
 
 

 

  

Abstract— This paper studies mixed 2 /H H∞  robust 
fault-tolerant control for a class of uncertain systems and its 
application to flight tracking control. A sufficient condition is 
derived by introducing some important auxiliary variables, 
which guarantees that the uncertain closed-loop system is 
robustly stable and satisfies the mixed 2 /H H∞  constraint in 
both normal and fault cases. In the framework of Linear Matrix 
Inequality (LMI) approach, a multi-objective optimization 
problem is solved with much less conservative via an iterative 
algorithm. Simulation results obtained with a nonlinear fighter 
aircraft model show the effectiveness of the proposed method. 

I. INTRODUCTION 
O improve the performance of modern fighter aircraft, the 
associated flight control systems become more complex 

and thus faults happen more frequently. In general, control 
component faults such as actuator and/or sensor faults are the 
most fatal failures, namely, these faults often result in 
performance degradation, even instability. Therefore, 
researches on Fault-Tolerant Control (FTC) have increased 
progressively over the last three decades. Among them, robust 
FTC [1]-[3] is one of the popular methods to design 
Fault-Tolerant Control System (FTCS) for aircraft. 

It is well known that 2H  control is adapted to deal with 
transient performance while H∞  control guarantees robust 
stability in the face of uncertainties and disturbances. To 
manage the trade-off between the system performance and 
robustness, the mixed 2 /H H∞  control was first introduced 
by Bernstein and Haddad [4]. In recent years, Linear Matrix 
Inequality (LMI)-based methods [5]-[10] have become one of 
the most effective tools to solve the mixed 2 /H H∞  control 
problem due to the development of the interior point 
algorithm for convex optimization. However, to the best 
knowledge of authors, robust FTC against actuator faults has 
never been considered in the mixed 2 /H H∞  control, also, its 
application to flight control system has not been reported in 
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the literature. 
In this paper, a new synthesis approach is developed for the 

mixed 2 /H H∞  robust fault-tolerant control with application 
to flight tracking control. We first introduce some auxiliary 
variables [11] to the LMI characterizations regarding to the 
mixed 2 /H H∞  performance index, which separate Lyapunov 
function variables from controller gain variable. Then, a 
sufficient condition is derived from the above transformation, 
which guarantees that the uncertain closed-loop system is 
robustly stable and satisfies the mixed 2 /H H∞  constraint in 
both normal and fault cases. Subsequently, an Iterative LMI 
(ILMI) algorithm is developed from the proposed sufficient 
condition to solve the multi-objective optimization problem 
with much less conservativeness. The proposed approach is 
applied to flight control system of a nonlinear fighter aircraft 
model known as ADMIRE to ensure tracking performance. 

Notation: For a matrix X, TX , ( )tr X  and max ( )Xσ  
denote its transposition, trace and largest singular value, 
respectively. The Symbol “*” within a matrix presents the 
symmetric entries. 1( , , )nX diag x x= K  denotes that X is a 

diagonal matrix and diagonal element is ( 1, , )ix i n= K . n nI ×  
denotes an identity matrix with n dimension. 

II. PRELIMINARIES AND PROBLEM FORMULATION 
Consider an uncertain Linear Time-Invariant (LTI) system 

described by 
( ) [ ( )] ( ) [ ( )] ( ) [ ( )] ( )
( ) ( )

x t A A t x t B B t u t G G t w t
y t Cx t

= + Δ + + Δ + + Δ⎧
⎨ =⎩

&
(1) 

where ( ) nx t ∈R is the state, ( ) mu t ∈R is the control input, 

( ) hw t ∈R  is the disturbance input and ( ) py t ∈R  is the 
measured output. A, B, C and G are known real constant 
matrices with appropriate dimensions, which describe the 
nominal system. ΔA, ΔB and ΔG are real-valued time-varying 
matrix functions representing the norm-bounded parameter 
uncertainties: 

       ( ) ,  ( ) ,  ( )a a b b g gA E t F B E t F G E t FΔ = Δ Δ = Δ Δ = Δ      (2) 

where ( ) ( )T t t IΔ Δ ≤ [13]. 
The system (1) with actuator faults can then be rewritten as: 

