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Abstract— A key problem of memory based learning methods
is the selection of a good smoothing or bandwidth parameter
that defines the region over which generalization is performed.
In this article we present a novel algorithm to answer this
question by utilizing the information from confidence intervals,
to compute a bandwidth. The basic idea is the usage of
confidence intervals to get a statistical statement about the
quality of fit between estimated model and process. As long
as the prediction intervals of a certain model include the
neighboring data points of an incremental growing validity
region, it is considered to be a good fit.

I. INTRODUCTION

Lazy learning [1], also known as Just-in-Time modeling

[2], [3], Model on Demand [4] or instance-based learning

[5], is a powerful approach for data based modeling. Until a

query, also called novel instance, needs to be answered, data

is stored without further processing. Only then relevant data

is extracted from the database to allow the estimation of a

model to answer the query. This design allows an inherent

ability for adaptation, a desperately needed attribute, if the

adaptive qualities of other approaches like neural networks

is insufficient. There are several Examples of possible ap-

plication, where a lazy learning approach is advantageous:

Systems with shifting limits [6] or rapidly changing systems

in online applications, where frequent re-training, to adapt a

model, is impractical.

A recurring question is, which data should be used to

fit a model in memory-based learning methods for good

results [7]. This article presents a robust algorithm, which

is able to estimate a reasonable region size for a valid

neighborhood in the data volume. The Goal is, to select those

samples from the whole data set, which are required for a

good estimation of the model in the current operating point.

The paper is organized as follows: Section II delivers some

insight into Model on Demand theory. Section III briefly

explains confidence and prediction intervals. In Sec. IV

a novel algorithm to find a reasonable size for a valid

neighborhood is presented. An useful improvement to the

algorithm is presented in Sec. V. Last but not least Sec. VI

states the conclusion of this paper and sums up the results.

II. MODEL ON DEMAND

For an n-dimensional input space a model output is to be

calculated. Model on Demand aims to compute an answer

for a query point, where no observation is given. Only

a data cloud M is given, which in most of all cases can

not give a direct answer to a query. Model on demand

approximates a model for the query, such that some kind of

interpolation can be evaluated.

The evaluation of a model always requires four steps. First,

a valid neighbor region N around the query point q must be

selected out of the data set M, to approximate a model:

N ⊆ M ∈ R
p . (1)

This neighborhood N contains all data points that are nec-

essary, to reliable estimate the parameters of the model.

The aim is to find a N to describe the query q with a

chosen model as good as possible. The relevance of each

data point is determined by its distance d from the query.

Each data point consists of an output value y and an input

vector xi or zi. Similar to premise and consequent variables

used in Fuzzy Systems, not all information within the data

input vector needs to be used for the distance calculation

or approximation of the model parameters. They may, but

do not need to, include the same information. Therefore

we distinguish between an input vector zi to calculate the

distance and an input vector xi to estimate the parameters,

which may be equal, but that is not a requirement as stated

above,

xi, zi ∈ N . (2)

A typical distance function is the Euclidean distance

dEuclidean =

√

√

√

√

p
∑

j=1

(

zj − qj

)2
=

√

(z − q)T (z − q) , (3)

where p is the dimension of z. There are several ways

[8] to define a reasonable size of the neighborhood. One

common and very simple approach is the limitation of

N to the k nearest neighbors (knn) [9]. Then, N consists

only of those k data points with the k smallest distances

to the query, see Fig. 1. The most important question is

how to choose k, or the size of N. Common approaches

for an approximated solution to this problem are methods

like leave-one-out cross validation [10], [11], [12]. These

are able to find a global optimum for k, i.e. valid for the

entire input space. But this is not the desired result, since

we are looking for a local model. A good choice of k

may depend strongly upon where the query is, for a good

trade-off between bias and variance error. Additionally, if
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there are multiple queries and the underlying data amount

changes, as in a time varying process, it must be reapplied

to account for the changed data set. Obviously, this is very

time consuming, especially, if M consists of many data

points. A new algorithm is presented in this paper, which

is an outperforming alternative to existing approaches, see

Sec. IV. The size of the neighborhood problem for the knn

approach can also be interpreted as a bandwidth problem

with a uniform weighting function, see [8].
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Fig. 1. A two-dimensional example (p = 2) of a query and neighborhood
including its three nearest neighbors

The second step of modeling is to choose the model

structure. Typically, linearly parameterized model structures

like polynomials are chosen, because in practice this often

leads to well generalized fits, but other model structures

are also possible. It is not advisable to use a high order

polynomial in the case of high dimensional data, as it

requires the computation of many parameters and high

dimensional spaces tend to be sparsely occupied. A low

order polynomial is sufficient in most applications.

