, kw , and the initial state values. 

Remark 1: The stochastic series }{ kδ  and }{ kγ , 

0,1, 2,...k = , consist of independent and identically 
distributed Bernoulli random variable, taking the values of 0 
or 1 with probabilities: 
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From the statistical view, the data transmission model in 
networked systems is established based Table I.  

TABLE I 
THE REALATIONSHIP BETWEEN  

THE SYSTEM OUPUT ky� AND THE FILTER INPUT ky  

Probabilities Dropout (1 kγ－ ) No dropout ( kγ ) 

Delay 
(1 kδ－ ) 

 

1)k k ky yγ −＝(1-  
 

11 )k k k ky yγ δ −�＝ （－

No delay 
( kδ ) 

 

1)k k ky yγ −＝(1-  

 

kkkk yy ~δγ＝  

 
The dropout and the delay are modeled as follows: The 

probability of no dropout is α , i.e. αγ == 1}{ kprob , 

and the probability of no delay is β , i.e. 

βδ == 1}{ kprob . If there is no dropout and delay 

happened, kkkk yy ~δγ＝ , otherwise, if there is no dropout 

but delay happened, 11 )k k k ky yγ δ −�＝ （－ ; if there is 
dropout happened, whether delay is happened or not, 

11 －）－＝（ kkk yy γ .  

According to this model, the current observation ky  is 

obtained from the system output ky~ , so the estimator input is  

11 )1(~)1(~
−− −+−+= kkkkkkkkk yyyy γδγγδ                (3) 

Combining Equation (1) and (3), we get the system 
dynamics formulation with delays and dropouts as follows: 
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Remark 2: In order to get the compact formulations and 
design the filter, we will augment the system states twice.  

First we define a new state vector 
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and  
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Then an augmented state-space model can be expressed as 
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where k kz z= � , ,a b , ,c d  are the augment system 
matrices which are random and are as follows: 
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Based on the system (7), the estimator for kx~ by finding 

the estimation kx̂ should be designed, such that the H∞ -norm 
of the filtering error dynamics is minimized. The filer is as 
follows: 
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where â , b̂ , L̂ are the filter parameters which need to be 
obtained. The filtering error is defined as kkk zze ˆ−= . 

 Furthermore, define 
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the augmented state-space model combing system (7) and 
filter (8) can be expressed as: 
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According to the definition of system’s norm, the system’s 

H∞ -norm is defined as in [14]: 
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Consider the robust stability with H∞ constraints for 
system Σ . 

Theorem 1: Given the system (1) and the filer (8), 
for 0>γ , the filtering error system (9) is asymptotically 

stable and satisfies γ<Σ
∞

2
, if there exist positive 

matrices P , such that 
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Proof: Choose the Lyapnuov candidate function 
{ }kkk PEV ξξ ′= . 

When 0=kw ,  

{ } kkkk PPAAEVVV ξξ )(1 −′′=−=Δ +  

Because 0≥′CC , we get   
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Thus the filtering error system is asymptotically stable. 
When 0≠kw ,  
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where Φ equals the left side of (12) , i.e. 0<Φ .     

0)ˆ( 222 <−−Δ kkk zwV γ  i.e. 

                              kkk Vwz Δ−< 222ˆ γ                 (13) 

To sum up both sides of (13) for ∞= ,,0 …k ,   
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Considering zero initial conditions, we can conclude that 
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The proof is completed. 

II. FILTER DESIGN 
This section is devoted to the design of robust H∞ filter 
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parameters, â , b̂ and L̂ according to the result in Theorem 1. 
The robust filtering problem can be stated as follows: 

Design a filter as in (8), such that the filtering error dynamics 
in (9) is asymptotically stable and the H∞ criterion in (11) is 
satisfied. 

 Consider the filtering error dynamics defined in (9). By 
using Theorem 1, the H∞ filtering problem can be formulated 
as  

 γ
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In order to deal with the random system parameters, we 
introduce two random series{ }kγλ ,{ }, 1,2...k kδλ = , s.t. 
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For the first augment system (7), we obtain 
 122100 aaaaa kkkk δγδγ λλλλ +++= , 

00 1 2, ,a a a  and 12a are constant matrices as follows: 
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Define 1 1 1qa q a= , 2 2 2qa q a= , and 12 1 2 12qa q q a= , we  

get                   
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where, 00 1 2 12, , ,b b b b , 00 1,c c , 2 12,c c and 00 1,d d , 

2 12,d d  can be easily computed based  system parameters. 

For the filtering error dynamics (9), we get 
  12210 AAAAA kkkk δγδγ λλλλ +++=  

0A , 1A , 2A and 12A  are constant matrices and can be 

computed via the similar way with 00 1 2, ,a a a  and 12a ,so 
we omit them here. 

Define 122112222111 ,, AqqAAqAAqA qqq === , then 

for A we have 
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obtained by the similar way with 0 1, qA A , 2 12,q qA A . 
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According to Schur complement:    
01 <ΨΠΨ′−Γ −  

is equivalent to 
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                           (17) 

Remark 3: The above inequality is not an LMI style. In 
order to design the filter parameter, we should depart them 
from the compound matrix ,i iA B  and , 1, 2,12iC i = , then 
transform (17) into LMI.  

