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Abstract— Cumulants are gaining in popularity for use in
stochastic control and game theory. They also have been effec-
tive in application to building and vibration control problems.
Much of the work has been done for the finite time horizon
case. In this paper, cost cumulants will be used on a discounted
cost function. The control will be concerned with the first
two cumulants, the mean and variance. The approach will
initially be done for a nonlinear system with non-quadratic costs
and sufficient conditions are determined. With the sufficient
conditions in place, attention will be turned to the linear
quadratic special case. A coupled Riccati equation will be seen
to give an optimal cumulant control law.

I. INTRODUCTION

Recently, the k cost cumulant (kCC) and minimum cost

variance (MCV) have received attention. [4]-[6],[7]. The

most well known cumulant control, of course, is the linear

quadratic Gaussian (LQG) method. LQG can be seen as a

cumulant control because it is a control method in which the

control wishes to minimize the first cumulant, the mean, of

a cost. Another well known control method that could also

be seen as cumulant control is risk sensitive control. In risk

sensitive control, the controls tries to minimize a series of

cost cumulants. The cumulants are related to the more well

known moments. It is well known that the moments can

be determined from the first characteristic function. Further-

more, if all of the moments are known, then the first char-

acteristic function is completely characterized, and thereby

so is the probability distribution. The same can be said of

cumulants, with the major difference being that cumulants

can be determined from the second characteristic function

(which is simply the natural logarithm of the first). What

has been found from the finite time horizon case is that for

the linear quadratic special case, cumulants yield quadratic

cost function and linear controllers, whereas moments may

not. What this paper contains is a treatment of cumulants for

the discounted cost infinite time horizon problem. There have

been some infinite time horizon cumulant work, namely [6]

and [8]. The main difference here is the use of the discounted

cost.

The paper begins with a formulation of the problem and

then moves on to discuss some preliminaries. With those

out of the way, the discussion turns to sufficient conditions

for the nonlinear system, non-quadratic cost case. Once

R. Diersing is an Assistant Professor with the Department of
Engineering, University of Southern Indiana, Evansville, IN 47712.
rwdiersing@usi.edu

C. Won is an Assistant Professor of Electrical Engineering, Temple
University, Philadelphia, PA 19122 cwon@temple.edu

M. Sain is Freimann Professor of Electrical Engineering, University of
Notre Dame, Notre Dame, IN 46556 avemaria@nd.edu

these conditions are determined, they are used in the linear

quadratic special case.

II. PROBLEM FORMULATION

For the infinite time horizon problem, we will consider

the system

dx(t) =f(x(t), u(t))dt + σ(x(t))dξ(t) (1)

where x(0) = x0 is a random variable independent of ξ,

x ∈ R
n is the state, u ∈ U ⊂ R

p is the control, and

ξ is a d-dimensional Brownian motion with variance W .

The functions f, ui will be assumed to satisfy both linear

growth and Lipschitz conditions. That is, f and σ satisfy the

following conditions.

(i) There exists a constant C such that

‖f(x, u)‖ ≤ C (1 + ‖x‖ + ||u||)
‖σ(x)‖ ≤ C(1 + ‖x‖)

for all (x, u) ∈ R
n × U , x ∈ R

n, and ‖ · ‖ is the

Euclidean norm.

(ii) There is a constant K so that

‖f(x̃, ũ) − f(x, u)‖ ≤ K (‖x̃ − x‖ + ‖ũ − u‖)
‖σ(x̃) − σ(x)‖ ≤ K‖x̃ − x‖

for all x, x̃ ∈ R
n; u, ũ ∈ U .

Furthermore, the control strategy u(t) = µ(x(t)) satisfies the

following conditions:

(i) for some constant C̃

‖µ(x)‖ ≤ C̃(1 + ‖x‖)
(ii) there exists a constant K̃ such that

‖µ(x̃) − µ(x)‖ ≤ K̃(‖x̃ − x‖)
where x, x̃ ∈ R

n. Often we will suppress the dependence on

t and x and refer to the strategies as simply µ.

If the strategy µ satisfies these conditions, then they are

admissible strategies. We can rewrite the stochastic differen-

tial equation as

dx(t) = f̃(x(t))dt + σ(x(t))dξ(t) x(t0) = x0 (2)

where the strategy µ has been substituted into f , called f̃ .