The third step is, to estimate the parameters θ of the

chosen model, based on the valid neighborhood region. The

regressors xi correspond to the underlying model structure,

e.g. a second order polynomial in two dimensional space has

the regression vector

xT
i =

[

1 u1(i) u2(i) u1(i)u2(i) u2
1(i) u2

2(i)
]

. (4)

It is beneficial to store the data points xi ∈ N in a

matrix equation. This leads to the standard least squares (LS)

formulation:

X θ = y , (5)

where X is the regression matrix whose ith row is xT
i and

y whose ith element is yi, representing the ith data point.

This equation can be solved efficiently with LS, see [13].

The result achieved is the estimated parameter vector θ̂. The

LS solution is

θ̂ =
(

XTX
)

−1

XTy . (6)

As the last step, the model output ŷ for the query q is

calculated. With the estimated parameters of the model the

generalized solution for the query is

ŷ(q) = qT θ̂ . (7)

III. CONFIDENCE AND PREDICTION INTERVALS

After a model is estimated, it is of great interest to know

how valid this model is. A common way to judge the quality

of a model is the concept of error bars. In order to compute

the error bars of an estimated model, some information about

the accuracy of the estimated parameters is needed. As shown

in [13] [14] it is possible to describe the accuracy of the

estimated parameters by its covariance matrix

cov{θ̂} = E

{

(

θ̂ − E{θ̂}
)(

θ̂ − E{θ̂}
)T

}

. (8)

When E{X} = X , i.e., X is deterministic and, if white

noise of variance σ2 is assumed, it can be shown that

cov{θ̂} = σ2

(

XTX
)

−1

. (9)

As one is interested in the absolute values of cov{θ̂},

an estimate of σ2 is required. The noise variance is usually

unknown, but it can be estimated from the residuals. One

simple unbiased estimator of σ2 is [15]

σ̂2 =
eTe

N − n
, (10)

where e = y − ŷ. The denominator in the above formula

represents the degrees of freedom of the residuals, that is, the

number of data samples N minus the number of parameters

n. It is wise to use these estimates carefully, since they

are based on the assumption of additive white measurement

noise and a correctly assumed model structure. These as-

sumptions can be quite unrealistic. Especially, considerable

errors due to a structural mismatch between process and

model can be expected for almost any application.

As described by (9), the parameters of a model can be

estimated only with a certain variance, given finite and noisy

data. The estimated model output ŷ is

ŷ = X θ̂ . (11)

The parameter covariance matrix cov{θ̂} determines the

accuracy of the model output for a given input:

cov{ŷ} =E
{

(ŷ − E{ŷ}) (ŷ − E{ŷ})
T
}

(12a)

=E

{

(

X
(

θ̂ − E{θ̂}
))(

X
(

θ̂ − E{θ̂}
))T

}

(12b)

=X E

{

(

θ̂ − E{θ̂}
)(

θ̂ − E{θ̂}
)T

}

XT . (12c)
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Thus, the covariance matrix of the model output ŷ is

cov{ŷ} = X cov{θ̂}XT (13a)

= σ2 X
(

XTX
)

−1

XT , (13b)

under the assumption E{X} = X . Since the diagonal entries

of cov{ŷ} represent the variances of the model output for

each data sample in X , the error bars can be defined as

ŷ plus and minus the standard deviation of the estimated

output, that is,

|ŷ − y| = ŷ ±
√

diag (cov{ŷ}) . (14)

