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Abstract— In this paper, we study the global robust output
regulation problem for a class of multivariable nonlinear sys-
tems. The problem is first converted into a stabilization problem
of an augmented system composed of the original plant and an
internal model. The augmented system is a two-input system
containing both dynamic uncertainty and time-varying static
uncertainty. By decomposing the two-input control problem into
two single-input control problems, we can solve the problem
via a recursive approach utilizing the changing supply function
technique. Finally, the theoretical result is applied to the speed
tracking control and load torque disturbance rejection problem
of a surface-mounted PM synchronous motor.

I. INTRODUCTION

In this paper, we consider the global robust output regu-
lation problem of the following 2-input 2-output nonlinear
system

ż = f0(z, x1,1, v, w) + ϕ1,0(z, x1,1, x2,1, v, w)x2,1

ẋ1,1 = f1,1(z, x1,1, v, w) + b1,1(v, w)x1,2

+ϕ1,1(z, x1,1, x2,1, v, w)x2,1

...
ẋ1,r1 = f1,r1(z, x1, v, w) + b1,r1(v, w)u1

+ϕ1,r1(z, x1, x2,1, v, w)x2,1

ẋ2,1 = f2,1(z, x1, x2,1, v, w) + b2,1(v, w)x2,2

...
ẋ2,r2 = f2,r2(z, x1, x2, v, w) + b2,r2(v, w)u2

v̇ = A1v

e =
[

e1

e2

]
=

[
x1,1 − qd1(v, w)
x2,1 − qd2(v, w)

]
(1)

where z ∈ Rnz , for k = 1, 2, xk = col(xk,1, · · · , xk,rk
) with

xk,i ∈ R, i = 1, · · · , rk, are the states, and, uk ∈ R are the
inputs, ek ∈ R are the plant outputs representing the tracking
errors, w ∈ Rnw is the plant uncertain parameter vector,
v ∈ Rnv is the exogenous signal representing the disturbance
and/or the reference input, and the system v̇ = A1v is called
by exosystem.

It is assumed that all the functions are sufficiently smooth
satisfying f0(0, · · · , 0, w) = 0, and fk,i(0, · · · , 0, w) =
0, qdk

(0, w) = 0 for k = 1, 2, i = 1, · · · , rk,
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ϕ1,i(0, · · · , 0, w) = 0 for i = 0, 1, · · · , r1 and all the
eigenvalues of A1 are distinct with zero real parts.

We will study the global robust output regulation problem
for system (1) by a dynamic state feedback control law of
the following form:

u = u
K

(ζ, e, x1, x2), ζ̇ = g
K

(ζ, x1, x2) (2)

where both u
K

and g
K

are globally defined smooth functions.
Various versions of the output regulation problem have

been extensively studied since the 1990s. Here our version
follows from [4] and is repeated as follows: given any V and
W , which are compact subsets of Rnv and Rnw containing
the origins of Rnv and Rnw , respectively, find a control law
of the form (2) such that for any v ∈ V and w ∈ W ,
the trajectory of the closed-loop system starting from any
initial state exists and is bounded for all t > 0, and is
such that limt→∞ e(t) = 0. It is known from the general
framework detailed in [4] that the above problem can be
tackled in two steps. The first step is to convert the robust
output regulation problem for the given plant into a robust
stabilization problem for the so-called augmented system
composed of the given plant and a dynamic compensator
called internal model, and the second step aims to robustly
stabilize the augmented system. This framework has been
successfully applied to address the robust output regulation
problem for various classes of single-input and single-output
nonlinear systems [2], [3], [4]. However, few papers have
handled the multivariable nonlinear systems [7], [9]. The
system considered in [9] is a class of interconnected output
feedback systems. The special structure of this class of
systems allows the global output regulation problem to be
solved by a decentralized error feedback control scheme. The
system considered in [7] is an MIMO system in the normal
form. However, system (1) may not have well defined relative
degree and cannot be converted into normal form. Moreover,
[7] only considered semi-global output regulation problem
while we consider the global problem here.