The conditions of Theorem V4.1 of [2] are now satisfied and

we see that if E‖x(t0)‖2 < ∞, then a solution of (1) exists.

Furthermore the solution x(t) is unique in the sense that if

there exists another solution x̃(t) with x̃(t0) = x0, then the

two solutions have the same sample paths with probability

1. The resulting process is a Markov diffusion process ([2]

pg. 123) and the moments of x(t) are bounded.
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Since this is a stochastic optimal control problem, it makes

sense that we are concerned with some sort of cost. In this

case, the cost to be considered will be a discounted non-

quadratic cost. The discounted cost function will be given

as

J =

∫ ∞

0

e−βtl(x(t), u(t))dt (3)

where β > 0 is a constant and l is a positive semidefi-

nite continuous function that satisfies a polynomial growth

condition. The control’s objective will then be to minimize

in some way the mean and variance of this cost function.

Before moving on to that, however, it is important to state

an important formula to be used.

Dynkin Formula

The Dynkin formula is the mechanism that allows us

to determine the Hamilton-Jacobi-Bellman equation for the

variance. Before moving on, however, it is important to state

a notation, namely that the expectation Etx{·} is simply

E{·|x(t)}. Much of these results may be found in [3], but we

are restating them here for completeness. To begin, we let Q
be a subset of R

n and Cp1, 2(Q) denote a class of functions

that have continuous first and second partial derivatives with

respect to x. Commonly the Dynkin formula for a function

Φ(t, x) ∈ C1,2
p (Q) be given as

Φ(t, x) =Etx

{
∫ t1

t

−OµΦ(s, x(s))ds

}

+ Etx {Φ(t1, x(t1))}
(4)

where the operator Oµ is given by

Oµ =
∂

∂t
− Gµ

with

−Gµ =f ′(x(t), µ(x(t)))
∂

∂x

+
1

2
tr

(

σ(x(t))Wσ′(x(t))
∂2

∂x2

)

.

For the discounted cost case, we may be concerned more

with the case when we let Φ(t, x) = e−βsφ(x). Then by

substitution and some manipulations, we obtain

e−βtφ(x) =Etx

{
∫ t1

t

−
(

∂

∂s
− Gµ

)

(

e−βsφ(x(s))
)

ds

}

+ Etx

{

e−βt1φ(x(t1))
}

=Etx

{
∫ t1

t

−
(

∂

∂s

)

(

e−βsφ(x(s))ds
)

}

−Etx

{
∫ t1

t

Gµ(e−βsφ(x(s)))ds

}

+ Etx

{

e−βt1φ(x(t1))
}

=Etx

{
∫ t1

t

(

βe−βsφ(x(s))ds
)

}

Etx

{

e−βs (Gµφ(x(s)) ds
}

+ Etx

{

e−βt1φ(x(t1))
}

.

This then reduces, with some manipulation, to

e−βt1Ex {φ(x(t1))} − e−βtφ(x)

= Etx

{
∫ t1

t

e−βs [βφ + Gµφ] (x(s))ds

}

,

and letting t = 0, gives the new Dynkin formula for the

discounted cost case,

e−βt1Ex {φ(x(t1))} − φ(x)

= Etx

{
∫ t1

0

e−βs [βφ + Gµφ] (x(s))ds

}

.

III. PROBLEM DEFINITIONS

Before moving on to the development of the Hamilton

Jacobi Bellman equations, it is worthwhile to state several

definitions to be used later on.

Definition 1: A function M : R
n → R

+ is an admissible

mean cost function if there exists an admissible control µ
such that M(x) = Ex {J}.

Definition 2: An admissible mean cost function M de-

fines a class of control laws UM such that µ ∈ UM if and only

if the control law µ is admissible and satisfies Definition 1.

Definition 3: An MCV control strategy µ∗ ∈ UM is one

that minimizes the second moment, i.e. Ex

{

J2
}

= M2(x)
for x ∈ R

n.Furthermore the variance is then determined from

V = M2(x) −M2(x).

IV. NONLINEAR SOLUTION

We will begin by providing several lemmas to be used in

the proof of the control’s minimum cost variance law. First

we will consider a necessary condition for the discounted

cost’s mean value and then proceed to a sufficient condition

for the mean.