It is important to notice that the equations (12)-(14)

show the confidence intervals based on the variance of the

estimated parameters. If the model fits the data well, the

confidence intervals become narrower, as more data points

are added and the parameters are estimated more reliable. To

calculate the prediction intervals, which include a constant

percentage of the data points of N around the approximated

model, the noise variance of the data must be included. The

equation becomes

|ŷ − y|σ = ŷ ±
√

diag (σ2 + cov{ŷ}). (15)

Furthermore, one does not want a prediction interval with just

±σ around the estimated model. These prediction intervals

would only include about 68% of all data points. Thus,

a factor to enlarge the prediction intervals is needed. In

addition, N may include only a low number of data points,

so one has to keep in mind, that a small number of data

points is possible. As a normally distributed population

is assumed, a compensation for a small sample size is

necessary. One solution to this problem is the usage of

Student’s t-distribution, to compensate for low numbers of

N . The prediction interval with a significance level α for a

query results in

|ŷ − y|α = ŷ ±
√

diag (σ2 + cov{ŷ}) · t1−α

2
, (16)

where t is Student’s t-distribution for N − n degrees of

freedom. In the following examples α = 0.05 is used.

IV. CONFIDENT NEAREST NEIGHBORS

As noted above, prediction intervals can be used to make

a statement about the probability that an estimated model is

a good description of nearby data points. This property shall

now be exploited to find a reasonable neighborhood N. The

basic idea hereby is an incrementally growing neighborhood

N [16]. After each iteration all data points within N are

checked, if they are engulfed by the prediction intervals of

an approximated model. A simple algorithm is

1) Calculate the distance d of all data points of M to the

query and sort them by increasing distance.

2) Initialize the neighborhood N0 of the model with a

minimum number of nearest neighbors. To initialize

the neighborhood N0 at least one more data point than

parameters to estimate is necessary: N0 = N(n+ 1) .
3) Estimate the parameters θ̂ of the model and calculate

the prediction intervals for Ni.

4) Check, if all data points of Ni are within the prediction

intervals.

a) If more than α% of the data points of Ni are

outside of the prediction intervals, Ni−1 is the

desired neighborhood.

b) If less than α% of the data points of Ni are

outside of the prediction intervals add the next

nearest neighbor to Ni+1 and go to 3).

A step size larger than one data point per iteration is

also possible and further improvements can be made, if the

computed information about the noise is used to approximate

the model. But those are open topics for further research.

A. Results

The algorithm for reliable nearest neighbors shows

several appealing features. First of all, it inherits the flexible

neighborhood region of the k nearest neighbor approach.

This is a mayor advantage in contrast to a kernel [8]

based method. Imagine a constant kernel bandwidth for

the neighborhood of a query. In a sparsely occupied data

space it is comprised of few data points, while in a dense

data space it contains many data points. The knn approach

is resistant against different densities of data points in

one data set. The k nearest neighbors is a constant value

that does not change. Whether the data is dense or not,

N contains the same number of data points. If the data

points are very compact, the spatial extent of N is small,

if the density is low, it is rather large. Thus, the algorithm

is by this inherited feature adaptive to the density of the data.

Secondly, as the prediction intervals are narrow bands

around the approximated model, a change of the gradient

of the respective function leads to data points, which are not

within the confidence intervals any more. As an example

where this feature is easily observable, we use the function

y =
1

1.1− u
, (17)

see Fig. 2a, with 50 equal distanced data points with

low noise (σ2 = 10−5) and a first order polynomial for

modeling. We expect the algorithm to decrease the size

of N as the gradient of y(u) increases, because the error

between model and data increases. The resulting size of

the neighborhood computed with the described algorithm is

depicted in Fig. 2b. In the left part of Fig. 2a the change

of the gradient is low and the chosen model fits the data

points. The resulting neighborhood depicted in Fig. 2b with

about 20 data points is rather large. While one proceeds

to higher values of u the change of gradient ascends and

the chosen model is increasingly worse at following the

data. This means that for a decreasing size of N more data

points leave the prediction intervals and the algorithm stops.