( ) [ ( )] ( ) [ ( )] ( ) [ ( )] ( )
( ) ( )

Lx t A A t x t B B t u t G G t w t
y t Cx t

ω= + Δ + +Δ + +Δ⎧
⎨ =⎩

&
(3) 

where Lω  are the matrices of actuator effectiveness factors
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 and satisfy 

          
1 2  { [ ,  ],,  , 

                  [ ,  ],    = 1, 2, ,  }

 = 0, 1,  , ,  2 1

L L L LmL

Li Li Li
m

p p

diag

i m
L l l

ω ω ω ω ω
ω ω ω

∈ Θ =

∈

≤ −

K

K

K

       (4) 

with Liω  and Liω representing the lower and upper bounds of 

Liω  respectively. Partial loss in control effectiveness is given 
by 0 1Liω≤ ≤ . It is worth mentioning that 0Liω =  means total 
outage in the ith actuator and 1Liω =  denotes a healthy 
actuator.  

Consider the measured output Sy(t) tracks the reference 
signal r(t) without steady-state error in both normal and fault 
cases, that is 

                     lim  ( ) 0,      ( ) ( ) ( )
t

e t e t r t Sy t
→∞

= = −                 (5) 

where e(t) is tracking error and l PS ×∈R  is a known constant 
matrix used to select the measured output. Based on the 
standard tracking optimization problem setting, the reference 
signal r(t) is taken as a disturbance. It is well known that the 
tracking error integral action of a controller can effectively 
eliminate the steady-state tracking error [1]. In order to obtain 
a mixed 2 /H H∞  robust fault-tolerant controller with state 
feedback plus integral action of the tracking error, we 
restructure the system (3) as an augmented system and the 
state-space description is given by 

0
0            0( ) ( )

( )
0    ( ) ( )( )    ( )

             0 ( )
                              0,1, ,2 1

0    ( ) ( )

t

L
a a b b

m

g g

SCe t e t dt
u t

A E t F B E t Fx t x t
I r t

L
G E t F w t

ω
⎡ ⎤−⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎢ ⎥= +⎢ ⎥ ⎢ ⎥⎢ ⎥ + Δ + Δ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦

⎡ ⎤⎡ ⎤
+ = −⎢ ⎥⎢ ⎥+ Δ ⎣ ⎦⎣ ⎦

∫
&

K

(6) 

Define the augmented state 
0

( ) [( ( ) ) ,   ( )]
t T T Tx t e t dt x t= ∫ , 

the augmented disturbance ( ) [( ( ),   ( )]TT Tv t r t w t= and the 

augmented output 
0

( ) [( ( ) ) ,   ( )]
t T T Ty t e t dt y t= ∫ , and then the 

augmented system can be represented as:     

2 2 2

( ) [ ( ) ] [ ( ) ] ( ) [ ( ) ] ( )

( ) ( )
( ) [ ] ( )

( ) [ ] ( )

a a b b L g g

L

L

x t A E t F B E t F u t G E t F v t

y t Cx t
z t C D KC x t
z t C D KC x t

ω

ω
ω

∞ ∞ ∞

⎧ = + Δ + + Δ + + Δ
⎪

=⎪
⎨

= +⎪
⎪ = +⎩

&

 (7) 

where 1( )
p

z t∞ ∈R  and 2
2 ( )

p
z t ∈R  are the controlled outputs, 

C∞ , 2C , D∞ , 2D  are known real constant matrices and 

0   0       0
,    ,  ,

0      0      

 0  0
,  [0   ],  ,  ,

 0
,  [0   ],  ( ) ( ).

a a a b b b
a b

g g g
g

SC I
A B G

A B G

E F F E F F
E E

E F F t t
E

−⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦
⎡ ⎤ ⎡ ⎤

= = = =⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦
⎡ ⎤

= = Δ = Δ⎢ ⎥
⎣ ⎦

 

Obviously, if a controller stabilizes the augmented system (7), 

it also stabilizes the original system (3). 