What challenge the global robust output regulation prob-
lem of system (1) are as follows. First, system (1) is not in
the normal form, and there is no clue if the above problem
can be solved by output feedback control. Therefore, we
have to resort to state feedback control of the form (2)
which in turn leads to a much more complicated augmented
system. Second, due to the introduction of the internal
model, the augmented system is a two-input nonlinear system
containing both dynamic uncertainty and time-varying static
uncertainty. The stabilization problem of such a system has
never been handled. We need to first find conditions under
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which the augmented system has certain special structure,
and then find some recursive approach to convert the two-
input stabilization problem into the stabilization problem of
two single-input systems. We have indeed found a systematic
approach for doing so.

The problem in this paper is motivated by the well-
known speed tracking and disturbance rejection problem of
the surface-mounted PM synchronous motor [1], [6], [10].
The problem has been handled by feedback linearization
method. However, this method needs the exact knowledge
of the reference input as well as its derivatives. In contrast,
our formulation allows us to handle any reference input
generated by some exosystem. Additionally, by utilizing the
internal model design, we allow all the motor parameters to
be uncertain.

The rest of the paper is organized as follows. In Section II,
following the framework of [4], we convert the global robust
output regulation problem of the given system into the global
stabilization problem of an augmented system composed of
the original plant and an internal model. In Section III, we
solve the stabilization problem of the augmented system. In
Section IV, we apply the result in Section III to the speed
tracking control and load torque disturbance rejection of the
surface-mounted PM synchronous motor. In Section V, we
conclude the paper with a brief remark.

II. PRELIMINARIES

Our approach will be based on the framework of [4]. Let
us first put the system (1) in the following compact form:

ẋ = f(x, u, v, w), e = h(x, u, v, w) (3)

where

x =

 z
x1

x2

 , h(x, u, v, w) =
[

x1,1 − qd1(v, w)
x2,1 − qd2(v, w)

]
,

∆1 = f1,1(z, x1,1, v, w) + b1,1(v, w)x1,2

+ ϕ1,1(z, x1,1, x2,1, v, w)x2,1,

...
∆r1 = f1,r1(z, x1, v, w) + b1,r1(v, w)u1

+ ϕ1,r1(z, x1, x2,1, v, w)x2,1,

f(x, u, v, w)

=



f0(z, x1,1, v, w) + ϕ1,0(z, x1,1, x2,1, v, w)x2,1

∆1

...
∆r1

f2,1(z, x1, x2,1, v, w) + b2,1(v, w)x2,2

...
f2,r2(z, x1, x2, v, w) + b2,r2(v, w)u2


.

Associated with (3) are the following partial differential
equations:

∂x(v, w)
∂v

A1v = f(x(v, w), u(v, w), v, w)

0 = h(x(v, w), u(v, w), v, w) (4)

where x : Rnv ×Rnw 7→ Rnz+r1+r2 and u : Rnv ×Rnw 7→
R2 are two smooth functions vanishing at the origin. (4) is
known as regulator equations [5].

Two standard assumptions are as follows:
Assumption 2.1: The solution of regulator equations (4)

exists and is polynomial in v.
Assumption 2.2: For i = 1, · · · , r1, j = 1, · · · , r2,

b1,i(v, w) > 0, b2,j(v, w) > 0 for all v ∈ Rnv and w ∈ Rnw .
Remark 2.1: Under Assumption 2.2, if there exists a

globally defined smooth function z : Rnv × Rnw 7→ Rnz

with z(0, 0) = 0 such that
∂z(v, w)

∂v
A1v = f0(z(v, w), qd1(v, w), v, w)