Thus, the algorithm adjusts the size of N to the slope of the

gradient. Note, that the variance of noise was not announced

to the algorithm and hence was approximated according to

(10). The result is shown in ŷ(u). If the true variance of the

noise is given to the algorithm, its performance improves
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Fig. 2. a) Sample one-dimensional function b) Resulting size of N.

dramatically. This behavior is shown in ŷσ2(u)

Thirdly, the prediction intervals depend directly on the

noise of the data. This is an example of a sine wavelike

function

y(u) = sin (2 π u) + 2 u (18)

with additive white noise of variance σ2 = 4 · 10−5 and 100

equally distanced data points, see Fig. 3. The model used
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ŷ(0.2)
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N

Fig. 3. Resulting model, prediction intervals and N for q(u = 0.2) and
low noise.

for the query q(u = 0.2) is a second order polynomial. As

the noise is low, the prediction intervals are narrow. This

leads to a narrow N(u ≈ 0 . . . 0.4). The algorithm is aware

of data points, which do not fit the assumed model and

stops the growth of N. If the noise is more noticeable with

σ2 = 4 · 10−2, see Fig. 4, the prediction intervals include

a much larger space between them. This shows, that the

algorithm is less strict about the deviation of data points

from the model, which leads to a grown N(u ≈ 0 . . . 0.6).
The neighborhood is about 30% larger, as more data points

are within the prediction intervals. The neighborhoods shown

in Fig. 3 and Fig. 4 are the last Ni the algorithm accepts
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Fig. 4. Resulting model, prediction intervals and N for q(u = 0.2) and
stronger noise

as valid before stopping. As shown in these examples, the

algorithm is able to adjusts the size of the valid neighborhood

to the noise within the data.

V. CONFIDENT NEAREST NEIGHBORS WITH KERNEL

FUNCTION

Without a kernel function the algorithm described above

is sensible to migration of data, as it will enlarge N, if the

gradient of the underlying function changes. An example of

a worst case scenario is a query in the middle q(u = 0.5)
of function (18). The Goal is, to approximate it, without any

knowledge about the noise. As the gradient slowly changes

on both ends in different directions the approximation of

the noise becomes increasingly wrong. Directly linked to the

approximated variance of the noise, the prediction intervals

grow. In the end, too many data points form the neighbor-

hood before the algorithm stops, as shown in Fig. 5. While

Ni

Fig. 5. Estimation error and prediction intervals in each iteration for q(u =
0.5) and low noise

it is possible to manually avert this behavior by adjusting α,

or define a maximal size of N, this is far from ideal, because

the need for manual intervention is an unappealing attribute.

Note that this behavior can occur on any data set.

A robust solution to this problem can be achieved. The

estimated model for N can be stabilized by forcing the

estimated model to depend mainly on the neighbors close
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to the query. An approach to solve this is the application

of a weighting function, also known as kernel function,

which makes sure that the data points near the query are

more important to the estimation of θ, see [8]. One common

weighting or kernel function is the Gaussian curve which

can be described by

qi = e

(

−

d
2

i

2

)

i = 1 . . .N (19)

The general solution to the weighted least squares opti-

mization problem (6) is

θ̂Q =
(

XTQX
)

−1

XTQy . (20)

where Q is the weighting matrix. In the approach presented

here the weighting matrix has a diagonal structure. The

matrix entry Qii is given by qi. Similar to (11) the estimate

of the model with weighted parameters is

ŷQ = X θ̂Q . (21)

As shown in [13], the estimated weighted covariance matrix

of the parameters cov{θ̂Q} follows

cov{θ̂Q} = σ2
Q

(

XTQX
)

−1

XTQQX
(

XTQX
)

−1

,

(22)

with the weighted estimation of σ2

σ̂2
Q =

eTQe
(

N
∑

i=1

qi

)

− n

. (23)

The covariance matrix of ŷQ changes accordingly to

cov{ŷQ} =X cov{θ̂Q}XT
(24)

=σ
2

Q X
(

X
T
QX

)

−1

X
T
QQX

(

X
T
QX

)

−1

X
T
.