Lemma 1: Let M ∈ C1,2
p (Q) be an admissible mean cost

function and µ be an admissible control law that satisfies

Definition 1. Then M satisfies

βM(x) = −GµM(x) + l(x, µ(x)). (5)

Lemma 2 (Verification Lemma): Let M ∈ C1,2
p (Q) be a

solution to

βM(x) = −GµM(x) + l(x, µ(x)). (6)

Then

M(x) = E

{
∫ ∞

0

e−βsl(x(s), µ(x(s)))

}

for all µ ∈ UM .

Proof. From the Dynkin formula, if we let φ(x) = M(x),
we obtain

e−βt1Ex{M(x(t1)} −M(x) =

Ex

{
∫ t1

0

e−βs [−GµM− βM] (x(s))ds

}

,

which by some manipulation becomes

M(x) =Ex

{
∫ t1

0

e−βs [GµM + βM] (x(s))ds

}

+ e−βt1Ex{M(x(t1)}.
(7)
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However, notice that from (6) we have

βM(x) = −GµM(x) + l(x, µ), (8)

which with a slight manipulation yields

βM(x) + GµM(x) = l(x, µ). (9)

So by substituting this into (7), we obtain

M(x) =Ex

{
∫ t1

0

e−βsl(x(s), µ(x(s))ds

}

+ e−βt1Ex{M(x(t1)},
and by letting t1 → ∞,

M(x) = Ex

{
∫ ∞

0

e−βsl(x(s), µ(x(s))ds

}

.

2

With the mean case given, we now have a second veri-

fication lemma, this time for the second moment. However,

before we begin, we will give a lemma that will be useful

in the proof of the second moment’s verification lemma.

Lemma 3: Consider the running cost function

L(t, x, µ) = e−βtl(x, µ), which is denoted by Lt.

then the equality

(j + 1)

∫ tf

t

Ls

[
∫ tf

s

Lrdr

]j

ds =

[
∫ tf

t

Lrdr

]j+1

(10)

holds.

Proof. First we should change the limits of integration:

∫ tf

t

Ls

[
∫ tf

s

Lrdr

]j

ds = (−1)j

∫ t

tf

Ls

[

∫ s

tf

Lrdr

]j

ds

Now recall that for two differential functions F and G we

can integrate by parts

∫ t

tf

F (s)g(s)ds = F (t)G(t)−F (tf )G(tf )−
∫ t

tf

f(s)G(s)ds

where f(s) = dF (s)
ds

, G(s) =
∫ s

tf
g(r)dr. Let g(s) = Ls and

F (s) =

[

∫ s

tf

Lrdr

]j

.

With these definitions we see that

f(s) = jLs

[

∫ s

tf

Lrdr

]j−1

G(s) =

∫ s

tf

Lrdr

which then yields

(−1)j

∫ t

tf

Ls

[

∫ s

tf

Lrdr

]j

ds = (−1)j

[

∫ t

tf

Lsds

](j+1)

− (−1)j

∫ t

tf

jLs

[

∫ s

tf

Lrdr

]j

ds

which is

(j + 1)

∫ t

tf

Ls

[

∫ s

tf

Lrdr

]j

ds =

[

∫ t

tf

Lsds

](j+1)

and the lemma is proved. 2

Lemma 4 (Verification Lemma): Let M be an admissible

mean cost function and M2 ∈ C1,2
p (Q) be a nonnegative

solution to

2βM2(x) =

min
µ∈UM

{−GµM2(x) + 2M(x)l(x, µ)} . (11)

Then

M2(x) ≤ E

{

[
∫ ∞

0

e−βsl(x(s), µ(x(s)))ds

]2
}

for every µ ∈ UM . If, say, µ̄ is also the minimizing argument

of (11), then

M2(x) = E

{

[
∫ ∞

0

e−βsl(x(s), µ̄(x(s)))ds

]2
}

.

Proof. Consider the following HJB equation given in (11).

