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Abstract— In this paper, we develop an output feedback
adaptive control framework for continuous-time minimum
phase multivariable dynamical systems for output stabilization
and command following. The approach is based on a nonmin-
imal state space realization that generates an expanded set of
states using the filtered inputs and filtered outputs and their
derivatives of the original system. Specifically, a direct adaptive
controller for the nonminimal state space model is constructed
using the expanded states of the nonminimal realization and
is shown to be effective for multi-input, multi-output linear
dynamical systems with unmatched system uncertainties and
unstable dynamics. Two illustrative numerical examples are
provided to demonstrate the efficacy of the proposed approach.

I. INTRODUCTION

Mathematical models are critical in capturing and studying
physical phenomena that undergo spatial and temporal evolu-
tion arising in most applications of science and engineering.
These models are often based on first-principles of physics
and are derived using fundamental physical laws. However,
due to system complexity, nonlinearities, uncertainty, and
disturbances, first-principle models are often based on sim-
plifying approximations resulting in system modeling errors.
For systems where the system model does not adequately
capture the physical system due to idealized assumptions,
model simplification, and model parameter uncertainty, adap-
tive control methods can be used to achieve system perfor-
mance without excessive reliance on system models.

Direct adaptive controllers require less system modeling
information than robust controllers and can address system
uncertainties and system failures. These controllers adapt
feedback gains in response to system variations without
requiring a parameter estimation algorithm. This property
distinguishes them from indirect adaptive controllers that
employ an estimation algorithm to estimate the unknown
system parameters and adapt the controller gains. Direct
adaptive controllers can be classified as either full state
feedback or output feedback designs.

Full state feedback designs assume knowledge of the
state variables, and this assumption leads to computation-
ally simpler adaptive controller algorithms as compared to
output feedback algorithms. Output feedback direct adap-
tive controllers, however, are required for most applications
that involve high-dimensional models such as active noise
suppression, active control of flexible structures, fluid flow
control systems, and combustion control processes. Models
for these applications vary from (reasonably) accurate low
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frequency models in the case of structural control problems,
to less accurate low-order models in the case of active control
of noise, vibrations, flows, and combustion processes.

There has been a number of results in recent decades
focused on output feedback direct adaptive controllers (see
[1]–[12], and references therein). These results require an
observer for unknown state variables, an observer for output
tracking errors, an output predictor, and/or estimation of
Markov parameters that lead to adaptive control algorithms
with varying sets of assumptions. These assumptions include
knowledge of the relative degree of the regulated system
output and the dimension of the system, as well as the re-
quirement that the system be minimum phase or passive. The
main reason for the minimum phase assumption is because
direct adaptive controllers employ high gain feedback that
can drive nonminimum systems to instability.

In this paper, we develop an output feedback adaptive
control framework for continuous-time minimum phase mul-
tivariable dynamical systems for output stabilization and
command following. The approach is based on a nonminimal
state space realization that generates an expanded set of
states using the filtered inputs and filtered outputs and
their derivatives of the original system. Specifically, a direct
adaptive controller for the nonminimal state space model
is constructed using the expanded states of the nonminimal
realization and is shown to be effective for multi-input, multi-
output linear dynamical systems with unmatched uncertain-
ties and unstable dynamics. The proposed adaptive control
architecture can be viewed as a continuous-time framework
that complements the discrete-time adaptive command fol-
lowing results proposed in [11]. Two illustrative numerical
examples are provided to demonstrate the efficacy of the
proposed approach.

The notation used in this paper is fairly standard. Specif-
ically, Rn (resp., Cn) denotes the set of n × 1 real (resp.,
complex) column vectors, Rn×m (resp., Cn×m) denotes the
set of n × m real (resp., complex) matrices, (·)T denotes

transpose, (·)−1 denotes inverse, and , denotes equal by
definition. Furthermore, we write λmin(A) (resp., λmax(A))
for the minimum (resp., maximum) eigenvalue of the Her-
mitian matrix A, ‖ · ‖2 for the Euclidian norm, ‖ · ‖F for the
Frobenius matrix norm, tr(·) for the trace operator, id(A)
for In (resp., −In) if A ∈ R

n×n is positive-definite (resp.,
negative-definite), and pd(A) for A (resp., −A) if A ∈ R

n×n

is positive-definite (resp., negative-definite).