(25)

Finally, the new weighted prediction intervals are given by

|ŷQ−y|α = ŷQ±

√

diag
(

σ2
Q + cov{ŷQ}

)

× t1−α

2
. (26)

By introducing a kernel function one is now challenged

to find a good scaling factor for the distance to weight

a data point, which is another bandwidth problem. But in

this case one has an advantage: There is an already defined

neighborhood. By design the data points near the query shall

have a larger impact upon the model for the query. To do so,

we scale the Gaussian kernel (19) in each dimension p with

a factor cj . That gives us

q∗i = e−
d
∗2

i

2 , (27)

with

d∗i =

√

√

√

√

p
∑

j=1

(

dij

cj

)2

. (28)

Now a compensation factor cj is defined, that guarantees

that at the median d of the distance of all data point from

0

0

0.5

1

w
ei

g
h

ti
n

g
q i

distance di

−d d

Fig. 6. Aspired weighting over distance

the query, a data points weight is 0.5, see Fig. 6. For a N

of dimension p and the distance function (3) the weighting

function (27) takes the form

0.5 = e−
D

2

2 , (29)

where

D =

√

√

√

√

p
∑

j=1

(

dj

cj

)2

. (30)

The application of the natural logarithm and q = 0.5 gives

us

log(0.5) = −
1

2

p
∑

j=1

(

d1

c1

)2

(31)

As we aim for an equal weighting for all dimensions, that

is

d1

c1
=

d2

c2
= . . . =

dp

cp
(32)

equation (31) becomes

log(0.5) = −
1

2
· p ·

dj
2

c2j
(33)

Finally, if we solve for cj we get

cj =

√

p · dj
2

−2 · log(0.5)
. (34)

Note, that a distinction between different compensating fac-

tors for different dimensions is only necessary, if the inputs

are not normalized to the same upper and lower limits. If they

are normalized, the equations (27), (28) and (34) become

qin = e−
d
2

i

2 , (35a)

din =

∣

∣

∣

∣

di

c

∣

∣

∣

∣

, (35b)

cin =

√

p · d
2

−2 · log(0.5)
. (35c)

With this compensating factor one can now apply a scaled

kernel function upon the data points of N without the need

for a second bandwidth estimation. The algorithm described

at the beginning of Sec. IV needs to be adjusted as follows:
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1) Calculate the distance d of all data points of M to the

query and sort them by increasing distance.

2) Initialize the neighborhood N0 of the model with a

minimum number of nearest neighbors.

3) Calculate the compensating factors cj and weight the

data points with the scaled kernel function (27). Es-

timate the parameters θ̂Q of the model and calculate

the weighted prediction intervals |ŷQ − y|α for Ni.

4) Check, if all data points of Ni are within the weighted

prediction intervals.

a) If more than α% of the data points of Ni are

outside of the weighted prediction intervals, Ni−1

is the desired neighborhood.

b) If less than α% of the data points of Ni are

outside of the weighted prediction intervals, add

the next nearest neighbor to Ni+1 and go to 3).

A. Results

With the improved algorithm one can now re-estimate the

worst case scenario described above. While we use exactly

the same data the new algorithm outperforms the old one and

stops at a much more reasonable size for the neighborhood,

as shown in Fig. 7. By applying a kernel function on the data

0 0.2 0.4 0.6 0.8 1
-1

-0.5

0

0.5

1

1.5

2

2.5

3

u

y

x ∈ M

x ∈ N

ŷ

|ŷQ − y|α
N

Fig. 7. Resulting model for a worst case scenario with reliable nearest
neighbors with kernel function, q(u = 0.5)

points used to estimate the model, it becomes resistant to a

slow increase of the gradient for growing N, as the estimated

model for the query depends for the most part on the data

points, which are nearest to the query.

VI. CONCLUSION

In this paper, we propose a novel algorithm to answer

the bandwidth problem for lazy learning techniques, without

the need for computational demanding leave-one-out cross-

validation. For learning problems with large or evolving

training sets, this can offer significant computational savings.

The quality of the model improves drastically, if previous

knowledge about the process is present, such as information

about noise or what model structure fits the data well.

Even without previous knowledge the algorithm is able to

determine a reasonable neighborhood region or bandwidth,

for a chosen model on a given data set.
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