+ϕ1,0(z(v, w), qd1(v, w), qd2(v, w),
v, w)qd2(v, w)

for all (v, w) ∈ Rnv × Rnw , then the other components of
the solution of the regulator equations of system (1) can be
obtained as follows:

x1,1(v, w) = qd1(v, w)

x1,2(v, w) = b−1
1,1(v, w)[

∂qd1(v, w)
∂v

A1v − f1,1(z(v, w),

qd1(v, w), v, w)− ϕ1,1(z(v, w), qd1(v, w),
qd2(v, w), v, w)qd2(v, w)]

x1,i+1(v, w) = b−1
1,i (v, w)[

∂x1,i(v, w)
∂v

A1v − f1,i(z(v, w),

qd1(v, w), x1,2(v, w), · · · , x1,i(v, w), v, w)
−ϕ1,i(z(v, w), qd1(v, w), x1,2(v, w), · · · ,

x1,i(v, w), qd2(v, w), v, w)qd2(v, w)], 2 ≤ i ≤ r1

x2,1(v, w) = qd2(v, w)

x2,2(v, w) = b−1
2,1(v, w)[

∂qd2(v, w)
∂v

A1v − f2,1(z(v, w),

x1(v, w), qd2(v, w), v, w)]

x2,j+1(v, w) = b−1
2,j(v, w)[

∂x2,j(v, w)
∂v

A1v − f2,j(z(v, w),

x1(v, w), qd2(v, w), x2,2(v, w), · · · , x2,j(v, w),
v, w)], 2 ≤ j ≤ r2

x1,r1+1 , u1, x2,r2+1 , u2. (5)
Let g(x, u) = col(x1,2, · · · , x1,r1 , u1, x2,2, · · · , x2,r2 , u2)

with its i-th component being denoted by gi(x, u). Under
Assumptions 2.1 and 2.2, for i = 1, · · · , r1 + r2, there
exist integers σi and real numbers ai,1, · · · , ai,σi

such that
gi(x(v, w), u(v, w)) satisfies, for all trajectories v(t) of the
exosystem and all w ∈ Rnw ,

dσigi(x(v, w), u(v, w))
dtσi

= ai,1gi(x(v, w), u(v, w)) + ai,2
dgi(x(v, w), u(v, w))

dt

+ · · ·+ ai,σi

d(σi−1)gi(x(v, w), u(v, w))
dt(σi−1)

. (6)

Let

τi(v, w) =
[

gi(x(v, w), u(v, w)) dgi(x(v,w),u(v,w))
dt

· · · d(σi−1)gi(x(v,w),u(v,w))

dt(σi−1)

]T

(7)
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and (Ψi,Φi) be an observable pair as follows:

Φi =
[

0(σi−1)×1 I(σi−1)×(σi−1)

ai,1 ai,2 · · · ai,σi

]
Ψi =

[
1 0 · · · 0

]
1×σi

. (8)

Let θi(v, w) = Tiτi(v, w) where Ti ∈ Rσi×σi is a nonsin-
gular matrix to be specified later. Then for all v, w

dθi(v, w)
dt

= TiΦiT
−1
i θi(v, w)

gi(x(v, w), u(v, w)) = βi(θi(v, w)) (9)

where βi(θi) = ΨiT
−1
i θi. System (9) is called steady-state

generator with output gi(x, u), i = 1, · · · , r1 + r2 [4].
Let Mi ∈ Rσi×σi and Ni ∈ Rσi×1 be a pair of

controllable matrices with Mi Hurwitz. Then we call the
following dynamic compensator

η̇i = Miηi + Nigi(x, u), i = 1, · · · , r1 + r2 (10)

as the internal model of (1) with output gi(x, u). The
composition of the plant (1) and the internal model (10) is
called the augmented system.

Remark 2.2: Since (Mi, Ni) is controllable and (Φi,Ψi)
is observable, there exists a unique nonsingular matrix Ti

satisfying the Sylvester equation [8]

TiΦi −MiTi = NiΨi, i = 1, · · · , r1 + r2. (11)

With Ti defined this way, (ηi − θi) will satisfy

(η̇i − θ̇i) = Mi(ηi − θi) + Ni(gi(x, u)− gi(x(v, w),
u(v, w))). (12)

Thus limt→∞(ηi − θi) = 0 if limt→∞(gi(x, u) −
gi(x(v, w), u(v, w))) = 0.