II. NONMINIMAL STATE SPACE REALIZATION

FORMULATION

In this section, we present a nonminimal state space real-
ization architecture for continuous-time, linear multivariable
uncertain dynamical systems. The nonminimal state space
realization involves an expanded system state that consists
entirely of the system filtered inputs and filtered outputs
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and their derivatives, which allows us to cast an output
feedback control problem as a full-state feedback problem.
Specifically, consider the controllable and observable linear
uncertain dynamical system given by

ẋp(t) = Apxp(t) + Bpu(t), xp(0) = xp0
, t ≥ 0, (1)

y(t) = Cpxp(t), (2)

where xp(t) ∈ Rn, t ≥ 0, is the state vector, u(t) ∈ Rm, t ≥
0, is the control input, y(t) ∈ Rl, t ≥ 0, is the system
output, and Ap ∈ Rn×n, Bp ∈ Rn×m, and Cp ∈ Rl×n

are unknown system matrices. An input-output equivalent
nonminimal observer canonical state space model of (1) and
(2) for l > 1 is given by ([13])

ẋo(t) = Aoxo(t) + Bou(t), xo(0) = xo0
, t ≥ 0, (3)

y(t) = Coxo(t), (4)

where xo(t) ∈ Rln, t ≥ 0, is the state vector,

Ao =











0 Il · · · 0
...

. . .
. . .

...

0 · · · 0 Il

−a0Il −a1Il · · · −an−1Il











∈ R
ln×ln, (5)

Bo =











CpBp

CpApBp

...

CpAn−1
p Bp











∈ R
ln×m, (6)

and

Co =
[

Il 0 · · · 0
]

∈ R
l×ln. (7)

Note that ai, i = 0, 1, . . . , n − 1, in (5) are the coefficients
of the characteristic polynomial of the matrix Ap in (1).

Next, let

B̄0 = Co(a1Iln + · · · + an−1A
n−2
o + An−1

o )Bo, (8)

B̄1 = Co(a2Iln + · · · + an−1A
n−3
o + An−2

o )Bo, (9)

...

B̄n−1 = CoBo. (10)

Now, an alternative input-output equivalent nonminimal con-
trollable state space realization of (1) and (2) is given by

ẋf(t) = Afxf(t) + Bfu(t), xf(0) = xf0 , t ≥ 0, (11)

y(t) = Cfxf(t), (12)

where xf(t) ∈ Rnf , t ≥ 0, nf , (m + l)n, is the known
filtered expanded state vector given by

xf(t) =
[

qT
1 (t), . . . , qT

n (t), vT
1 (t), . . . , vT

n (t)
]T

, (13)

where qi(t) , y
(i−1)
f (t), vi(t) , u

(i−1)
f (t), i = 1, 2, . . . , n,

z(n)(t) , dnz(t)/dtn, and where xf(t) is obtained by
filtering u(t) and y(t) through the filter 1/Λ(s), where

Λ(s) = (s + λ)n =

n
∑

k=0

(

n

k

)

sn−kλk

= sn + nλsn−1 + · · · + λn, (14)

is a monic Hurwitz polynomial of degree n with λ > 0,

Af =































0 Il 0 · · · · · ·
...

. . . · · · · · ·
0 · · · 0 Il 0

−a0Il · · · · · · −an−1Il B̄0

0 · · · · · · 0
... · · · · · ·
... · · · · · ·
0 · · · · · · 0 −λnIm

· · · 0
...

· · · · · · 0
· · · · · · B̄n−1

Im 0 0
. . .

...

· · · 0 Im

· · · · · · −nλIm





























∈ R
nf×nf , (15)

Bf =











0
0
...

