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Abstract - This paper presents a novel methodology for 
approximation of the unknown time-varying rotation rate 
using sliding mode observer as well as a robust control scheme 
for improving the performance of the MEMS gyroscope 
despite the coupling between vibratory gyroscope modes and 
inherent model uncertainties. Terminal sliding mode control 
(TSMC) is invoked to develop tracking control of the drive and 
sense modes based on the uncertain model of vibratory 
gyroscope and subsequently the swiftness of TSMC scheme in 
comparison with conventional sliding mode control (SMC) is 
demonstrated. The robust terms of proposed sliding mode 
observer are designed such that the unknown functions 
including Coriolis acceleration and quadrature error terms are 
tracked and then the unknown rotation rate and stiffness 
coupling are constructed. The asymptotic stability and 
robustness of the proposed control and observer are proved 
using second method of Lyapunov. Finally, effectiveness of the 
proposed observer based control for approximation of the 
unknown time-varying rotation rate is demonstrated through 
simulations. 

Keywords—Robustness, Terminal Sliding Mode Control, 
Sliding Mode Observer, MEMS Gyroscope 

I. INTRODUCTION 
Gyroscopes are the inertial sensors which measure the 

rotational rate of an object. Microelectromechanical 
technologies have provided possibility of modeling and 
fabricating of gyroscopes with small size, low cost and low 
power consumption [1], [2]. These advantages offer wide 
application spectrum of MEMS gyroscopes in the aerospace 
industry, military, automotive such as high performance 
navigation and guidance systems, ride stabilization, roll-
over detection and prevention, and next generation airbag 
and brake systems and electronics markets such as image 
stabilization in digital cameras and camcorders, virtual 
reality products, inertial pointing devices, and computer 
gaming industry [3], [4].  

A vibratory Z-axis MEMS gyroscope which is sensitive 
to the angular rate about the Z-axis perpendicular to the 
plane of silicon substrate, developed by Berkeley Sensor 
and Actuator Center [5]. The fundamental architecture of a 
vibratory MEMS gyroscope is comprised of a drive-mode 
oscillator that generates and maintains a constant linear or 
angular momentum. Drive-mode oscillator is coupled to a 
sense-mode Coriolis accelerometer that measures the 
sinusoidal Coriolis force induced due to the combination of 
the drive vibration and an unknown angular rate input. In 
other words, when the gyroscope is exposed to an unknown 
rotational rate, the Coriolis acceleration causes that the 

energy transfers from drive-mode to sense-mode providing 
the information of the unknown rotation rate. 

Since majority of the micro-machines gyroscopes 
utilize vibrating mechanical elements to sense angular rate, 
inherent fabrication imperfections along with environmental 
variations make frequency mismatch between two vibration 
modes, unknown disturbances, and parameter variations 
which significantly limit the performance, stability, and 
robustness of the vibratory MEMS gyroscope [6]. As a 
consequence, to overcome these difficulties, introducing a 
robust control system is necessary for the MEMS gyroscope 
ensuring its desired performance.  

The most challenging control issue includes 
minimization of coupling between the actuation and sensing 
modes along with the unknown time-varying angular rate 
measurement. In the literature, several control 
methodologies have been proposed to enhance performance 
and robustness of MEMS gyroscope. Most of these designs 
are based on constraining the oscillation degree-of-freedom 
of the proof mass to lie only in the drive direction. In these 
designs, a part of Coriolis force induced in the proof mass is 
transferred from driving mode to sensing mode while proof 
mass is not allowed to oscillate in the sense direction [7]-
[13]. Park and Horowitz et al. [7], [8] proposed two 
different adaptive controllers for a MEMS gyroscope 
controlling the entire operation of the device while the 
angular rate was assumed constant. Dong et al. [9] designed 
an adaptive controller with time-varying rotational rate 
according what happens in reality, but the parameters of the 
controller make it difficult to implement. Batur et al. [10], 
[11] introduced sliding mode control to MEMS gyroscopes 
meeting constant angular rate. These approaches utilize 
respectively demodulation and adaption technique for 
angular rate estimation.  

This paper proposes a novel methodology for 
approximation of the unknown time-varying rotation rate by 
using a sliding mode observer along with a robust control 
system based on terminal sliding mode control (TSMC) for 
minimizing the coupling between two operational modes of 
MEMS gyroscopes while time-varying rotation rate and the 
stiffness coupling between gyroscope modes arising from 
mechanical imperfections are unknown.  

Section 2 describes the model of a Z-axis MEMS 
gyroscope utilized in the paper. Section 3 outlines a terminal 
sliding mode control law for the MEMS gyroscope based on 
uncertain model. A sliding mode observer based control 
scheme for the unknown time-varying rotation rate 
approximation is developed in Section 4. Simulation results 
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and comparative discussions are presented in Section 5 
and some conclusions are made in Section 6. 