III. MIXED 2 /H H∞  CONTROLLER DESIGN 

In this section, we develop a new ILMI method to achieve a 
mixed 2 /H H∞  robust fault-tolerant controller such that: 

-First, the controller stabilizes the uncertain closed-loop 
augmented system in both normal and fault cases. 

-Second, the controller satisfies the mixed 2 /H H∞  
performance constraint. 

Consider the following state feedback controller for the 
augmented system (7): 

                  
0

( ) ( ) ( ) ( )
t

e xu t Kx t K e t dt K x t= = +∫                (8) 

where ( )[   ] m l p
e xK K K × += ∈R  is the state feedback controller 

gain to be determined.  
Assumption 1: The state of the system is available at every 

time instant. 
The uncertain closed-loop augmented system is represented 

as follows by substituting (8) into (7) 

  

2 2 2

( ) {[ ( ) ] [ ( ) ] } ( ) [ ( ) ] ( )

( ) ( )
( ) [ ] ( )
( ) [ ] ( )

a a b b L g g

L

L

x t A E t F B E t F K x t G E t F v t

y t Cx t
z t C D K x t
z t C D K x t

ω

ω
ω

∞ ∞ ∞

⎧ = + Δ + + Δ + + Δ
⎪
⎪ =
⎨

= +⎪
⎪ = +⎩

&

 (9) 

    Let z vT
∞

 and 
2z vT  denote the transfer function from v(t) to 

( )z t∞  and 2 ( )z t , respectively. Based on the presentations of 

2H  and H∞  norm [12], we first present the following 
definition and lemmas, which play important roles to the 
development of our main results. 
Definition 1: Mixed 2 /H H∞  problem 

Given a H∞  level γ, find an admissible state feedback 
controller gain K stabilizes the closed-loop system with 
satisfying   

                           2 2
min  

subject  to   

z v

z v

T

T γ
∞ ∞

<
                      (10) 

Lemma 1 [13]: Given matrices Y, E and F of appropriate 
dimensions where Y is symmetrical and ( ) ( )T t t IΔ Δ ≤ . Then 

                      ( ) ( ) 0T T TY E t F F t E+ Δ + Δ <                  (11) 
holds if and only if there exists a scalar 0ε >  such that 

                         1 0T TY EE F Fε ε −+ + <                      (12) 
Lemma 2: ( 2 /H H∞  performance) [14] For a given positive 
scalar γ , if there exist symmetric positive definite matrices P, 
Q and state-feedback controller gain K satisfying the 
optimization problem: minimize[ ( )]tr Q  subject to 

2

( ) ( )    ( )
0 0

 0

T T

T

A BK P P A BK PG C D K
G P I

C D K Iγ

∞ ∞

∞ ∞

⎡ ⎤+ + + +
⎢ ⎥− <⎢ ⎥
⎢ ⎥+ −⎣ ⎦

(13) 
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2 2 2 2( ) ( ) ( ) ( ) 0T TA BK P P A BK C D K C D K+ + + + + + < (14) 

                                   0
TQ G P

PG P
⎡ ⎤

>⎢ ⎥
⎣ ⎦

                         (15) 

The state-feedback controller satisfies the control objective 
described in Definition 1. 

In Lemma 2, the common Lyapunov function matrices P 
and Q are used to solve the mixed 2 /H H∞  optimization 
problem. Hence, this method enlarges the conservativeness of 
the design procedure and cannot provide good solutions. In 
what follows, we will develop an ILMI method to obtain the 
mixed 2 /H H∞  controller gain with less conservativeness. 
Theorem 1: For given positive scalars Lγ  and Lλ , if there 
exist symmetric positive definite matrices LP∞ , 2LP , LQ , 
positive scalars 1ε  , 2ε , 3ε  and controller gain K satisfying 
the optimization problem: 0minimize[ ( )]tr Q  subject to 

1
1

1
3

2

1
1

1
2

2
1

3

( ) ( )