Im











∈ R
nf×m, (16)

and

Cf =
[

−a0Il + λnIl · · · · · · −an−1Il + nλIl

B̄0 · · · · · · B̄n−1

]

∈ R
l×nf . (17)

Theorem 2.1 ([14]). System (1) and (2) is input-output
equivalent to system (11) and (12).

Remark 2.1. The proof of Theorem 2.1 presents a construc-
tion of a nonminimal, albeit controllable, state space realiza-
tion of (1) and (2) involving the expanded state xf(t), t ≥ 0,
comprising of filtered versions of the inputs and outputs and
their derivatives of the original system, without requiring
differentiation of the actual input and output signals. It is
important to note here that even though the original system
is unknown, the expanded state vector xf(t), t ≥ 0, is known.

Remark 2.2. Since the controllable nonminimal state space
realization of (11) and (12) is defined by a state that consists
entirely of filtered inputs and outputs and their derivatives of
the original system, an output feedback stabilization problem
for (1) and (2) can be converted into a full-state feedback
control design problem by equivalently considering (11) and
(12). Furthermore, for an output feedback control design
of the form (1) and (2) we typically require that (Ap, Bp)
be controllable (or stabilizable) and (Ap, Cp) be observable
(or detectable). In contrast, for a feedback control design
using the input-output equivalent nonminimal state space
model (11) and (12) we only require controllability of the
pair (Af , Bf), which is automatic. Finally, it is important
to note that only the system matrix Af in (11) is partially
unknown for full-state feedback control design, whereas the
triple (Ap, Bp, Cp) is unknown in (1) and (2) for an output
feedback control design.

Remark 2.3. Nonminimal state space realizations for
discrete-time adaptive control have been extensively devel-
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oped in the literature, see [11], [15], [16] and the references
therein. The proposed nonminimal state space realization for
continuous-time adaptive control developed in this section
was first used in [17], [18] for active noise blocking and
robust control and [14] for adaptive control.

III. ADAPTIVE CONTROL FOR THE NONMINIMAL

STATE SPACE MODEL

In this section, we introduce a direct adaptive state feed-
back control architecture for the nonminimal state space
model (11) and (12) that guarantees adaptive output sta-
bilization for the original system (1) and (2), as well as
boundedness of the original system state xp(t), t ≥ 0.

Assumption 3.1. The system given by (1) and (2) is
minimum phase and the smallest positive integer i such that
the ith Markov parameter of (1) and (2) given by CpAi−1

p Bp

is nonzero and known.

Letting d denote the smallest positive integer i in Assump-
tion 3.1, it follows from (8)–(10) that

B̄n−1 = CoBo = CpBp = 0, (18)

B̄n−2 = Co(a1Iln + Ao)Bo

= a1CpBp + CpApBp = 0, (19)

...

B̄n−d+1 = 0, (20)

B̄n−d = CpAd−1
p Bp 6= 0, (21)

where (21) is the first nonzero Markov parameter of the
original system (1) and (2).

Assumption 3.2. The first nonzero Markov parameter given
by (21) can be parameterized as

CpAd−1
p Bp = B̄Λ, (22)

where B̄ ∈ Rl×m is a known matrix and Λ ∈ Rm×m is an
unknown matrix given by

Λ = block−diag[Λm1
, . . . ,Λms

], (23)

where Λm1
∈ Rm1×m1 , . . ., Λms

∈ Rms×ms , and m1 +
· · ·+ms = m. Furthermore, for each i ∈ {1, . . . , s}, Λmi

is
either positive definite or negative definite.

Note that it follows from Assumption 3.2 that Λ given
by (23) can be written as Λ = id(Λ)pd(Λ), where

id(Λ) , block−diag[id(Λm1
), . . . , id(Λms

)] is known and

pd(Λ) , block−diag [pd(Λm1
), . . . ,pd(Λms

)] is unknown
and positive-definite. For single-input, single-output dy-
namical systems without loss in generality letting B̄ =
1 in (22) gives Λ = id(CpAd−1

p Bp)pd(CpAd−1
p Bp) =

sgn(CpAd−1
p Bp)|CpAd−1

p Bp|, where sgn(y) , y/|y|, y 6=

0, and sgn(0) , 0. In this case, Assumption 3.2 implies that
the sign of the first nonzero Markov parameter denoted by
id(CpAd−1

p Bp) is known.