Performing on the augmented system composed of (1) and
(10) the following coordinate and input transformation

z0 = z − z(v, w)
z1,i = ηi − θi(v, w)− b−1

1,i (v, w)Nix̄1,i,

i = 1, · · · , r1

x̄1,1 = x1,1 − qd1(v, w)
x̄1,i+1 = x1,i+1 − βi(ηi), i = 1, · · · , r1 − 1

ū1 = u1 − βr1(ηr1)
z2,j = ηr1+j − θr1+j(v, w)− b−1

2,j(v, w)Nr1+j x̄2,j ,

j = 1, · · · , r2

x̄2,1 = x2,1 − qd2(v, w)
x̄2,j+1 = x2,j+1 − βr1+j(ηr1+j), j = 1, · · · , r2 − 1

ū2 = u2 − βr1+r2(ηr1+r2) (13)

yields the following system

ż0 = f̄0(z0, x̄1,1, x̄2,1, µ)
ż1,i = Miz1,i + Q1,i(z0, z1,1, · · · , z1,i−1, x̄1,1, · · · ,

x̄1,i, x̄2,1, µ)
˙̄x1,i = f̄1,i(z0, z1,1, · · · , z1,i, x̄1,1, · · · , x̄1,i, x̄2,1, µ)

+b1,i(µ)x̄1,i+1

ż2,j = Mr1+jz2,j + Q2,j(X̄r1 , z2,1, · · · , z2,j−1, x̄2,1,

· · · , x̄2,j , µ)
˙̄x2,j = f̄2,j(X̄r1 , z2,1, · · · , z2,j , x̄2,1, · · · , x̄2,j , µ)

+b2,j(µ)x̄2,j+1 (14)

where

f̄0(z0, x̄1,1, x̄2,1, µ)
= f0(z, x1,1, v, w) + ϕ1,0(z, x1,1, x2,1, v, w)x2,1

−f0(z(v, w), qd1(v, w), v, w)− ϕ1,0(z(v, w),
qd1(v, w), qd2(v, w), v, w)qd2(v, w)

and µ = col(v, w), l = nv + nw, x̄1,r1+1 = ū1, x̄2,r2+1 =
ū2, X̄i = col(z0, z1,1, x̄1,1, · · · , z1,i, x̄1,i), i =
1, · · · , r1, j = 1, · · · , r2. For i = 1, · · · , r1, j = 1, · · · , r2,
Q1,i, f̄1,i, Q2,j , f̄2,j are globally defined smooth functions
satisfying Q1,i(0, · · · , 0, µ) = 0, f̄1,i(0, · · · , 0, µ) = 0, and
Q2,j(0, · · · , 0, µ) = 0, f̄2,j(0, · · · , 0, µ) = 0, for all µ ∈ Rl.
The expressions of these functions are omitted due to the
space limit.

Remark 2.3: Now the global robust output regulation
problem of system (1) has been converted to the global robust
stabilization problem of system (14). Thus, if a state feedback
control law of the form

ū1 = α1(x̄1), ū2 = α2(x̄2) (15)

where x̄1 = col(x̄1,1, · · · , x̄1,r1), x̄2 = col(x̄2,1, · · · , x̄2,r2),
α1 and α2 are globally defined smooth functions vanishing
at the origin globally stabilizes the augmented system (14),
then the following control law

u1 = α1(x̄1) + βr1(ηr1)
u2 = α2(x̄2) + βr1+r2(ηr1+r2)
η̇i = Miηi + Nigi(x, u), i = 1, · · · , r1 + r2 (16)

solves the global robust output regulation problem of the
original plant (1).

III. MAIN RESULTS

Having derived the augmented system (14), all we need
to do is to stabilize (14). Our idea is to decompose the
stabilization problem of the augmented system into the
stabilization problem of two single-input systems. While
the first single-input system has X̄r1 as the state and ū1

as the control input, the second single-input system has
col(X̄r1 , z2,1, x̄2,1, · · · , z2,r2 , x̄2,r2) as the state and ū2 as
the control input. Both systems contain some dynamic un-
certainties. To handle these uncertainties, we need one more
assumption.
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Assumption 3.1: Consider the z0-subsystem of (14)
where µ : [0,∞) 7→ Rl is a bounded piecewise continuous
function. For any compact subset Σ ⊂ Rl, there exists a C1

function Vz0 satisfying α0(‖z0‖) ≤ Vz0(z0) ≤ α0(‖z0‖) for
some class K∞ function α0(·), α0(·) such that for all µ ∈ Σ,