0
0
0
0
0

                                 0 <0
0 0
0 0 0
0 0 0 0

T T
L L L L a a

T T
g g

L
T
a L
T
b L

b L
T
g L

L

A B K P P A B K F F
G P I F F

C D K
E P
E P
F K
E P

I
I

I
I

I

ω ω ε
ε

ω

ω

γ
ε

ε
ε

ε

−
∞ ∞

−

∞ ∞

∞

∞

∞

−

−

−

⎡ + + + + ∗
⎢ − +⎢
⎢ +
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∗ ∗ ∗ ∗ ∗ ⎤
⎥∗ ∗ ∗ ∗ ∗ ⎥
⎥− ∗ ∗ ∗ ∗
⎥− ∗ ∗ ∗ ⎥
⎥− ∗ ∗
⎥

− ∗ ⎥
⎥− ⎦

 

(16) 

1
2 2 1

2 2

2

2

1
1

1
2

2

( ) ( )

0
0
0

                                                 0
0
0 0

T T
L L L L a a

L
T
a L
T
b L

b L

A B K P P A B K F F
C D K I

E P
E P
F K

I
I

I

ω ω ε
ω

ω

ε
ε

ε

−

−

−

⎡ + + + + ∗
⎢ + −⎢
⎢
⎢
⎢
⎢⎣

∗ ∗ ∗ ⎤
⎥∗ ∗ ∗ ⎥
⎥ <− ∗ ∗
⎥− ∗ ⎥
⎥− ⎦

(17) 

                 

1
3

2 2
1

2 3

0
0

T
L g

L L
T
g L

Q F F
P G P

E P I

ε

ε

−

−

⎡ ⎤+ ∗ ∗
⎢ ⎥∗ >⎢ ⎥
⎢ ⎥−⎣ ⎦

               (18) 

                                    2 ( )L Ltr Q λ<                                      (19) 
The obtained controller satisfies the control objective 
described in Definition 1.  
Proof: Inequalities (17), (18) and (19) are equivalent to: 

2

1
1 1

1
2 2

3

( ) ( )

0

0 0 0 0 0 0
0 0

0 0 0 0 0 0
0 0

0
0

T
L L L L

T
L

L L

T
L a a

T
a L a

T T
L b L b

T
b L b L

L g

A B K P P A B K
G P I

C D K I

P E F
E P F

P E K F
E P F K

P E

ω ω

ω γ

ε ε

ω
ε ε ω

ε

∞ ∞

∞

∞ ∞

∞
−

∞

∞
−

∞

∞

⎡ ⎤+ + + ∗ ∗
⎢ ⎥− ∗⎢ ⎥
⎢ ⎥+ −⎣ ⎦

⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥ ⎡ ⎤ ⎡ ⎤+ + ⎢ ⎥⎢ ⎥ ⎣ ⎦⎣ ⎦
⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦
⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥ ⎡ ⎤ ⎡ ⎤+ + ⎢ ⎥⎢ ⎥ ⎣ ⎦⎣ ⎦
⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦

⎡
⎢+ ⎢
⎢⎣

1
3

0
0 0 0 0 0

0

T T
g L g gE P F Fε −

∞

⎤ ⎡ ⎤
⎥ ⎢ ⎥⎡ ⎤ ⎡ ⎤+ <⎥ ⎣ ⎦⎣ ⎦ ⎢ ⎥
⎥ ⎢ ⎥⎣ ⎦⎦

 

                                                                                       (20)   

2 2

2 2

12
1 2 1

12
2 2 2

( ) ( )

0 0
0 0

0 0 0
0 0

T
L L L L

L

T
TL a a
a L a

T T
TL b L b
b L b L

A B K P P A B K
C D K I

P E F
E P F

P E K F
E P F K

ω ω
ω

ε ε

ωε ε ω

−

−

⎡ ⎤+ + + ∗
⎢ ⎥+ −⎣ ⎦

⎡ ⎤⎡ ⎤
⎡ ⎤ ⎡ ⎤+ + ⎢ ⎥⎢ ⎥ ⎣ ⎦⎣ ⎦

⎣ ⎦ ⎣ ⎦
⎡ ⎤⎡ ⎤

⎡ ⎤ ⎡ ⎤+ + <⎢ ⎥⎢ ⎥ ⎣ ⎦⎣ ⎦
⎣ ⎦ ⎣ ⎦

  (21) 