II. DYNAMIC MODEL OF Z-AXIS MEMS GYROSCOPE  
A typical vibratory MEMS gyroscope is comprised of a 

proof mass, a suspension system, and electrostatic 
actuations and sensing mechanisms for forcing an 
oscillatory motion and sensing the position and velocity of 
the proof mass as well as a rigid frame which is rotated 
about the rotation axis [14]. Dynamics of the MEMS 
gyroscope is derived with respect to two coordinate 
systems: the inertial frame fixed in an inertial space, and the 
gyroscope frame fixed to the rotation platform.  

With the definition of ݎ ݒ , , and ܽ  as the position, 
velocity, and acceleration vectors with respect to the 
rotating gyroscope frame, ܣ as the linear acceleration of the 
gyroscope frame, and Ω as the angular velocity vector of the 
gyroscope frame; the expression for the equation of the 
motion of the proof mass reduces to  

Ԧ௫௧ܨ(1) ൌ ݉ሾܣ  ܽ  Ωሶ ൈ  ݎ
                                  Ω ൈ ሺΩ ൈ ሻݎ  2Ω ൈ  ሿݒ
where ܨԦ௫௧ is a total applied force to the proof mass, which 
includes spring, damping and control forces.  

In a Z-axis gyroscope, by supposing the stiffness of 
spring in ݖ direction much larger than that in ݔ,  ,directions ݕ
motion of proof mass is constrained to only along the ݕݔ 
plane as shown in Fig.1 [7]. 

 
Fig.1. A simplified model of a z-axis MEMS Gyroscope 

Decomposing the motion into the two principle 
oscillation directions and assuming that the linear 
accelerations are negligible, the two equations of motion 
along the drive and sense axes can be expressed as 
ሷݔ݉  ܿ௫ݔሶ  ቀ݇௫ െ ݉൫Ω௬

ଶ  Ω௭
ଶ൯ቁ ݔ  ݉൫Ω௫Ω௬ െ Ωሶ ௭൯ݕ ൌ ௫ݑ  2݉Ω௭ݕሶ

ሷݕ݉  ܿ௬ݕሶ  ቀ݇௬ െ ݉൫Ω௫
ଶ  Ω௭

ଶ൯ቁ ݕ  ݉൫Ω௫Ω௬  Ωሶ ௭൯ݔ ൌ ௬ݑ െ 2݉Ω௭ݔሶ

(2) 
where ݔ and ݕ are the coordinates of the proof mass with 
respect to the gyroscope frame, ݉ is the proof mass, ܿ௫, ܿ௬ 
are damping coefficients, ݇௫, ݇௬  are spring coefficients, Ω 
while ݅ ൌ ,ݔ ,ݕ  are the angular velocity components along ݖ
each axis of the gyroscope frame and ݑ௫, ௬ݑ  are control 
forces. The two last terms in equation (2), 2݉Ω௭ݕሶ , 2݉Ω௭ݔሶ  
are the Coriolis forces and are the terms which are used to 
construct the unknown time-varying angular rate Ω௭. Under 
typical assumptions Ω௫

ଶ ൎ Ω௬
ଶ ൎ Ω௭

ଶ ൎ Ω௫Ω௬ ൎ 0, only the 

component of the angular rate Ω௭  causes a dynamic 
coupling between the x and y axes [7].  

Taking into account fabrication imperfections occurring 
always and causing dynamic coupling between two modes 

and substituting ߱ ൌ ට


 , ܿ ൌ ݅ ߱ whileߦ2݉ ൌ ,ݔ  the , ݕ

dynamic equation (2) are modified as follows 

 (3)
ሷݔ  ሶݔ௫߱௫ߦ2  ߱௫

ଶݔ  ߱௫௬ݕ ൌ ܾ௫ݑ௫  2Ω௭ݕሶ
ሷݕ  ሶݕ௬߱௬ߦ2  ߱௬

ଶݕ  ߱௫௬ݔ ൌ ܾ௬ݑ௬ െ 2Ω௭ݔሶ
 

where ߱௫, ߱௬  are natural frequencies of drive and sense 
modes, ߦ௫, ௬ߦ are damping coefficients, ߱௫௬ݔ , ߱௫௬ݕ  are 
constant unknown quadrature error terms caused by stiffness 
couplings between two axes due to fabrication 
imperfections, and ܾ௫, ܾ௬ are the constants that account for 
sensor, actuator, and amplifier gains [12].  