Next, consider the nonminimal state space model (11),
where the known state vector xf(t), t ≥ 0, is given by (13),
the partially unknown matrix Af is given by (15), and the
known input matrix Bf is given by (16), and note that (11)
can be equivalently written as

q̇(t) = A0q(t) + B0v0(t) + B1Λφ(t), q(0) = q0, t ≥ 0,

(24)

v̇(t) = Avv(t) + Bvu(t), v(0) = v0, (25)

where q(t) , [qT
1 (t), . . . , qT

n (t)]T ∈ Rln, v0(t) ,

[vT
1 (t), . . . , vT

n−d(t)]
T ∈ R

m(n−d), φ(t) , vn−d+1(t) ∈

Rm, v(t) , [vT
1 (t), . . . , vT

n (t)]T ∈ Rmn,

A0 ,











0 Il · · · 0
...

. . .
. . .

...

0 · · · 0 Il

−a0Il −a1Il · · · −an−1Il











∈ R
ln×ln, (26)

B0 ,











0 · · · 0
...

. . .
...

0 · · · 0
B̄o · · · B̄n−d−1











∈ R
ln×m(n−d), (27)

B1 ,
[

0 · · · 0 B̄T
]T

∈ R
ln×m, (28)

Av ,











0 Im · · · 0
...

. . .
. . .

...

0 · · · 0 Im

−ζ1Im · · · · · · −ζnIm











∈ R
mn×mn, (29)

and

Bv ,
[

0 · · · 0 Im

]T
∈ R

mn×m, (30)

where ζ1 , λn, . . ., ζn , nλ. Note that A0, B0, and
Λ in (24) are unknown, and hence, the dynamics in (24)
are unknown, whereas the dynamics in (25) are completely
known with Av being Hurwitz. Hence, we use a two-stage
design framework wherein we first design a virtual control
signal φ(t), t ≥ 0, that stabilizes the unknown dynamics in
(24), and then design the actual control signal u(t), t ≥ 0,
using the known dynamics in (25). The existence of such a
virtual control signal φ(t), t ≥ 0, is guaranteed under the
following assumption.

Assumption 3.3. There exists Kq ∈ Rln×m and Kv ∈
R

m(n−d)×m such that Am , A0 + B1ΛKT
q is Hurwitz and

B0 = B1ΛKT
v holds.

Remark 3.1. It is important to note that if (1) and (2) is
square (i.e., m = l) and B̄ is nonsingular, then Assumption
3.3 is automatically satisfied.

Next, we write (24) as

q̇(t) = Amq(t) − B1ΛKT
q q(t) + B0v0(t) + B1Λφ(t)

= Amq(t) + B1ΛK̃T
q (t)q(t) − B1ΛK̃T

v (t)v0(t)

+B1Λ
[

φ(t) − K̂T
q (t)q(t) + K̂T

v (t)v0(t)
]

,

q(0) = q0, t ≥ 0, (31)

where K̃q(t) , K̂q(t) − Kq ∈ Rln×m, t ≥ 0, K̃v(t) ,

K̂v(t) − Kv ∈ R
m(n−d)×m, t ≥ 0, and K̂q(t) ∈ R

ln×m,

t ≥ 0, and K̂v(t) ∈ Rm(n−d)×m, t ≥ 0, are the estimates

of Kq and Kv, respectively, and K̂q(t), t ≥ 0, and K̂v(t),
t ≥ 0, satisfy

˙̂
Kq(t) = −Γqq(t)q

T(t)PmB1id(Λ), K̂q(0) = K̂q0, t ≥ 0,

(32)

˙̂
Kv(t) = Γvv0(t)q

T(t)PmB1id(Λ), K̂v(0) = K̂v0, (33)

where Γq ∈ Rln×ln and Γv ∈ Rm(n−d)×m(n−d) are positive-
definite gain matrices and Pm is a positive-definite solution
of the Lyapunov equation

0 = AT
mPm + PmAm + Rm, (34)
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where Rm ∈ R
ln×ln is a symmetric positive-definite matrix.