V̇z0 ≤ −α0(‖z0‖) + γ0(x̄1,1, x̄2,1)

where α0(·) is some class K∞ function satisfying
lims→0+ sup(α−1

0 (s2)
s ) < ∞ and γ0(·) is a known smooth

positive definite function.
Lemma 3.1: Consider the following system

ζ̇1 = ϕ1(ζ1, x, y, µ(t))
ζ̇2 = Aζ2 + ϕ2(ζ1, x, y, µ(t))
ẋ = φ(ζ1, ζ2, x, y, µ(t)) + b(µ(t))u (17)

where ζ1 ∈ Rn1 , ζ2 ∈ Rn2 , x ∈ R, y ∈ R,µ : [0,∞) 7→ Rl

is a bounded piecewise continuous function, A ∈ Rn2×n2

is a Hurwitz matrix, ϕ1(ζ1, x, y, µ), ϕ2(ζ1, x, y, µ) and
φ(ζ1, ζ2, x, y, µ) are sufficiently smooth with ϕ1(0, 0, 0, µ) =
0, ϕ2(0, 0, 0, µ) = 0 and φ(0, 0, 0, 0, µ) = 0 for all µ ∈ Rl.
Assume, given any compact subset Σ ⊂ Rl, there exists a C1

function V̄1(ζ1) satisfying γ
1
(‖ζ1‖) ≤ V̄1(ζ1) ≤ γ1(‖ζ1‖)

for some class K∞ functions γ
1
(·) and γ1(·) such that, for all

µ(t) ∈ Σ, along the trajectory of system ζ̇1 = ϕ1(ζ1, x, y, µ),

˙̄V1 ≤ −γ1(‖ζ1‖) + π̄1(x) + π̄2(y) (18)

where γ1(·) is some known class K∞ function satisfying
lims→0+ sup(γ−1

1 (s2)
s ) < ∞ and π̄1(x), π̄2(y) are some

known smooth positive definite functions. Then there exist a
smooth function ρ : R 7→ [0,∞), a controller of the form

u = −ρ(x)x + ν (19)

with ν ∈ R, and a C1 function U1(ζ1, ζ2, x) satisfying
α1(‖ζ1, ζ2, x‖) ≤ U1(ζ1, ζ2, x) ≤ α1(‖ζ1, ζ2, x‖) for some
class K∞ functions α1(·) and α1(·), such that, along the
trajectory of the closed-loop system composed of (17) and
(19),

U̇1 ≤ −‖ζ1‖2 − ‖ζ2‖2 − x2 + ν2 + π(y) (20)

for some known smooth positive definite function π(y).
The proof is skipped due to the space limit.
Before establishing the next Lemma, we introduce the

following notations:

x̃1,1 = x̄1,1

x̃1,i+1 = x̄1,i+1 + ρ1,i(x̃1,i)x̃1,i, i = 1, · · · , r1 − 1
ū1 = −ρ1,r1(x̃1,r1)x̃1,r1 (21)

x̃2,1 = x̄2,1

x̃2,j+1 = x̄2,j+1 + ρ2,j(x̃2,j)x̃2,j , j = 1, · · · , r2 − 1
ū2 = −ρ2,r2(x̃2,r2)x̃2,r2 (22)

where, for k = 1, 2, j = 1, · · · , rk, ρk,j(x̃k,j) are some
nonnegative smooth functions to be specified in the proof of
Lemma 3.2.

Also, let X̃i = col(z0, z1,1, x̃1,1, · · · , z1,i, x̃1,i), i =
1, · · · , r1.