Moreover, by defining ݍ ൌ ሾݔ ሿ்ݕ and ܷ ൌ
ሾݑ௫ ௬ሿ்ݑ , the dynamics of Z-axis MEMS gyroscope is 
rewritten in vector form as  

ሷݍ(4)  ሺܦ  2Ωሻݍሶ  ሺܭ  ݍሻܭ ൌ   ܷܤ

whereܦ ൌ 
௫߱௫ߦ2 0

0 ௬߱௬ߦ2
൨ ,Ω ൌ  0 െΩ௭

Ω௭ 0 ൨ , ܭ ൌ ቈ
߱௫

ଶ 0
0 ߱௬

ଶ , 

ܭ ൌ 
0 ߱௫௬

߱௫௬ 0 ൨ , and ܤ ൌ 
ܾ௫ 0
0 ܾ௬

൨ . In this paper, the 

bounded structural uncertainties of the system are assumed 
to be in the following form 

߱௪ ൏ ߱௫௬ ൏ ߱௨    ,      Ω௪ ൏ Ω௭ ൏ Ω௨ 

III. TERMINAL SLIDING MODE CONTROL 
This section proposes a robust sliding mode controller 

for the MEMS gyroscope described by (4). The objective of 
control problem is to force drive and sense modes to 
oscillate at specified amplitudes and high frequencies (much 
more than time-varying rotation rate frequency) despite the 
fact that the motions in the ݔ and ݕ directions are coupled 
and the Coriolis acceleration and quadrature error terms are 
unknown. It is important to note that contrary to 
conventional drive-mode control approaches that maintain 
the proof mass to oscillate only in the ݔ  direction for 
measuring unknown rotation rate in sense direction [7]-[13], 
here there is no constraint on motion of proof mass. 

In conventional sliding mode control, variable control 
systems are designed to drive and then constrain the system 
stable to lie within a neighborhood of the switching 
function. The sliding mode control design approach consists 
of two components. The first involves the design of a 
switching function so that the sliding motion satisfies design 
specifications. The second is concerned with the selection of 
a control law which will make the switching function 
attractive to the system state [15]-[17]. The basic idea in 
terminal sliding mode scheme is making the convergence 
rate of control law exponentially fast when the state is near 
equilibrium. 

The dynamics of a Z-axis MEMS gyroscope with 
bounded uncertainties concentrating in term ݄ሺݍ, ሶݍ ሻ  and 
estimating as ݄, is rewritten in the following form 

ሷݍ(5) ൌ െݍܦሶ െ ݍܭ  ݄ሺݍ, ሶݍ ሻ   ܷܤ
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where the estimation error on ݄ሺݍ, ሶݍ ሻ  which includes 
unknown Coriolis acceleration and quadrature error terms is 
assumed to be bounded by some known function ܪሺݍ, ሶݍ ሻ as 

(6)ห݄ െ ݄ห   ܪ
In order to maintain the proof mass to track a smooth 

desired trajectory ܳௗ ൌ ሾݍௗ ሶௗݍ ሷௗሿ்ݍ  which ݍௗ ൌ
ሾݔௗ ௗሿ்ݕ  includes desired proof mass oscillations in the 
actuation and sensing directions at given frequencies and 
amplitudes, the terminal sliding manifold is defined as [18], 
[19] 

(7)ܵሺݍ, ሻݐ ൌ ሶݍ  ݍ߉  ݍܥ
ఈ
ఉ 

where  ܵ ൌ ሾݏ௫ ௬ሿ்ݏ ݍ ,  ൌ ݍ െ ௗݍ  is defined as tracking 
error, and ߉,  are positive definite constant matrixes to be ܥ
respectively selected i.e. Λ ൌ ݀݅݃൛ߣ௫, ௬ൟߣ  and ܥ ൌ
݀݅݃൛ܿ௫, ܿ௬ൟ  and ߙ, ߚ  are the positive odd integers to be 
chosen such that ߚ   It should be noted that the finite . ߙ
time convergence dynamic in terminal sliding mode control 
depending on design parameters ܥ, ,ߙ ߚ , in contrast with 
conventional sliding mode control, implies a swifter 
tracking capability in the Z-axis MEMS gyroscope control 
problem. To ensure that the state of the system approaches 
the terminal sliding surface, first derivative of the sliding 
surface should be converged to zero as follow 

(8)
ሶܵ ൌ ሷݍ  Λݍሶ  ܥ

ߙ
ߚ ሶݍ ݍ

ఈିఉ
ఉ  

  ൌ ܷܤ െ ሶݍܦ െ ݍܭ  ݄ሺݍ, ሶݍ ሻ െ ሷௗݍ   Λݍሶ  ܥ
ߙ
ߚ ሶݍ ݍ

ఈିఉ
ఉ ൌ 0

The best approximation of continuous equivalent 
control law that would achieve  ሶܵ ൌ 0 is 

(9)ܷ ൌ ሶݍܦଵሾିܤ  ݍܭ െ ݄  ሷௗݍ െ Λݍሶ െ ܥ
ߙ
ߚ ሶݍ ݍ

ఈିఉ
ఉ ሿ 

In order to satisfy sliding condition [15] despite 
uncertainty on the dynamics of the MEMS gyroscope, a 
discontinuous term across the terminal sliding surface is 
added to ܷ. Consequently terminal sliding mode control law 
is proposed as 