              
3 2

22 2

1
3

0
0

                         0 0
0

L T
g L

L gL L

T
g

g

Q
E P

P EP G P

F F

ε

ε −

∗ ⎡ ⎤⎡ ⎤
⎡ ⎤+ ⎢ ⎥⎢ ⎥ ⎣ ⎦

⎣ ⎦ ⎣ ⎦
⎡ ⎤

⎡ ⎤+ >⎢ ⎥ ⎣ ⎦
⎣ ⎦

              (22) 

Then, the following expressions are derived from Lemma 1: 

2

{[ ( ) ] [ ( ) ] }
  

{[ ( ) ] [ ( ) ] }
[ ( ) ] 0

 0

T
a a b b L L

L a a b b L
T

g g L

L L

A E t F B E t F K P
P A E t F B E t F K

G E t F P I
C D K I

ω
ω

ω γ

∞

∞

∞

∞ ∞

⎡ ⎤+ Δ + + Δ
∗ ∗⎢ ⎥

+ + Δ + + Δ⎢ ⎥
⎢ ⎥+ Δ − ∗ <⎢ ⎥

+ −⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

                

(23) 

2

2

2 2

{[ ( ) ] [ ( ) ] }
0{[ ( ) ] [ ( ) ] }

T
a a b b L L

L a a b b L

L

A E t F B E t F K P
P A E t F B E t F K

C D K I

ω
ω

ω

⎡ ⎤+ Δ + + Δ
∗⎢ ⎥ <+ + Δ + + Δ⎢ ⎥

⎢ ⎥+ −⎣ ⎦

(24) 

                     
2 2

0
[ ( ) ]

L

L g g L

Q
P G E t F P

∗⎡ ⎤
>⎢ ⎥+ Δ⎣ ⎦

                    (25) 

Based on Lemma 2, it is obvious that the controller gain K 
satisfies the control objective described in Definition 1. This 
completes the proof.                                                            ■ 
Remark 1: An optimal mixed 2 /H H∞  controller can be 
achieved via formulation minimize[ ( )]tr Q  in Lemma 2. 
Theorem 1 calculate the optimal solution in normal case and 
sub-optimal solution in fault cases, i.e. 0minimize[ ( )]tr Q  and 
guarantee the upper bound of 2H  and H∞  performance 

5542



 
 

 

index are smaller than (  = 1, ,  )L pL lλ K  and 

(  = 0, 1, ,  )L pL lγ K . 
Remark 2: Theorem 1 gives a sufficient condition that 
guarantees the uncertain closed-loop augmented system is 
robustly stable, and satisfies the mixed 2 /H H∞  constraint in 
both normal and fault cases. The presumed actuator faults are 
introduced into matrix inequalities through the different 
Lyapunov function variables LP∞  and 2LP . Therefore, the 
conservativeness of Theorem 1 is smaller than that of Lemma 
2. Nevertheless, the matrix inequalities in Theorem 1 are not 
jointly convex. To solve this difficulty, some important 
auxiliary variables are introduced into the following theorem, 
which separate the Lyapunov function variables from the 
controller gain variable. 
Theorem 2: For given positive scalars Lγ  and Lλ  as well as 
initial controller gain 0K , initial Lyapunov function variables 

0LP∞  and 2 0LP , if there exist symmetric positive definite 
matrices LP∞ , 2LP , LQ , positive scalars 1ε , 2ε , 3ε  and 
controller gain K satisfying the optimization problem: 

0minimize[ ( )]tr Q  subject to (18), (19) and 

1
3

2

1
1

1
2

2
1

3

0
0 0
0 0 0
0 0 0
0 0 0
0 0 0

                         0

0
0 0
0 0 0

L
T

L L
T T

g g

L L
T
a L
T
b L

b L
T
g L

N
B P K I

G P I F F
C D K I

E P
E P
F K
E P

I
I

I
I

ω
ε

ω γ

ω

ε
ε

ε
ε

∞

∞
−

∞ ∞

∞

∞

∞

−

−

−

∗ ∗ ∗⎡
⎢ + − ∗ ∗⎢
⎢ − + ∗
⎢ + −⎢
⎢
⎢
⎢
⎢
⎢
⎢⎣

∗ ∗ ∗ ∗ ⎤
⎥∗ ∗ ∗ ∗ ⎥
⎥∗ ∗ ∗ ∗
⎥∗ ∗ ∗ ∗ ⎥ <⎥− ∗ ∗ ∗
⎥

− ∗ ∗ ⎥
⎥− ∗ ⎥

− ⎥⎦

  (26) 