By the definition of the Dynkin formula for M2(x), we have

e−2βtM2(x) =

Etx

{
∫ t1

t

e−2βs

[

−∂e−(2)βsM2

∂s
+ GµM2

]

· (x(s))ds

}

+ e−2βt1Ex{M2(x(t1)}

= Etx

{
∫ t1

t

e−2βs [2βM2 + GµM2]

· (x(s))ds

}

+ e−2βt1Ex{M2(x(t1)},

(12)

but in a similar way as in the mean value case, we have

2βM2(x) + GµM2(x) ≤ 2M(x)l(x, µ). (13)

Using this gives

e−2βtM2(x) ≤ e−2βt1Ex{M2(x(t1)}

+ Etx

{
∫ t1

t

e−2βsM(x(s))l(x(s), µ(s))ds

}

,

but

e−βtM(x) = Etx

{
∫ ∞

t

e−βsl(x(s), µ(x(s)))ds

}

.
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So, by substitution, we have

e−2βtM2(x) ≤ +e−βt1Ex{M2(x(t1)}

+ Etx

{

∫ t1

t

2e−βs

· Esx

{
∫ ∞

s

e−βτ l(x(τ), µ(x(τ)))dτ

}

l(x(s), µ(x(s)))ds

}

≤ e−βt1Ex{M2(x(t1)}

+ Etx

{

Esx

{
∫ t1

t

2e−βsl(x(s), µ(x(s))

·
∫ ∞

s

e−βtl(x(t), µ(x(t)))dtds

}

}

+ e−βt1Ex{M2(x(t1)}.
However, since t ≤ s, we know that Etx{Esx{·}} = Etx{·},

which gives

e−2βtM2(x) ≤Etx

{
∫ t1

t

2e−βsl(x(s), µ(x(s))

·
∫ ∞

s

e−βtl(x(t), µ(x(t)))dtds

} (14)

but by Lemma3, we know that

[
∫ t1

t

e−βtl(x(t), µ(x(t)))dt

]2

=

∫ t1

t

2e−βsl(x(s), µ(x(s)))

·
∫ t1

s

e−βτ l(x(τ), µ(x(τ)))dτds.

(15)

Using (14), (15), and by letting t = 0; we obtain

M2(x) ≤Ex

{

[
∫ t1

0

e−βsl(x(s), µ(x(s)))ds

]2
}

+ e−βt1Ex{M2(x(t1)}
(16)

which, as t1 → ∞, becomes

M2(x) ≤ Ex

{

[
∫ ∞

0

e−βsl(x(s), µ(x(s)))ds

]2
}

.

For the case when the µ is optimal, i.e. µ∗, the inequality

becomes an equality. 2

With the second moment verification lemma in place, we

can move on to the sufficient condition for the variance of

the discounted cost function.

Theorem 1: Let M be an admissible mean cost function,

M ∈ C1,2
p (Q) with an associated class of control laws UM .

Also consider a function V ∈ C1,2
p that is a solution to

2βV(x) = min
µ∈UM

{

− GµV(x)

+

(

∂M
∂x

(x)

)′

σ(x)Wσ′(x)

(

∂M
∂x

(x)

)

}

.

(17)

If µ∗ is the minimizing argument of (17), then µ∗ is the

minimum cost variance control law for the discounted cost

case.

Proof. For the minimum cost variance (MCV) case, we

will consider the infinite time horizon HJB equation

2βV(x) = min
µ∈UM

{

− GµV(x)

(

∂M
∂x

(x)

)′

σ(x)

· Wσ′(x)

(

∂M
∂x

(x)

)}

.

(18)

To show this, consider the second moment HJB equation

2βm2(x) = min
µ∈UM

{−GµM2(x) + 2M(x)l(x, µ)} (19)

where M(x) is from the first moment. But recall that M2 =
V + M2, so by substitution we have

2β(V(x) + M2(x)) = min
µ∈UM

{

− Gµ[V(x) + M2(x)]

+ 2M(x)l(x, µ)

}

.

(20)

By the definition of −Gµ and use of the chain rule, we can

see that

−Gµ[M2] =2Mf ′∂M
∂x

+
1

2
tr

(

σWσ′ ∂

∂x

(

2M∂M
∂x

))

=2Mf ′∂M
∂x

+
1

2
tr

(

σWσ′

· ∂

∂x

[

2

(

∂M
∂x

)(

∂M
∂x

)′

+ 2M∂2M
∂x2

])

= − 2MGµM +

(

∂M
∂x

)′

σWσ′

(

∂M
∂x

)

where arguments have been suppressed. Substituting the

expression for −GµM2(x) and with some manipulation (20)

becomes

2βV(x) = min
µ∈UM

{

− GµV(x)

+

(

∂M
∂x

(x)

)′

σ(x)Wσ′(x)

(

∂M
∂x

(x)

)

+ 2M(x)l(x, µ) − 2M(x)[βM(x) + GµM(x)]

}

but M is an admissible mean cost function, so we have

βM(x) + GµM(x) = l(x, µ).