 (10)ܷ ൌ ܷ െ  ሺܵሻ݊݃݅ݏ ܧଵିܤ
where ݊݃݅ݏሺܵሻ ൌ ሾ݊݃݅ݏሺݏ௫ሻ ௬ሻሿ்ݏሺ݊݃݅ݏ  and  E is a 
positive definite constant matrix i.e. ܧ ൌ ݀݅݃൛ߟ௫,  ௬ൟߟ
depending on the upper bounds of unknown Coriolis 
acceleration and quadrature error terms in both direction x, y 
and reaching times and its diagonal elements are selected 
under conditions as follow 

(11)
௫ߟ ൌ ௫ܪ  ௫ߩ ൌ ௫ܨ  ௫ܩ  ௫ߩ
௬ߟ ൌ ௬ܪ  ௬ߩ ൌ ௬ܨ  ௬ܩ  ௬ߩ

 

It is essential to recall that ܨ , ܩ  while ݅ ൌ ,ݔ ݕ are 
respectively upper known bounds of estimation error on 
Coriolis acceleration and quadrature error terms in drive and 
sense directions according to (6) which are calculated 
simply by knowing upper and lower bounds of unknown 
quantities Ω௭ , ߱௫௬  and ߩ௫, ௬ߩ  are two strictly positive 
constants [15]. 

Proposition 1: Consider the Z-axis MEMS gyroscope 
(4) while time-varying rotation rate Ω௭  and stiffness 
coupling ߱௫௬ are unknown. The robust sliding mode control 
law given by (10) under conditions (11) ensures that 

terminal sliding manifold ܵ converges to zero in finite time 
and consequently forces both coupled drive and sense mode 
to track desired trajectories ݍௗ, ሶௗݍ  oscillating at specified 
amplitudes and frequencies. 

Proof: The stability and robustness analysis of the 
proposed terminal sliding mode control law in presence of 
unknown time-varying angular rate and stiffness coupling as 
the uncertainties is accomplished by choosing a Lyapunov 
function as  

(12)ܸሺܵሻ ൌ
1
2 ்ܵܵ 

Differentiating V with respect to time yields 
(13)ሶܸ ሺܵሻ ൌ ்ܵ ሶܵ ൌ ்ܵሺ݄ െ ݄ െ ܧ  ሺܵሻሻ݊݃݅ݏ

Expanding (13) yields 

(14)
ሶܸ ൌ ௫ൣ݄௫ݏ െ ݄௫ െ ௫ߟ ௫ሻ൧ݏሺ݊݃݅ݏ

 ௬ൣ݄௬ݏ െ ݄௬ െ  ௬൯൧ݏ൫݊݃݅ݏ ௬ߟ
ൌ ൫݄௫ െ ݄௫൯ݏ௫ െ |௫ݏ|௫ߟ  ൫݄௬ െ ݄௬൯ݏ௬ െ  |௬ݏ|௬ߟ

Decomposition unknown function ݄ሺݍ, ሶݍ ሻ  to unknown 
quadrature error terms ݂ሺݍሻ and Coriolis acceleration terms 
݃ሺݍሶ ሻ yields 

(15)
ሶܸ ൌ ൫ ௫݂ െ መ݂௫ሻݏ௫  ሺ݃௫ െ ො݃௫൯ݏ௫ െ  |௫ݏ|௫ߟ

൫ ௬݂ െ መ݂௬ሻݏ௬  ሺ݃௬ െ ො݃௬൯ݏ௬ െ  ௬หݏ௬หߟ

It is obvious by rewriting (6) as follow 

(16)൫ ݂ െ መ݂൯  ܨ ݅ ൌ ,ݔ     ݕ
ሺ݃ െ ො݃ሻ  ܩ ݅ ൌ ,ݔ  ݕ

and substituting ߟ௫,  ௬ according to (11) into (15) makesߟ 

(17)
ሶܸ ൌ ൫ ௫݂ െ መ݂௫ሻݏ௫  ሺ݃௫ െ ො݃௫൯ݏ௫ െ ൫ܨ௫  ௫ܩ   |௫ݏ|௬൯ߩ

൫ ௬݂ െ መ݂௬ሻݏ௬  ሺ݃௬ െ ො݃௬൯ݏ௬ െ ൫ܨ௬  ௬ܩ  ௬หݏ௬൯หߩ ൏ 0

In other words, ሶܸ  is strictly negative outside the 
terminal sliding surface and consequently sliding condition 
is verified and stability and robustness of control law is 
ensured. As a result, all system trajectories in directions x 
and y are respectively constrained to the terminal sliding 
surfaces ݏ௫ and ݏ௬. 

Remark 1: There is a possible singularity in terminal 
sliding mode control when ݍ ՜ 0 . Thus, the selection of 
,ߙ  is critical in the design of an appropriate TSMC. To ߚ
avoid singularity, ߙ, ߚ  have been proposed to be chosen 
such that 2ߙ   .[20] ߚ

Remark 2: The control law (10) only remains 
continuous prior to entering into the terminal sliding 
manifold ܵ ൌ 0 . It makes implementation so hard and 
impractical due to discontinuity of sign function at zero. 
Moreover, this discontinuity causes unwanted chattering 
phenomena which may excite the high frequency 
unmodeled dynamics. Thus, for continuous approximation 
of switching control law and alleviating chattering on 
terminal sliding surface, a saturation function is applied 
rather than sign function as follow 

ݐܽݏ(18) ൬
·
߮൰ ൌ ൞

െ1 ݂݅ ·൏ ߮
·
߮ ݂݅ |·|  ߮

1 ݂݅ · ߮

 

3485



where ߮ is called boundary layer thickness and is a positive 
constant. 