    

2

2

2 2
1

2 1
1

2 2

2

0
0

0 0
0 0 0
0 0 0 0

L
T

L L

L
T
a L
T
b L

b L

N
B P K I
C D K I

E P I
E P I
F K I

ω
ω

ε
ε

ω ε

−

−

∗ ∗ ∗ ∗ ∗⎡ ⎤
⎢ ⎥+ − ∗ ∗ ∗ ∗⎢ ⎥
⎢ ⎥+ − ∗ ∗ ∗

<⎢ ⎥− ∗ ∗⎢ ⎥
⎢ ⎥− ∗
⎢ ⎥

−⎢ ⎥⎣ ⎦

   (27) 

where 
1

1

0 0 0 0

0 0 0 0

              

              

T T
L L L a a

T T T
L L L L L L
T T T

L L L L L L

N A P P A F F
P BB P P BB P P BB P
K K K K K K

ε

ω ω ω ω ω ω

−
∞ ∞ ∞

∞ ∞ ∞ ∞ ∞ ∞

= + +

− − +

− − +

1
2 2 2 1

2 2 0 2 0 2 2 0 2 0

0 0 0 0

              

              

T T
L L L a a

T T T
L L L L L L
T T T

L L L L L L

N A P P A F F
P BB P P BB P P BB P
K K K K K K

ε

ω ω ω ω ω ω

−= + +

− − +

− − +

 

The obtained state feedback controller guarantees that the 
uncertain closed-loop augmented system (9) is robustly stable 
and satisfies the mixed 2 /H H∞  constraint in both normal and 
fault cases.  
Proof: Inequalities (26) and (27) are equivalent to 

0 0 0 0( ) ( ) ( ) ( )
(16) 0 0 0 0 0

0 0 0 0

T T
L L L L L LP P B P P B K K K Kω ω∞ ∞ ∞ ∞⎡ ⎤⎡ ⎤− − − −⎡ ⎤⎡ ⎤

⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥+ + <⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦⎣ ⎦⎣ ⎦⎣ ⎦

                

(28) 

2 2 0 2 2 0 0 0( ) ( ) ( ) ( )
(17) 0 0 0 0 0

0 0 0 0

T T
L L L L L LP P B P P B K K K Kω ω⎡ ⎤⎡ ⎤− − − −⎡ ⎤⎡ ⎤

⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥+ + <⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦⎣ ⎦⎣ ⎦⎣ ⎦

                

(29) 
respectively. It is obvious that the formulations (16) and (17) 
are satisfied if the formulations (28) and (29) are satisfied. The 
subsequent proof can be readily obtained via Theorem 1, and 
so is omitted here for brevity.                                              ■                  
Remark 3: The matrix inequalities (26) and (27) can be 
transformed into LMIs by giving the initial controller gain 0K  
and initial Lyapunov function variables 0LP∞  and 2 0LP . The 
conservativeness of this transformation lies in the differences 
between 0K K− , 0L LP P∞ ∞−  and 2 2 0L LP P− . Thus, the 
following iterative algorithm will be developed to minimize 
the proposed conservativeness. 
Algorithm 1: 

Step 1 Select some small scalars 0Lγ >  and 0Lλ > , then 

obtain the initial controller gain 0 1
opt opt optK Z X −=  via the 

optimization problem: 0minimize[ ( )]tr W  subject to 0X > , 
0LW >  and LMIs (19), 