Lemma 3.2: Under Assumption 3.1, given any compact
subset Σ ⊂ Rl, there exist nonnegative smooth functions
ρ1,i(x̃1,i), i = 1, · · · , r1, that define the control law (21)
and a C1 function Ũr1(X̃r1) satisfying αr1

(‖X̃r1‖) ≤
Ũr1(X̃r1) ≤ αr1(‖X̃r1‖) for some class K∞ functions
αr1

(·) and αr1(·) such that, for all µ ∈ Σ,

˙̃Ur1 ≤ −‖X̃r1‖2 + $r1(x̄2,1) (23)

where $r1(·) is a known smooth positive definite function.
The proof is also skipped due to the space limit.
Remark 3.1: Under control law (21), system (14) can be

put in the following form:

˙̃Xr1 = Fr1(X̃r1 , x̄2,1, µ)
ż2,j = Mr1+jz2,j + Q̃2,j(X̃r1 , z2,1, · · · , z2,j−1, x̄2,1,

· · · , x̄2,j , µ)
˙̄x2,j = f̃2,j(X̃r1 , z2,1, · · · , z2,j , x̄2,1, · · · , x̄2,j , µ)

+b2,j(µ)x̄2,j+1 (24)
j = 1, · · · , r2

where

f̃0(z0, x̃1,1, x̄2,1, µ) = f̄0(z0, x̄1,1, x̄2,1, µ)
Fr1(X̃r1 , x̄2,1, µ)

=



f̃0(z0, x̃1,1, x̄2,1, µ)
M1z1,1 + Q̃1,1(z0, x̃1,1, x̄2,1, µ)
f̃1,1(X̃1, x̄2,1, µ) + b1,1(µ)x̄1,2

...
Mr1z1,r1 + Q̃1,r1(X̃r1−1, x̃1,r1 , x̄2,1, µ)
f̃1,r1(X̃r1 , x̄2,1, µ) + b1,r1(µ)ū1


,

and for i = 1, · · · , r1, j = 1, · · · , r2, Q̃1,i, f̃1,i, Q̃2,j , f̃2,j

are globally defined smooth functions satisfying
Q̃1,i(0, · · · , 0, µ) = 0, f̃1,i(0, · · · , 0, µ) = 0, and
Q̃2,j(0, · · · , 0, µ) = 0, f̃2,j(0, · · · , 0, µ) = 0, for all
µ ∈ Rl. The expressions of these functions are omitted due
to the space limit.

The system (24) is an SISO system and is in lower
triangular form and the stabilization problem of system
(24) has been extensively studied in the literature. In
particular, as X̃r1-subsystem satisfies inequality (23), we
can directly invoke Theorem 4.1 of [3] to conclude that
there exist a control law of the form (22) and a C1

function Ũr1+r2(X̃r1+r2) satisfying β
r1+r2

(‖X̃r1+r2‖) ≤
Ũr1+r2(X̃r1+r2) ≤ β̄r1+r2(‖X̃r1+r2‖) for some class K∞
functions β

r1+r2
(·), β̄r1+r2(·) such that

˙̃Ur1+r2 ≤ −‖X̃r1+r2‖2 (25)

where X̃r1+r2 = col(X̃r1 , z2,1, x̃2,1, · · · , z2,r2 , x̃2,r2). Thus,
the stabilization problem of system (14) is solved by control
law (21) and (22). The control law (21) and (22) can be put
in the form (15). By Remark 2.3, we can obtain the following
result.

4563



Theorem 3.1: Under Assumptions 2.1, 2.2 and 3.1, the
state feedback control law of the following form

u1 = −ρ1,r1(x̃1,r1)x̃1,r1 + βr1(ηr1)
u2 = −ρ2,r2(x̃2,r2)x̃2,r2 + βr1+r2(ηr1+r2)
η̇i = Miηi + Nigi(x, u), i = 1, · · · , r1 + r2 (26)

solves the global robust output regulation problem of system
(1).

IV. APPLICATION TO SPEED CONTROL OF
SURFACE-MOUNTED PM SYNCHRONOUS MOTOR

Consider the following system [10], [11]:

dθr

dt
= ωr

dωr

dt
=

3pΦv

2J
iq −

B

J
ωr −

1
J

TL

did
dt

= −Rs

L
id + piqωr +

1
L

ud

diq
dt

= −Rs

L
iq − pidωr −

pΦv

L
ωr +

1
L

uq (27)

where θr is rotor position, ωr is speed, id and iq are dq frame
stator currents, TL is an unknown constant load torque with
a known bound, ud and uq are dq frame stator voltages, L is
dq axes inductance, Φv is rotor flux, Rs is stator resistance,
J is inertia, B is viscous friction coefficient and p is the
number of pole pairs.