This section is terminated with the fact that the control 
law (10) utilizes full state for feedback which requires both 
position and velocity sensor in micron dimensions. Let note 
that the sliding mode observer proposed in subsequent 
section for rotation rate estimation enable to provide an 
acceptable estimation of velocity which can be used for 
feedback rather than its actual value [24]. 

IV. SLIDING MODE OBSERVER BASED ROTATION RATE 
ESTIMATION 

In this section a sliding mode observer is proposed for 
the Z-axis MEMS gyroscope. In contrast with the most 
approaches which estimate unknown angular velocity using 
demodulation of sense control input ݑ௬ while sense mode is 
enforced to zero [7]-[11], the main objective of the robust 
observation in this paper is to approximate the unknown 
vector function ݄ሺݍ, ሶݍ ሻ including Coriolis acceleration and 
quadrature error terms in addition to providing an 
acceptable estimation of the state system unavailable in 
output. As a result, the unknown time-varying rotation rate 
and the stiffness coupling between gyroscope modes are 
explicitly able to be reconstructed by demodulating of 
proposed sliding mode observer outputs.  

A. Sliding mode observer design 
Sliding mode observers are very useful means which 

have been developed for many reasons like working with 
reduced observation error dynamics, possibility of obtaining 
a step by step design, a finite time convergence for all the 
observable states and robustness under bounded 
uncertainties of the systems [21]-[23].  It is important to 
recall that the proposed robust control law in previous 
section ensures that the unknown terms of vibratory 
gyroscope would be bounded all the time. 

The dynamics of a Z-axis MEMS gyroscope (5) is 
rewritten in the following state space form 

ሶଵݍ(19) ൌ  ଶݍ
ሶଶݍ ൌ െݍܦଶ െ ଵݍܭ  ݄ሺݍଵ, ଶሻݍ   ܷܤ

where ݍଵ ൌ ݍ ൌ ሾݔ ሿ்ݕ ൌ ሾݔଵ ଵሿ்ݕ denotes just 
measurable state variables in system output versus 
unavailable state variables ݍଶ ൌ ሶݍ ൌ ሾݔሶ ሶݕ ሿ் ൌ ሾݔଶ  ,ଶሿ்ݕ
݄ሺݍଵ, ଶሻݍ ൌ ሾ݄௫ሺݕଵ, ଶሻݕ ݄௬ሺݔଵ, ଶሻሿ்ݔ  includes unknown 
Coriolis acceleration and quadrature error terms in both 
gyroscope directions, and ܷ is the proposed terminal sliding 
mode control law which guarantees unknown vector 
function ݄ሺݍଵ,  ଶሻ to be bounded in all operational time ofݍ
device. 

Let us consider classical sliding mode observer for the 
Z-axis MEMS gyroscope as follow [21] 

(20)
ොሶଵݍ ൌ ොଶݍ  ଵݍሺ݊݃݅ݏଵܮ െ  ොଵሻݍ
ොሶଶݍ ൌ െܦሺݍොଶ  ଵݍሺ݊݃݅ݏଵܮ െ ොଵሻሻݍ െ ଵݍܭ  ܷܤ

 ଵݍሺ݊݃݅ݏଵܮሺ݊݃݅ݏଶܮ െ  ොଵሻሻݍ

where ݍොଵ, ොଶݍ  respectively represent the estimated value of 
actual state variables ݍଵ, ଶݍ  and ܮଵ, ଶܮ  are two positive 
definite constant matrixes representing observer gains to be 

respectively selected i.e. ܮଵ ൌ ݀݅݃ሼߣଵ, ଶሽߣ  and                  
ଶܮ ൌ ݀݅݃ሼߣଷ, ସሽߣ  and ultimately ݊݃݅ݏሺݍଵ െ ොଵሻݍ ൌ
ሾ݊݃݅ݏሺݔଵ െ ොଵሻݔ ଵݕሺ݊݃݅ݏ െ  .ොଵሻሿ்ݕ

By taking  ݁ ൌ ݍ െ ොݍ  while ݅ ൌ 1, 2 , the error 
observation dynamics are obtained from (19) and (20) as 