1
1 2 3 3

2

1

2

00
0 0
0 0 0

T T T

T T T T
a a b b g g g g

L L

a

b L

XA AX Z B BZ
E E E E E E I F F

C X D Z I
F X I

F Z I

ε ε ε ε
ω γ

ε
ω ε

−

∞ ∞

⎡ ⎤+ + + + ∗ ∗ ∗ ∗
⎢ ⎥+ + − + ∗ ∗ ∗⎢ ⎥
⎢ ⎥ <+ − ∗ ∗
⎢ ⎥

− ∗⎢ ⎥
⎢ ⎥−⎣ ⎦

                                                                                   (30) 

                          
2 2

0L
T T

L

W
XC Z D Xω

∗⎡ ⎤
>⎢ ⎥+⎣ ⎦

                   (31) 

                                 2 ( )L Ltr W λ<                                  (32) 

Step 2 Let 0
optK K= , 0minimize[ ( )]tr Q  subject to 

0LP∞ > , 2 0LP > , 0LQ >  and the LMI constrains described 
in Theorem 1, then we get the initial Lyapunov function 
variables 0

LP∞  and 0
2LP . 

Step 3 At the ith iteration ( 0i > ), let 1
0

i i
L LP P −

∞ ∞= , 
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1
2 0 2
i i
L LP P −=  and 1

0
i
optK K −= , 0minimize[ ( )]tr Q  subject to 

0i
LP∞ > , 2 0i

LP > , 0i
LQ >  and the LMI constrains described 

in Theorem 2, then we get the Lyapunov function variables 
i
LP∞  and 2

i
LP  as well as controller gain i

optK . 

Step 4 If 1
20 20( )i itr P P δ−− <  where δ  is a given error 

tolerance, the calculated i
optK K=  is the optimal mixed 

2 /H H∞  controller gain, stop. Otherwise, let 1i i= +  and 
return to Step 3. 
Remark4: In Algorithm 1 and 2, the sequence ( )

20 1( )i
itr P ∞
=  is 

convergent since ( 1)
20

iP −  is a feasible solution and ( )
20

iP  is an 
optimal solution for the ith iteration in Step 3). Hence, 
Algorithm 1 and 2 must be convergent. 

IV. FLIGHT CONTROL EXAMPLE 
    In this section, the simulation results of flight tracking 
control for nonlinear ADMIRE aircraft model are presented to 
demonstrate the advantage of the proposed method.  

The ADMIRE model describes a single seated, single 
engine small fighter aircraft with a delta-canard configuration 
[15]. The linear aircraft model is described by expression (1) 

in this paper, where ( ) [     ]Tx t p q rα β=  is the state, 

    ( ) [   ]T
roe rie lie loerc lc ru t δ δ δ δ δ δ δ=  is the control surface 

deflection and W(t) is disturbance. The tracking signal is 

( ) [   ]Tr t pα β=  since these variables are close to the 
maneuver ability of aircraft. For the considered flight case, 

0.5432 0.0137 0 0.9778 0
0 0.1179 0.2215 0 0.9661

,0 10.5130 0.9967 0 0.6176
2.6221 0.0030 0 0.5057 0

0 0.7075 0.0939 0 0.2127
0.0035 0.0035 0.0318 0.0548 0.0548 0.0318 0.0004
0.0063 0.0063 0.0024 0.00

A

B

−⎡ ⎤
⎢ ⎥− −⎢ ⎥
⎢ ⎥= − −
⎢ ⎥− −⎢ ⎥
⎢ ⎥− −⎣ ⎦

− − − −
−

=
95 0.0095 0.0024 0.0287

,0.6013 0.6013 2.2849 1.9574 1.9574 2.2849 1.4871
0.8266 0.8266 0.4628 0.8107 0.8107 0.4628 0.0024
0.2615 0.2615 0.0944 0.1861 0.1861 0.0944 0.8823

0.00541 0 0 0.00682 0 .TG ⎡ ⎤⎣ ⎦

⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥− − −
⎢ ⎥− − − −⎢ ⎥
⎢ ⎥− − − −⎣ ⎦

=

    

We introduce seven kinds of actuator faults into the design 
procedure of the mixed 2 /H H∞  controller. Considering the 
worst situation for actuator failures, assume that the actuator is 
total outage, namely, the effectiveness factor of the actuator 
decreases to zero. Thus, every fault holds the following 
condition: one effectiveness factor 0Liω =  and other six 
effectiveness factors ,  1  1,  2 , 7,Lj j j iω = = ≠L . 