Note that since Am is Hurwitz, it follows from converse
Lyapunov theory [19] that there exists a unique symmetric
positive-definite matrix Pm satisfying (34) for a given sym-
metric positive definite matrix Rm.

Proposition 3.1. Consider the uncertain dynamical system
given by (24) and the virtual control signal

φ(t) = K̂T
q (t)q(t) − K̂T

v (t)v0(t), t ≥ 0, (35)

with update laws (32) and (33), and assume that As-
sumptions 3.1, 3.2, and 3.3 hold. Then, the solution

(q(t), K̂q(t), K̂v(t)) of the system (31)–(33) is Lyapunov

stable for all (q0, K̂q0, K̂v0) ∈ Rln×Rln×m×Rm(n−d)×m

and t ≥ 0, and q(t) → 0 as t → ∞.

Proof. Consider the Lyapunov function candidate

V (q, K̃q, K̃v) = qTPmq + tr K̃T
q Γ−1

q K̃qpd(Λ)

+tr K̃T
v Γ−1

v K̃vpd(Λ), (36)

where Pm > 0 satisfies (34). Differentiating (36) along the
trajectories of (31)–(33) yields

V̇ (q(t), K̃q(t), K̃v(t))

= −qT(t)Rmq(t) + 2qT(t)PmB1ΛK̃T
q (t)q(t)

−2qT(t)PmB1ΛK̃T
v (t)v0(t)

−2tr[K̃T
q (t)q(t)qT(t)PmB1id(Λ)pd(Λ)]

+2tr[K̃T
v (t)v0(t)q

T(t)PmB1id(Λ)pd(Λ)]

= −qT(t)Rmq(t)

≤ 0, t ≥ 0. (37)

Hence, the solution (q(t), K̂q(t), K̂v(t)) of the system

(31)–(33) is Lyapunov stable for all (q0, K̂q0, K̂v0) ∈
Rln×Rln×m×Rm(n−d)×m and t ≥ 0. Now, by the LaSalla-
Yoshizawa theorem [19], limt→∞qT(t)Rmq(t) = 0 and,
hence, q(t) → 0 as t → ∞.

Proposition 3.1 shows that the virtual control signal φ(t),
t ≥ 0, given by (35) ensures that q(t) → 0 as t → ∞. Next,
we construct the actual control signal u(t), t ≥ 0, using the
known dynamics in (25). For this case, it follows from (25)
that

u(t) = v̇n(t) + ζn−1vn−1(t) + ζn−2vn−2(t) + · · ·

+ζn−d+2vn−d+2(t) + ζn−d+1vn−d+1(t)

+ζn−dvn−d(t) + · · · + ζ2v2(t) + ζ1v1(t), t ≥ 0.

(38)

Using φ(t), t ≥ 0, (38) can be equivalently rewritten as

u(t) = φ(d)(t) + ζn−1φ
(d−1)(t) + ζn−2φ

(d−2)(t) + · · ·

+ζn−d+2φ̇(t)+ ζn−d+1φ(t)+ ζn−d

[

∫ t

0

φ(σ1)dσ1

]

+ · · ·+ ζ2

[

∫ t

0

· · ·

∫ t

0

[

∫ t

0

φ(σ1)dσ1

]

dσ2 · · ·

×dσn−d−1

]

+ζ1

[

∫ t

0

· · ·

∫ t

0

[

∫ t

0

φ(σ1)dσ1

]

×dσ2 · · ·dσn−d

]

, t ≥ 0. (39)

The following theorem presents the main result of this
section.