(21)
ሶ݁ଵ ൌ ݁ଶ െ  ሺ݁ଵሻ݊݃݅ݏଵܮ
ሶ݁ଶ ൌ െܦሺ݁ଶ െ ሺ݁ଵሻሻ݊݃݅ݏଵܮ  ݄ሺݍଵ, ଶሻݍ

െ  ሺ݁ଵሻሻ݊݃݅ݏଵܮሺ݊݃݅ݏଶܮ

By choosing observer gains such that satisfy the 
following inequalities 

ଵߣ(22)  ଶݔ| െ ଶߣ             ොଶ|௫ݔ  ଶݕ| െ  ොଶ|௫ݕ
ଷߣ  |݄௫ሺݕଵ, ଶሻ|௫ݕ ସߣ  ห݄௬ሺݔଵ, ଶሻหݔ

௫
 

Observation error trajectories (21) reach the sliding 
mode and then asymptotically converge to zero in finite 
time or in other words estimated state ݍො  while ݅ ൌ 1, 2 
converges to its actual value ݍ . In sliding mode, the 
unknown term ݄ሺݍଵ, ଶሻݍ  including Coriolis accelerations 
and quadrature errors can be simply derived for 
reconstruction of the unknown time-varying rotation rate.  

Proposition 2: Consider the state space representation 
of Z-axis MEMS gyroscope (19) while time-varying 
rotation rate Ω௭ and stiffness coupling ߱௫௬ are unknown.  

1- The proposed sliding mode observer (20) under 
condition (22) converges to dynamics of uncertain Z-axis 
MEMS gyroscope (19) in finite time by just utilizing the 
measureable state variable  ݍଵ in output.  

2- Once the error observation trajectories reach the 
sliding mode, the unknown vector function ݄ሺݍଵ,  ଶሻ can beݍ
estimated as follow 

(23)݄ ൌ ଵݍሺ݊݃݅ݏଵܮሺ݊݃݅ݏଶܮ െ  ොଵሻሻݍ
Proof: The convergence and robustness of the proposed 

observer (20) is also proved using second method of 
Lyapunov. The analysis criterion for the convergence of 
observation error on ݍଵis based on the following Lyapunov 
function 

(24)ଵܸ ൌ
1
2 ݁ଵ

்݁ଵ 

Differentiating V1 with respect to time yields  

(25)ሶܸଵ ൌ ݁ଵ
் ሶ݁ଵ ൌ ݁ଵ

்ሺ݁ଶ െ  ሺ݁ଵሻሻ݊݃݅ݏଵܮ

Obviously, choosing diagonal elements of ܮଵ according to 
(22) makes ሶܸଵ ൏ 0 . It means by decreasing Lyapunov 
function with respect to time, ݔොଵ ՜ ොଵݕ ଵ andݔ ՜  ଵ in finiteݕ
times ݐଵ, ଶݐ  and remain equal to ݔଵ  and ݕଵ  for ݐ  ଵݐ  and 
ݐ  ଶݐ  respectively. Moreover, for ݐ  ଵଶݐ ൌ ,ଵݐሺ ݔܽ݉ ଶሻݐ , 

ሶ݁ଵൎ0, meaning 

(26)݁ଶ ൌ ሺ݁ଵሻ݊݃݅ݏଵܮ

Consequently for  ݐ   ଵଶ the observation error dynamics isݐ
now equal to   

(27)ሶ݁ଵ ൌ 0 
ሶ݁ଶ ൌ ݄ሺݍଵ, ଶሻݍ െ   ሺ݁ଶሻ݊݃݅ݏଶܮ
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Subsequently, the second Lyapunov function is defined for 
the convergence analysis of observation error on ݍଶ  as 
follow 

(28)ଶܸ ൌ
1
2

ሺ݁ଵ
்݁ଵ  ݁ଶ

்݁ଶሻ 

Similarly, differentiating V2 with respect to time yields  

(29)ሶܸଶ ൌ ݁ଵ
் ሶ݁ଵ  ݁ଶ

் ሶ݁ଶ ൌ ݁ଶ
்ሼ݄ሺݍଵ, ଶሻݍ െ ሺ݁ଶሻሽ݊݃݅ݏଶܮ

and choosing diagonal elements of ܮଶ  according to (22) 
make ሶܸଶ ൏ 0 . Thus, ݔොଶ ՜ ଶݔ  and yොଶ ՜ yଶ  in finite times 
,ଷݐ  ସ by decreasing Lyapunov function with respect to timeݐ
and remain equal to ݔଶ  and ݕଶ  for ݐ  ଷݐ  ଵݐ  and ݐ 
ସݐ  ଶݐ  respectively. Similar to what stated earlier, for 
ݐ  ଷସݐ ൌ ,ଷݐሺ ݔܽ݉  ଷସ trajectories ofݐ ସሻ, ሶ݁ଶൎ0, meaning atݐ
observation error reach the sliding mode. Explicitly, an 
approximation of the unknown vector function ݄ሺݍଵ,  ଶሻݍ
including Coriolis acceleration and quadrature error terms 
can be derived in sliding mode by just utilizing the 
measureable state variable  ݍଵ as in (23).  