Select the following weighting matrices 

6 2 6 7

7 6 7 2 7 7

,
0(4, 4, 4, 3, 3, 2) 0

,
30 0

diag
C D

I
× ×

∞ ∞
× × ×

⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

= =
∗

⎡ ⎤
⎢ ⎥⎣ ⎦

 

3 73 3 3 5
2

7 3 7 5 5 5
2,

00
0 0 0.15

.I
C D

I
×× ×

× × ×

⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

= =
∗

⎡ ⎤
⎢ ⎥
⎣ ⎦

 

Then, the mixed 2 /H H∞  controller ILMIK  can be obtained 
through Algorithm 1. For comparison purposes, the standard 
mixed 2 /H H∞  controller SLMIK  and the standard LQR 
controller LQRK  are also achieved, respectively. 

5.2005 10.0045 0.7048 5.0724 8.9905 0.5272 1.9465 7.2874
5.2008 10.0345 0.6919 5.0788 8.9548 0.5260 1.9600 7.2816
3.4769 1.7279 5.7080 3.0718 0.1784 1.3764 1.2158 0.0990
5.0835 2.4920 5.4232 4.3884 3.7686 0.

ILMIK =

− − − − −
− − − −

− − − −
− − − 9878 1.7219 2.8513

5.0917 2.4795 5.4319 4.3938 3.8122 0.9893 1.7271 2.8648
3.4604 1.7425 5.7043 3.0583 0.2019 1.3747 1.2128 0.1013

0.0604 14.0909 0.5367 0.0429 12.2743 0.6893 0.0220 9.2019

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥− − − −
⎢ ⎥
− − −⎢ ⎥
⎢ ⎥− − − − −⎣ ⎦

    Figs. 1-3 show the comparisons of the three proposed 
controllers using the nonlinear aircraft model. Considering the 
convenience of comparisons, we assume that all of the 
actuator faults occur at 40 seconds. In Fig. 2, when the 
actuator of the right canard is a total outage, the transient 
behaviors of the controller ILMIK  are similar to that of the 
controllers SLMIK  and LQRK . However, as the number of 
actuator failures increases, for example, the actuators of the 
right canard and left inner elevon lose simultaneously, it is 
easy to see that the controller ILMIK  results in superior 
tracking performance than the controller SLMIK , and the 
controller LQRK  from Fig. 3. Furthermore, in Fig. 4, when the 
actuators of right and left canards and left inner elevon are 
total outage simultaneously, the controller LQRK  cannot 

stabilize the aircraft and controller SLMIK  has unacceptable 
peak value and overshoot. The controller ILMIK  obtained by 
our method just suffers from slight performance degradation. 
In summary, the controller ILMIK  yields better performance 
than other controllers in the event of actuator faults, without 
any sacrifices of performance in fault free case. 

V. CONCLUSION 
In this paper, we have proposed a mixed 2 /H H∞  robust 

fault-tolerant controller design method to a class of uncertain 
systems. Based on the concept of auxiliary variable, a 
sufficient condition is derived to guarantee that the 
closed-loop system is robustly stable and satisfies the mixed 

2 /H H∞  constraint in both normal and fault cases. An ILMI 
algorithm developed from the sufficient condition yields less 
conservativeness than the previous methods. Nonlinear 
simulations are also presented to illustrate the advantage of 
the proposed method.  

There remains a future work to discuss rigorously about the 
case: Dynamic Output Feedback (DOF) control. Moreover, 
the obtained results in this paper may be extended to polytopic 
uncertain systems due to the decoupling of Lyapunov function 
variables and controller gain. 
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Fig. 1.  Nonlinear simulation in the fault case: right canard outage. 
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Fig. 2.  Nonlinear simulation in the fault case: right canard and left inner 
elevon outages. 
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Fig. 3.  Nonlinear simulation in the fault case: right and left canards and left 
inner elevon outages. 
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