Theorem 3.1. Consider the uncertain dynamical system
given by (11) and the control signal (39) with (35), (32),
and (33), and assume that Assumptions 3.1, 3.2, and 3.3
hold. Then, xp(t), t ≥ 0, satisfying (1) is bounded for all
xp(0) ∈ R

n and y(t) → 0 as t → ∞.

Proof. It follows from Proposition 3.1 that the solution

(q(t), K̂q(t), K̂v(t)) to (31)–(33) is Lyapunov stable for all

(q0, K̂q0, K̂v0) ∈ Rln × Rln×m × Rm(n−d)×m and t ≥ 0,
and q(t) → 0 as t → ∞. Since the first l components of
q(t), t ≥ 0, correspond to the filtered output of the original
system, it follows that yf(t) → 0 as t → ∞. Now, since the
filter given by (14) is asymptotically stable, it follows that
y(t) → 0 as t → ∞.

To show that xp(t), t ≥ 0, satisfying (1) is bounded, note

that since the solution (q(t), K̂q(t), K̂v(t)) to (31)–(33) is

Lyapunov stable for all (q0, K̂q0, K̂v0) ∈ Rln × Rln×m ×
Rm(n−d)×m and t ≥ 0, and q(t) → 0 as t → ∞, it follows
from the dynamics in (31) with the virtual control signal
defined in (35) that v0(t), t ≥ 0, is bounded. In addition,
since the first m components of v0(t), t ≥ 0, correspond
to the filtered input of the original system, it follows that
uf(t), t ≥ 0, is bounded. Now, since the filter given by
(14) is asymptotically stable, it follows that u(t), t ≥ 0, is
bounded. Furthermore, since u(t), t ≥ 0, is bounded and Av

is Hurwitz, it follows from (25) that v(t), t ≥ 0, is bounded.
Similarly, ẏ(t), . . . , y(n−1)(t), and u̇(t), . . . , u(n−1)(t), t ≥
0, are bounded, and hence, uniformly continuous. Hence,
it follows from the minimality of (Ap, Bp, Cp) that xp(t),
t ≥ 0, is bounded.

To elucidate the structure of the control architecture (39),
consider a second-order, single-input, single-output system
with d = 1. In this case, the actual control signal given by
(39) becomes

u(t) = φ̇(t) + ζ2φ(t) + ζ1

∫ t

0

φ(σ)dσ

= φ̇(t) + 2λφ(t) + λ2

∫ t

0

φ(σ)dσ, (40)

which involves a proportional-integral-derivative control ar-
chitecture. To further elucidate the controller structure (40),
assume that the adaptive gains K̂q(t), t ≥ 0, and K̂v(t), t ≥

0, converge to K̂q∞ =
[

k̂q1, k̂q2

]T
and K̂v∞ = k̂v, respec-

tively. In this case, using (35) with q(t) =
[

q1(t), q2(t)
]T

=
[

yf(t), ẏf(t)
]T

and v0(t) = v1(t) = uf(t), it follows that

u(s) =
k̂q2s + k̂q1

s + k̂v

y(s), (41)

which involves a lead/lag-type compensator. Note that unsta-
ble pole-zero cancelation in (41) is precluded by Assumption
3.1 since (1) and (2) is assumed to be minimum phase.

IV. ADAPTIVE COMMAND FOLLOWING FOR THE

NONMINIMAL STATE SPACE MODEL

In this section, we extend the adaptive control architecture
developed in Section 3 to the case of command following.
To address system tracking, consider the additional integrator
state satisfying

q̇int(t) = −yf(t) + rf(t) = −q1(t) + rf(t), t ≥ 0, (42)

1166



where rf(t) ∈ R
l, t ≥ 0, is a filtered (through the filter Λ(s)

defined by (14)) command of a given bounded piecewise
continuous reference command r(t) ∈ Rl, t ≥ 0. Now, (24)
can be augmented with the integrator state (42) to give

q̇a(t) = Aa0qa(t) + Ba0v0(t) + Ba1Λφ(t) + Bamrf(t),

qa(0) = qa0, t ≥ 0, (43)

where qa(t) , [qT(t), qT
int(t)]

T ∈ Rl(n+1),

Aa0 ,

















0 Il · · · 0 0
...

. . .
. . .