As 1−P exists, we put 1−= PQ , separate P and Q as 
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where X,Y are ( ) ( )m n m n+ × +  and 2X , 2Y are 

)*( nn  symmetric and positive definite matrices. Define the 
matrix 

⎥
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⎢
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Applying the congruence transformation twice on the (17), 
the first transformation matrix is ( )IQIIIIIdiag ,,,,,, , 

the second is ( )ITITTTTdiag ,,,,,, . For descriptions 
convenience, define, 
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Then we get the following LMI: 
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where i=1,2,12. Thus, we can get the robust filtering design 
theorem in networked environments with random time delay 
and packet dropout as follow:  

Theorem 2: The H∞ filter design for system (1) is 
equivalent to the following convex programming problem: 

       γ
PLba ,ˆ,ˆ,ˆ

min   s.t. (16) 

and the filter parameters are given by   

               
1

111

)'(*ˆ
,)'(ˆ,)'()'(ˆ

−

−−−

=

==

UZGL

FVbUZJVa
  (19) 

Remark 4: In order to find the filter parameters, Lba ˆ,ˆ,ˆ , 

we need to know two matrices U and V , which do not 
appear in the LMI. Although the nonsingular matrices U and 

V  can be found from the fact IPW = , they are not square 
matrices. We giveV and use generalized inverse matrix, then 

get 11 )'()( −− −= VVVIYZU . 

III. SIMULATION 
In this section, we aim to demonstrate the effectiveness and 

applicability of the proposed method.  
Simulation 1: Considering a discrete -time LTI system 

represented by (1) with the following coefficients:  

0 0

1.7240 0.7788 0.5
; ;

1 0 1
a b

−⎡ ⎤ ⎡ ⎤
= =⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦
 

[ ]0 0 0 20.0286 0.0264 ; 1; 0.01c d L I= − = =  

Given the dropout rate and delays probability are 0.8 and 
0.2, we come up with the design of a robust filer with the H∞ 

norm of the filtering error system less than 1. Set the initial 
condition  

 [ ]'
0 0 0x = , [ ]'

0 0 0z =�  and [ ]'
0ˆ 1 1x = − − , 

[ ]'
0ˆ 0.1 1z = − − ,  

and the measurement noise is normally distributed white 
noise. 

 According to the theorem 2 and by means of the Matlab 
LMI toolbox, we solve the convex optimization problem (15) 
with parameters given by (19) and yield: 

0.1773 0.0067 0.0346ˆˆ ; ;
0.0931 0.0012 0.6079

a b
− −⎡ ⎤ ⎡ ⎤

= =⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦
 

   
0.0298 0.0078ˆ
0.0615 0.0156

L
−⎡ ⎤

= ⎢ ⎥
⎣ ⎦

 

The H∞ norm of the filtering error system is 0.2067 and the 
minimal value of γ  is computed to be 0.1938. Fig.2 shows 
the simulation results of the proposed method.  

Remark 6: In order to model practical situation, we 
generate random numbers to simulate time delays and 
dropouts in the above program. Based on our transmission 
model, α is 0.2, β is 0.2, therefore the minimal value ofγ  is 
0.0937.  

Simulation 2: We assume there is no disorder of data 
transition and the filter will adopt the newest data when there 
are more than one data arriving. We further study the special 
case, i.e. the transmission delay is longer than one sample 
interval and less than three sample intervals.  

According to the data transmission model given by section 
II, we get the relationship between system outputs and filter 
input:  

1 2 3(1 ) (1 )k k k k k k k k ky y y yγ γ δ γ δ− − −= − + + −� �   
Remark 5: When the transmission delay is longer than one 

sample interval and less than three sample intervals, there will 
be three possibilities at time k:1). There is no new data arrive, 
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and the filter input is 1k ky y −= , with the probability1 kγ− ; 

2). There is one data arrive, and the arriving data is 3ky −� , so 

the filter input is 3k ky y −= � , with the probability 

(1 )k kγ δ− ; 3). There are some data arrive, and the arriving 

data is 2ky −�  or two data arrive. In such case, 2k ky y −= � , 

with the probability k kγ δ . 
Let the system’s parameters are as follows: 

0 0

0.5 0.24 0.4
;b ;

0.12 0.5 0.2
a

− −⎡ ⎤ ⎡ ⎤
= =⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦

 

0 0 0 2[ 0.2 0.4]; 1; 0.01c d L I= − − = =  
Given the dropout rate and delays probability are 0.8 and 

0.2 and using the similar method with section III, we get the 
robust filter for the system with transmission delay is longer 
than one sample interval and less than three sample intervals 
as follows: 

0.0062 0.0993 0.0599ˆˆ ;
0.0013 0.3386 0.0002

a b
− −⎡ ⎤ ⎡ ⎤

= =⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦
 

0.0030 0.7845ˆ
0.0081 3.5278

L
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

 

The minimal γ  is 0.4262. Fig.3. shows the simulation results 
of the proposed method. 

 
Fig 2.  Actual (blue star line) and estimate state (red real line)for robust 

filtering with α=0.2, β=0.8 

 
Fig. 3 Actual (blue dot line) and estimate state (red real line)for robust 

filtering with α=0.2, β=0.8   

IV. CONCLUSIONS 
   In this paper, the problem of data transmission model and 

robust filtering for networked systems with random delays 
and packet dropouts has been studied. A data transmission 
model is established by employing random series with 
Bernoulli distributions. Stochastic analysis is conducted to 
enforce H∞ performance for the proposed model. The robust 
filtering problem is cast as a convex optimal problem and is 
solved by the LMI technique. Simulation examples show the 
applicability and effectiveness of the proposed model and 
filter design.  
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