System (27) is called surface-mounted PM synchronous
motor because dq axes inductances are equal. We now design
a dynamic state feedback control law such that the solution
of the closed-loop system is globally bounded in the presence
of the unknown constant load torque TL, and

1) the speed ωr tracks the trajectory yd(t) = A sin(ωt+φ)
with arbitrary unknown amplitude A and initial phase
φ;

2) the d axis current id is asymptotically regulated to zero.
As we mentioned in the introduction, similar control prob-

lems have been considered in several papers via feedback
linearization approach [10], [11]. This approach needs to
know the reference input yd(t) as well as its first and second
derivatives. Here we will solve the above problem using
the output regulation theory. For this purpose, define the
following exosystem

v̇ = A1v =

 0 ω 0
−ω 0 0
0 0 0

 v (28)

where v = [v1, v2, v3]T . The system (28) can generate any
combination of a sine function with arbitrary amplitudes and
initial phase and an arbitrary constant. In particular, with
initial value given by v(0) =

[
A sinφ,A cos φ, 1

J TL

]T
, the

solution of (28) is such that

v1(t) = yd(t), v3(t) =
1
J

TL. (29)

Let x1,1 = ωr, x1,2 = iq, x2,1 = id, u1 = uq, u2 =
ud, a11 = B

J , b11 = 3pΦv

2J , a12 = Rs

L , a13 = pΦv

L , b12 =

1
L , a14 = p, a21 = Rs

L , a22 = p, b21 = 1
L . Then the system

(27) can be put in the form (1) as follows:

ẋ1,1 = −a11x1,1 − v3 + b11x1,2

ẋ1,2 = −a12x1,2 − a13x1,1 + b12u1 − a14x1,1x2,1

ẋ2,1 = −a21x2,1 + a22x1,1x1,2 + b21u2

e =
[

x1,1 − v1

x2,1

]
. (30)

With (28) and (30) ready, the speed control problem of
surface-mounted PM synchronous motor can be solved if
we can solve the robust output regulation problem of the
system composed of (28) and (30) by a state feedback
control law of the form (26). An advantage of the nonlinear
output regulation approach is that it can render the motor
speed to track a sinusoidal signal with arbitrary unknown
amplitude and initial phase without actually using yd(t) and
its first and second derivatives. This approach allows all the
motor parameters L,Φv, Rs, J, B to be unknown with known
bounds.

We now verify system (30) satisfies all assumptions of
Theorem 3.1. In fact, since system (30) only contains poly-
nomial nonlinearity and the dimension of the z dynamics
of system (30) is zero, Assumption 2.1 holds trivially. Also,
since b11, b12, b21 > 0, Assumption 2.2 is satisfied. By (5),
the solution of the regulator equations associated with (28)
and (30) is given as follows:

x1,1(v, w) = v1

x1,2(v, w) = b−1
11 a11v1 + b−1

11 ωv2 + b−1
11 v3

x2,1(v, w) = 0
u1(v, w) = b−1

12 (−b−1
11 ω2 + b−1

11 a11a12 + a13)v1

+b−1
12 (b−1

11 a11ω + b−1
11 a12ω)v2

+b−1
12 b−1

11 a12v3

u2(v, w) = −b−1
11 a22b

−1
21 v1(a11v1 + ωv2 + v3).