...
...

0 · · · 0 Il

...

−a0Il −a1Il · · · −an−1Il 0
−Il 0 · · · 0 0

















∈ R
l(n+1)×l(n+1), (44)

Ba0 ,















0 · · · 0
...

. . .
...

0 · · · 0
B̄o · · · B̄n−d−1

0 · · · 0















∈ R
l(n+1)×m(n−d), (45)

Ba1 ,
[

0 · · · 0 B̄T 0
]T

∈ R
l(n+1)×m, (46)

and

Bam ,
[

0 · · · 0 0 Il

]T
∈ R

l(n+1)×m. (47)

Note that in this case (25) remains unchanged. Analogous to
Assumption 3.3, we have the following assumption.

Assumption 4.1. There exists Kaq ∈ Rl(n+1)×m and

Kav ∈ R
m(n−d)×m such that Aam , Aa0 + Ba1ΛKT

aq is

Hurwitz and Ba0 = Ba1ΛKT
av holds.

Remark 4.1. Once again, note that if (1) and (2) is square
(i.e., m = l) and B̄ is nonsingular, then Assumption 4.1 is
automatically satisfied.

Next, consider the reference system given by

q̇am(t) = Aamqam(t) + Bamrf(t), qam(0) = qam0
, t ≥ 0,

(48)

where qam(t) ∈ Rl(n+1), t ≥ 0, is the reference system
state vector. Since Aam is Hurwitz, it follows from converse
Lyapunov theory that there exist a positive-definite matrix
Ram ∈ Rl(n+1)×l(n+1) and a positive-definite matrix Pm ∈
Rl(n+1)×l(n+1) such that

0 = AT
amPam + PamAam + Ram. (49)

Finally, note that since r(t) is bounded for all t ≥ 0 and
the filter given by (14) is asymptotically stable, it follows
that rf(t) is bounded for all t ≥ 0. Furthermore, qam(t) is
uniformly bounded for all qam0

∈ Rl(n+1) and t ≥ 0.

Next, define e(t) , qa(t)−qam(t) and note that it follows
from the augmented dynamics (43) and the reference system
(48) that

ė(t) = Aame(t) + Ba1ΛK̃T
aq(t)qa(t) − Ba1ΛK̃T

av(t)v0(t)

+Ba1Λ
[

φ(t) − K̂T
aq(t)qa(t) + K̂T

av(t)v0(t)
]

,

e(0) = e0, t ≥ 0, (50)

where K̃aq(t) , K̂aq(t) − Kaq ∈ Rl(n+1)×m, t ≥ 0,

K̃av(t) , K̂av(t) − Kav ∈ R
m(n−d)×m, t ≥ 0, and

K̂aq(t) ∈ R
l(n+1)×m and K̂av(t) ∈ R

m(n−d)×m are the

estimates of Kaq and Kav, t ≥ 0, respectively, and K̂aq(t),
t ≥ 0, and K̂av(t), t ≥ 0, satisfy

˙̂
Kaq(t) = −Γaqqa(t)e

T(t)PamBa1id(Λ), K̂aq(0) = K̂aq0,

t ≥ 0, (51)

˙̂
Kav(t) = Γavv0(t)e

T(t)PamBa1id(Λ), K̂av(0) = K̂av0,

(52)

where Γaq ∈ Rl(n+1)×l(n+1) and Γav ∈ Rm(n−d)×m(n−d)

are positive-definite gain matrices.