B.  Rotation rate estimation 
The proposed sliding mode observer provides an 

appropriate estimate of the unknown part of gyroscope 
dynamics including modeling errors and structural 
uncertainties. According to (4), the unknown vector function 
݄ሺݍଵ,  ଶሻ has the following structureݍ

(30)݄ሺݍଵ, ଶሻݍ ൌ ݍܭ  2Ωݍሶ  
Considering (30) shows that in both drive and sense 

modes, both Coriolis acceleration and quadrature error 
terms can be amplitude modulated signals centered at the 
resonant frequencies of the drive and sense axes by using 
proposed robust control law. Since ݍ, ሶݍ  signals in both 
directions have a relative phase shift of 90°, the undesired 
quadrature errors from the useful Coriolis accelerations can 
be separated through the demodulation technique in both 
directions without any restrictions. Subsequently, the 
unknown time-varying rotation rate is estimated by filtering 
the induced demodulated signals.  

Applying the sliding mode observer (20) and the 
terminal sliding mode control law (10) to the Z-axis MEMS 
gyroscope, the outputs of the drive and sense axis are forced 
to track the desired trajectories with ideal amplitudes and 
resonant frequencies much more than time-varying rotation 
rate frequency and subsequently the unmeasurable state 
variables and unknown dynamics of vibratory gyroscope are 
precisely estimated.  

The desired trajectory of the drive axis is ݔௗ ൌ
 ሻ. Since the proposed robust controller forces theݐሺ߱݊݅ݏܣ
tracking errors to zero, the position and velocity of the proof 
mass in x-direction would be ݔ ൌ ሶݔ ሻ, andݐሺ߱݊݅ݏܣ ൌ
ሻݐሺ߱ ݏܿ߱ܣ . Substitution of ݔ, ሶݔ  into (30) in sense 
direction, the structural uncertainties due to unknown time-
varying rotation rate and the unknown quadrature error 
terms in sense direction takes the form 

(31)݄௬ ൌ െ߱ܣ௫௬݊݅ݏ ሺ߱ݐሻ െ  ሻݐሺ߱ ݏΩ௭ܿ߱ܣ2
where ߱ ب ߱௧ in the Z-axis MEMS gyroscope. It should 
be noted that the unknown time-varying rotation rate is 

considered as a sinusoidal signal [7], and Ω௭ ൌ Ω 
Ωଵ݊݅ݏ ሺ߱௧ݐሻ  where Ω, Ωଵ, ߱௧  are respectively bias, 
amplitude, and frequency of the rotation rate. Multiplying 
(31) by ܿݏ ሺ߱ݐሻ yields 

(32)݄௬ܿݏሺ߱ݐሻ ൌ െ
1
2 ௫௬߱ܣ  ሻݐሺ2߱݊݅ݏ

െ߱ܣΩ௭ ሻݐሺ2߱ݏܿ െ  Ω௭߱ܣ
Since ߱ ب ߱௧, the high frequency signals will be filtered 
out through a low-pass filter (LPF) and thus the time-
varying rotation rate Ω௭ can be reconstructed as  

(33)Ω௭ ൌ ிܨ ቊെ
݄௬ܿݏሺ߱ݐሻ

߱ܣ ቋ 

where ܨிሼ. ሽ represent the function of the low-pass filter. 
The unknown signal ݄௬  is estimated by proposed sliding 
mode observer according to (23) and as a result, the rotation 
rate can be estimated by 

(34)Ω௭ ൌ ிܨ ቊെ
ݕሺ݊݃݅ݏଶߣሺ݊݃݅ݏସߣ െ ሻݐሺ߱ݏොሻሻܿݕ

߱ܣ ቋ 

V. SIMULATION RESULTS 
In this section, the proposed control and unknown 

rotation rate estimation scheme based on sliding mode 
observer is simulated on a model of Berkeley vibratory Z-
axis MEMS gyroscope [2] with key parameters given in 
Table.1. Moreover, the actual time-varying rotation rate and 
coupling stiffness which are unknown, verified Ω ൏
Ω௭ ൏ Ω௫  and ߱ ൏ ߱௫௬ ൏ ߱௫ . The nominal values 
of these quantities are given as 
Ω௭ ൌ 0.1  0.04 ሻݐሺ߱௧݊݅ݏ  while ߱௧ ൌ ݀ܽݎ ߨ100 ൗݏ  
and ߱௫௬ ൌ  ଶ assumed to be varied by 50% ofݏ/ଶ݀ܽݎ 6000
the nominal values in simulations.  

Table-1: The Z-axis MEMS Gyroscope parameters used in simulations 

Parameter Value Unit 
m 2×10-9 kg 

 rad/s 81681.4 ࣓࢞
 rad/s 80864.6 ࣓࢟

 N/A 10-5×4.5455 ࢞ࣈ
 N/A 10-4×3.125 ࢟ࣈ
 kg-1 108×4.169 ࢞࢈

 kg-1 108×4.169 ࢟࢈

The key design parameters of the proposed observer 
based scheme for control and rotation rate estimation of the 
studied gyroscope are given in Table.2. It is important to 
note that in all simulation results, the boundary layer 
thicknesses in ݐܽݏ ቀ .