So substituting this in yields

2βV(x) = min
µ∈UM

{

− GµV(x)

+ 2M(x)l(x, µ) − 2M(x)l(x, µ)

+

(

∂M
∂x

(x)

)′

σ(x)Wσ′(x)

(

∂M
∂x

(x)

)

}

(21)
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which gives the desired results

2βV(x) = min
µ∈UM

{

− GµV(x)

+

(

∂M
∂x

(x)

)′

σ(x)Wσ′(x)

(

∂M
∂x

(x)

)

}

.

(22)

2

V. LINEAR QUADRATIC CASE

With some results for the non-linear system with dis-

counted non-quadratic costs at hand, it makes sense to

apply these results to the linear quadratic case. Furthermore,

we will determine an infinite time horizon minimum cost

variance control law. But to begin, we define our autonomous

linear system as

dx(t) = [Ax(t) + Bu(t)]dt + Edξ(t) (23)

where A, B, and E are respectively n × n, n × m, and

n× d matrices whose elements are constant real values, and

x(0) = x0 is the initial condition. With the linear system is

the quadratic discounted cost, given as

J =

∫ ∞

0

e−βt [x′(t)Qx(t) + u′(t)Ru(t)] dt (24)

where Q is a n × n positive semidefinite matrix and R is a

m × m positive definite matrix. Let us assume that the cost

functions for the mean and variance are quadratic, that is

M(x) =x′Mx + m

V(x) =x′V x + v

where M, V are n × n matrices and m, v, are scalars. The

control wants to minimize the variance while holding the

mean to a constraint. So using Lemma 2 and Theorem 1, we

can write

min
µ∈UM

{

− βm − βx′Mx + (Ax + Bµ)′Mx

+ x′M(Ax + Bµ) + tr(EWEM)

+ x′Qx + µ′Rµ + γ
[

− βv − βx′V x

+ (Ax + Bµ)′V x + x′V (Ax + Bµ)

+ tr(EWEV ) + 4MEWE′M
]

}

= 0

and minimizing gives an optimal control law of

u∗(t) = µ∗(x(t)) = −R−1B′[M + γV ]x(t). (25)

Using this control law and Lemma 2, we obtain an algebraic

equation for the mean of

βM =A′M + MA − MBR−1B′M

+ Q + γ2V BR−1B′V.
(26)

Similarly for the variance we obtain

2βV =A′V + V A − 2γV BR−1B′V

− MBR−1B′V − V BR−1B′M

+ 4MEWE′M

(27)

from the control law, (25) and Theorem 1. Now let us state

these results in terms of a theorem.

Theorem 2: Consider the linear quadratic case. Suppose

that M and V are solutions to the algebraic Riccati equa-

tions (26) and (27). Then the minimum cost variance control

law is given as in (25) and M(x) and V(x) are constructed

with the aid of
βm =tr(EWEM)

βv =tr(EWEV ).
(28)

There is one thing that is left to discuss. This is the

important issue of stability. It remains to be shown that the

control law given in the previous theorem is in fact stable.

To do this we will consider the pair (A, B) to be stabiliz-

able and (
√

Q, A) detectable. Consider the algebraic Riccati

equations (26) and (27). With some simple manipulation, it

is seen that these can be given as

(A − β

2
I)′M + M(A − β

2
I) − MBR−1B′M

+Qγ2V BR−1B′V = 0
(29)

and

(A − βI)′V + V (A − βI) − 2γV BR−1B′V

−MBR−1B′V − V BR−1B′M

+4MEWE′M = 0.

(30)

However, it can be shown that (for a constant α) if (A −
αI, B) can be shown to be stabilizable and (

√
Q, A − αI)

detectable, then the control law is stable. To show this assume

(A, B) stabilizable and (
√

Q, A) detectable. If (A, B) is

stabilizable, then there exists a matrix K such that roots of

|λI − A + BK| = 0 (31)

are such that Re{λ} < 0. However, in (29), instead of A, we

have (A− β
2 I) and for (30), we have (A−βI), with β > 0.