Theorem 4.1. Consider the uncertain dynamical system
given by (11) and the control signal (39) with

φ(t) = K̂T
aq(t)qa(t) − K̂T

av(t)v0(t), t ≥ 0, (53)

and with update laws (51) and (52), and assume that
Assumptions 3.1, 3.2, and 4.1 hold. Then, the solution

(e(t), K̂aq(t), K̂av(t)) to (50)–(52) is Lyapunov stable for

all (e0, K̂aq0, K̂av0) ∈ Rl(n+1)×Rl(n+1)×m×Rm(n−d)×m

and t ≥ 0, and e(t) → 0 as t → ∞. Furthermore, xp(t),
t ≥ 0, satisfying (1) is bounded for all xp(0) ∈ Rn.

Proof. The proof is similar to the proofs of Proposition
3.1 and Theorem 3.1 with the Lyapunov function given by

V (e, K̃aq, K̃av) = eTPame + tr K̃T
aqΓ

−1
aq K̃aqpd(Λ)

+tr K̃T
avΓ

−1
av K̃avpd(Λ), (54)

where Pam > 0 satisfies (49).

Remark 4.2. Theorem 4.1 shows that xp(t), t ≥ 0, is
bounded and qa(t) → qam(t) as t → ∞. Since the first l
components of qa(t), t ≥ 0, correspond to the filtered output
of the original system yf(t), t ≥ 0, we can always choose an
appropriate reference system for (48) that captures a desired
tracking behavior for yf(t), t ≥ 0. Hence, Theorem 4.1 guar-
antees adaptive command following for the original uncertain
dynamical system (1) and (2), as well as boundedness of the
original system state xp(t), t ≥ 0.

V. ILLUSTRATIVE NUMERICAL EXAMPLES

In this section, we present two numerical examples to
illustrate the efficacy of the proposed adaptive control ar-
chitectures for adaptive output stabilization and command
following.

Example 5.1 (Adaptive command following of an unstable
plant). Consider the plant given by

ẋ(t) =

[

0.5 1
−2 1

]

x(t) +

[

−0.1
1

]

u(t), t ≥ 0, (55)

y(t) =
[

1 2
]

x(t), (56)

with xT(0) = [0.5,−0.5], and poles {0.75±1.39} and zero
{−0.26}. Let λ = 5 and

Aam =





0 1 0
−0.69 −1.22 0.15
−1 0 0



 . (57)

Furthermore, let Ram = 10I3, Γaq = 50I3, Γav = 10, and
B̄ = 1. Finally, assume id(Λ) = id(CpBp) = 1. Here, our
aim is to track a given square-wave reference command r(t),
t ≥ 0. The closed-loop response along with the control signal
and adaptive gains is shown in Figure 1. △
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Example 5.2 (Adaptive command following of an unstable
plant). Consider the plant given by

ẋ(t) =

[

0.5 5
2 0.5

]

x(t) +

[

2
1

]

u(t), t ≥ 0, (58)

y(t) =
[

1 2
]

x(t), (59)

with xT(0) = [0.5,−0.5], and poles {3.66, −2.66} and
zero {−2.75}. Here, we use the same control design as in
Example 5.1 and assume id(Λ) = id(CpBp) = 1. Once
again, our aim is to track a given square-wave reference
command r(t), t ≥ 0. The closed-loop response along with
the control signal and adaptive gains is shown in Figure 2.

△
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Fig. 1. Closed-loop response of the unstable plant in Example 5.1. The
adaptive controller (39) with (53), (51), and (52) with Γaq = 50I3 and
Γav = 10 tracks the reference r(t).
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Fig. 2. Closed-loop response of the unstable plant in Example 5.2. The
adaptive controller (39) with (53), (51), and (52) with Γaq = 50I3 and
Γav = 10 tracks the reference r(t).

VI. CONCLUSION

In this paper, we presented an output feedback direct adap-
tive control architecture for minimum phase multivariable
uncertain systems with unmatched uncertainties and unstable
dynamics. The proposed adaptive control algorithm is pred-
icated on a nonminimal state space realization involving an
expanded set of states with filtered versions of the system
inputs and outputs and their derivatives. Future work will
include extensions to nonminimum phase systems, systems
with unmatched disturbances, and nonlinear uncertain dy-
namical systems.
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