ఝ
ቁ is selected equal to 0.5. 

Table-2: Observer based controller parameters used in simulations 
Controller Observer

Paramet Value Parameter Value Parameter Value
࢞ࣅ 2×104 ࢞ࢉ ࣅ 102×5 1×106

࢟ࣅ 2×104 ࢟ࢉ ࣅ 102×5 1×106

࢞࣋ 1×104 ࢻ ࣅ 5 1×106

࢟࣋ 1×104 ࢼ ࣅ 9 1×106
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At first, we will illustrate the efficiency of the proposed 
robust control scheme for considered vibratory gyroscope. 
The desired position for the drive mode is assumed to be 
ௗݔ ൌ ሻݐሺ߱݊݅ݏܣ , where ܣ ൌ 10ି  and ߱ ൌ  ݏ/݀ܽݎ ߨ26800
and the desired position for sense mode in the easiest case 
can be ݕௗ ൌ 0.  The initial value of the proof mass in both 
directions are assumed to be ݔሺ0ሻ ൌ െ1 ݉ߤ, ሺ0ሻݕ ൌ
ሶሺ0ሻݔ and  ݉ߤ0.5 ൌ ሶሺ0ሻݕ ൌ 0. A rapid tracking control in 
both directions can be achieved by using the proposed 
terminal sliding mode control. 

 
Fig.2. The gyroscope outputs in both drive and sense axis under       
terminal sliding mode control 

 
Fig.3. Terminal sliding mode control inputs in both drive and sense axis 

The gyroscope outputs and terminal sliding mode 
control inputs in both drive and sense axis for desired 
trajectories tracking are respectively depicted in Fig.2 and 
Fig.3. The corresponding steady state accuracies on the 
drive and sense axes under terminal sliding mode control 
being |ݔ െ |ௗݔ  1.5 ൈ 10ିଵ݉ and |ݕ െ |ௗݕ  1 ൈ 10ିଵଶ . 
Furthermore, Fig.6 shows the phase trajectories of tracking 
errors in both drive and sense modes under terminal sliding 
mode control. 

Subsequently, a comparable investigation is 
accomplished between the proposed terminal sliding mode 
and conventional sliding mode control laws applied to 
uncertain vibratory gyroscope (4) and the results are shown 

in Fig.4 where the tracking errors corresponding to terminal 
sliding mode control more severely decreases in contrast 
with the conventional sliding mode control due to the 
proposed finite time convergence algorithm. 

  

 

Fig.4. Tracking error comparison between TSMC and SMC 
 
In the next step, the performance of the proposed 

sliding mode observer based rotation rate estimation scheme 
for vibratory MEMS gyroscope is demonstrated through 
simulations. The initial conditions for designed observer are 
selected all zero. 

 

 
Fig.5. Observation errors of vibratory gyroscope in both drive and sense 

axis 

Fig.5 explicitly shows that the estimated state variables 
of gyroscope reach their actual values in finite times while 
the rotation rate and stiffness coupling are unknown. 
Finally, the time-varying rotation rate estimations at three 
different frequency values ݂௧ ൌ ܪ50 ,  ݂௧ ൌ ݖܪ 100 , 
and ݂௧ ൌ ݖܪ 200   ( ߱௧ ൌ ߨ2 ݂௧ ) are illustrated in 
Fig.6 without any changes in key parameters of the 
proposed observer based control scheme. 
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Fig.6. The rotation rate estimations at three different ݂௧ 

It is important to note that the transfer function of the 
low- pass filter is chosen as ܩி ൌ ଵ

ሺଵାఛ௦ሻమ where the time 

constant ߬ is 6.7 ൈ 10ିହ ݀ܽݎ ൗݏ . 

VI. CONCLUSIONS 
A novel observer based control scheme using sliding 

mode theory is applied for a Z-axis MEMS gyroscope while 
the time-varying rotation rate and stiffness coupling 
between both gyroscope modes are unknown. A terminal 
sliding mode control (TSMC) is proposed to minimize the 
coupling between two operational modes and to force both 
drive and sense mode to oscillate at specified amplitudes 
and frequencies despite unknown Coriolis acceleration and 
quadrature error terms. Subsequently, a sliding mode 
observer is proposed able to reconstruct the unknown time-
varying rotation rate when the error observation trajectories 
reach the sliding mode. Moreover, the proposed robust 
control law ensures that the unknown terms of vibratory 
gyroscope will be bounded for all the time. The stability and 
robustness of the proposed controller and observer as well 
as their convergence in finite times are proved using second 
method of Lyapunov. Simulation results demonstrate high 
tracking performance and robustness of the control in both 
drive and sense axis along with acceptable estimation of the 
unknown time-varying rotation rate using sliding mode 
observer. Furthermore, numerical simulations show 
advantageous of desired trajectory tracking speed of the 
TSMC in contrast with conventional SMC. 
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