So in general, we have (A−αI). So substituting A−αI in

for A in (31) gives,

|(λ̄ + α)I + −A + BK| = 0

where we use λ̄ for the eigenvalues, instead λ. However, this

is the same as

|λI − A + BK| = 0

where λ = λ̄ + α. Because the pair (A, B) is completely

stabilizable, then

Re{λ} < 0

which by substitution yields

Re{λ̄ + α} < 0.

But because α is both real and positive, we know then that

Re{λ̄} < 0

and the pair (A − αI, B) is stabilizable.

Now we must show the same process with the detectability

of (
√

Q, A−αI). This is dual for stabilizability. We assume

that the pair (
√

Q, A) is detectable. We must shown that there

exists a K such that the eigenvalues of
√

QK + A′ are on
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the left hand side of the complex plane. But we know that

(
√

Q, A) is detectable, so that means that eigenvalues found

through

|λI − (A′ +
√

QK)| = 0

are such that Re{λ} < 0. However, for (
√

Q, A − αI), we

have

|(λ̄ + α)I − (A′ +
√

QK)| = 0

which means that λ = λ̄ + α, and if Re{λ} < 0, then

Re{λ̄} < 0. Now consider Theorem 6.6.3 of [8]. It states

the following.

Theorem 3: Assume (Ā, B) is stabilizable and (
√

Q, Ā)
is detectable, Q ≥ 0, R > 0, and γ is a nonnegative constant.

Then the coupled algebraic Riccati equations

Ā′M + MĀ − MBR−1B′M

+Qγ2V BR−1B′V = 0
(32)

and
Ā′V + V Ā − 2γV BR−1B′V

−MBR−1B′V − V BR−1B′M

+4MEWE′M = 0

(33)

have unique solutions M∗ and V ∗ in the class of symmetric,

positive definite maps. Then, Ā − BR−1B′(M∗ + γV ∗) =
Ā + BK∗ is stable where

K∗ = −R−1B′[M + γV ].
Proof. For the proof, see [8]. 2

So, if we let Ā = A−βI for the variance and Ā = A− β
2 I

for the mean Riccati equations, we can see that this theorem

then yields that the control given in (25) is stable.

VI. SDOF BUILDING EXAMPLE

Consider the single degree of freedom (SDOF) building

given in Fig. 1. This building model was given in [1] and

Fig. 1. SDOF Building

can be found to be

dx =

[

0 1
−k/m −c/m

]

xdt+

[

0

− 4kc cos(α)
m

]

udt+

[

0
−1

]

dw.

(34)

where k = 7934lb/in, m = 16.69lb− s2/in, c = 9.020lb−
s/in, kc = 2124lb/in, and α = 36o. Furthermore, the

weighting matrices Q and R given in (24) are defined as

Q =

[

k 0
0 0

]

and R = kc. The state is given as x = (q, q̇)′ where q is

the displacement of the floor and w = ag is the earthquake

ground acceleration. Both an LQG and MCV controller

was designed for this system. The controllers were then

simulated with the 1940 El Centro earthquake date history.

The parameters for the MCV controller were set to γ = 3
and β = 10−6. The simulation results are given in Table I.

From the results, the MCV controller has a 20% decrease

in peak displacement. Furthermore, the peak control effort

was less than a 1% increase. This is a significant reduction

in vibration, for a small cost in terms of control effort.

LQG MCV

Peak Displacement 0.1186 0.0891

Peak Velocity 3.4259 2.4319

Peak Control 0.2441 0.2454

TABLE I

SIMULATION RESULTS

VII. CONCLUSION

In this paper, the discounted cost minimum cost variance

control problem was examined. To begin, the nonlinear

autonomous system with a non-quadratic discounted cost

problem was discussed. Furthermore, sufficient conditions

for an optimal control were determined. Then these results

we applied to the linear autonomous system with a quadratic

discounted cost. Here a set of coupled Riccati equations

were determined and a optimal control law was found. The

treatment was somewhat general and will be applied to the

game theoretic case in the future.
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