Let g(x, u) = col(x1,2, u1, u2). Then we can obtain a
steady-state generator of the form (9) with Ti the solution of
the following equations:

TiΦi −MiTi = NiΨi, i = 1, 2, 3 (31)

where (Mi, Ni), i = 1, 2, 3, are any controllable pairs with
Mi Hurwitz. By (10), we can construct the internal model
with output x1,2, u1, u2 as follows:

η̇1 = M1η1 + N1x1,2

η̇2 = M2η2 + N2u1

η̇3 = M3η3 + N3u2. (32)

Performing the coordinate and input transformation (13)
on the system composed of (30) and (32) gives the aug-
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mented system (14) which takes the following specific form:

ż1,1 = M1z1,1 + d1x̄1,1

˙̄x1,1 = b11x̄1,2 + d2z1,1 + d3x̄1,1

ż1,2 = M2z1,2 + d4z1,1 + d5x̄1,1 + c1(v)x̄2,1 + d6x̄1,2

+d7x̄1,1x̄2,1

˙̄x1,2 = d8z1,2 + d9z1,1 + d10x̄1,1 + c2(v)x̄2,1

+d11x̄1,2 + d12x̄1,1x̄2,1 + b12ū1

ż2,1 = M3z2,1 + c3(v)z1,1 + c4(v)x̄1,1 + d13x̄2,1

+c5(v)x̄1,2 + d14x̄1,1x̄1,2 + d15x̄1,1z1,1

+d16x̄
2
1,1

˙̄x2,1 = d17z2,1 + c6(v)z1,1 + c7(v)x̄1,1 + d18x̄2,1

+c8(v)x̄1,2 + d19x̄1,1x̄1,2 + d20x̄1,1z1,1

+d21x̄
2
1,1 + b21ū2 (33)

where the expressions of c1(v), · · · , c8(v), d1, · · · , d21 are
omitted due to space limit.

Since the dimension of the z0-subsystem in (33) is zero,
Assumption 3.1 holds trivially. By Theorem 3.1, the sta-
bilization problem of system (33), and hence, the output
regulation problem of system (30) are solvable.

Following the design procedure given in Section III,
we can obtain a control law in the form of (26). To be
more specific, p = 3 and the nominal values of mo-
tor parameters are taken from [11]: R̄s = 1.2Ω, B̄ =
0.0001N.m.sec/rad, Φ̄v = 0.18V.sec/rad, L̄ = 0.011H, J̄ =
0.006Kg.m2. The nominal value of load torque is T̄L =
0.3N.m. Assume frequency ω = 3, unknown amplitude A ≤
2rad/sec and the actual values of Rs, B, Φv, L, J, TL satsify
Rs ∈ [0.5R̄s, 2R̄s], B ∈ [0.5B̄, 2B̄],Φv ∈ [0.5Φ̄v, 2Φ̄v], L ∈
[0.5L̄, 2L̄], J ∈ [0.5J̄ , 2J̄ ], TL ∈ [0.5T̄L, 2T̄L]. Then we can
obtain a specific control law as follows:

u1 = −k̄2(1 + x̃2
1,2)x̃1,2 + Ψ2T

−1
2 η2

u2 = −k̄3(1 + e2
2)e2 + Ψ3T

−1
3 η3

x̃1,2 = x1,2 −Ψ1T
−1
1 η1 + k̄1e1

η̇1 = M1η1 + N1x1,2

η̇2 = M2η2 + N2u1

η̇3 = M3η3 + N3u2 (34)

where k̄1 = 2, k̄2 = 0.6, k̄3 = 60, and the specific values of
various matrices are omitted due to the space limit.

The performance of the control law is evaluated through
computer simulation with the following motor parameters:
Rs = 2R̄s, B = 0.5B̄,Φv = 0.9Φ̄v, L = 2L̄, J = 0.7J̄ .
The desired speed is yd(t) = 2 sin(3t + π

2 )rad/sec, and
the load TL = 0 for 0 ≤ t < 4s and TL = 0.7T̄L for
t ≥ 4s. The initial values of various variables are ωr(0) =
0.1rad/sec, id(0) = 0.2A, iq(0) = 0.3A, v1(0) = 2, v2(0) =
0, v3(0) = 0, and η1(0) = η2(0) = η3(0) = 0. Figures 1
and 2 show the motor speed tracking performance and the
current id, respectively.

Fig. 1. speed error with load at t = 4s

Fig. 2. id current with load at t = 4s

V. CONCLUSION

Due to the recursive nature, our approach can also be
generalized to an m-input m-output system with a structure
similar to (1).
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