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Abstract—Rather than use external sensors, images of stan-
dard calibration samples can be used to model and correct
positioning errors, caused by dynamics effects, in scanning
probe microscopes (SPMs). The main contribution of the cur-
rent article is the development of conditions, on the calibration
sample and the scan trajectory, that allow for the image-based
identification of SPM-nanopositioner dynamics.

I. INTRODUCTION

In this article, conditions are developed for the image-

based identification of scanning probe microscope (SPM)

nanopositioner dynamics. Knowledge of the nanopositioner

dynamics can be used in feedback and feedforward control

design to improve the positioning speed, which is needed

for rapid imaging and manipulation of dynamic surface phe-

nomena using SPMs, e.g., see recent survey [1]. Rather than

use external sensors to measure the nanopositioner dynamics,

recent works have proposed the use of images (of standard

calibration samples) to model and correct positioning errors

in SPMs [2]-[6]. The main contribution of the current article

is the development of conditions that allow for the image-

based identification of SPM-nanopositioner dynamics. In

particular, we present requirements on (and relations be-

tween): (a) the minimum spacing between features and the

orientation of the calibration sample, and (b) the amplitude

and frequency content of the SPM-probe’s position trajectory.

Image-based approaches to modeling and control of SPM

nanopositioners are advantageous in three cases: (i) when,

both, high (angstrom scale) resolution and high operating

speed are needed; (ii) in highly parallel nanopositioning

systems; and (iii) for sensor calibration. First, the res-

olution of conventional sensors is limited during wide-

bandwidth (high-speed) operations. For example, while the

theoretical resolution of non-contact capacitive sensors is

only limited by quantum noise, the effective noise factor

is around 0.02nm/
√

Hz at room temperature. Thus, the

resolution at 1000Hz is about 2nm, which precludes the

measurement of angstrom-scale SPM motion. In contrast,

image-based methods exploit the existing, high-resolution,

vertical sensor (probe-sample interaction) to achieve high-

resolution estimates of the lateral position. Second, even

when angstrom-scale resolution is not necessary, position

measurements may be unavailable due to sensor integration

issues, especially in highly-parallel SPMs (with parallel

SPM probes) being developed to increase the throughput
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of SPM-based nanotechnologies [7]-[10]. In such highly-

parallel SPMs, image-based approaches can be automated

to model the dynamics, thereby enabling improved control

of each SPM probe. Third, even when sensors are available

(such as embedded sensors for highly-parallel SPMs [1]), an

image-based approach enables the independent calibration

of the sensor dynamics to account for issues such as sensor

misalignment, failure, and cross coupling [11]. Therefore,

it is desirable to develop image-based methods to model

and correct SPM-nanopositioning errors. Early work used

distortions in SPM images of standard calibration samples

to correct static (DC-gain and nonlinear) effects in SPM

nanopositioners [2]-[4]. More recently, image distortions

have been used to model and correct dynamic effects that

cause vibrations in SPM nanopositioners [5], [6].

In this article, we identify properties of the calibration-

sample and scan trajectory that are needed for image-based

modeling of the SPM-nanopositioner dynamics. The main

issue is to estimate the achieved position trajectory for

a given input to the nanopositioner. Sampled data points

(positions at different time instants) can be found using the

acquired image as shown in [5], [6]; the position trajectory

needs to be then reconstructed from the sampled data points.

Difficulty arises because, (a) the number and (b) the time

spacing between the sampled data points depend on both the

properties of the calibration sample as well as the position

trajectory – these, in turn, affect the ability to reconstruct the

position trajectory. Hence, reconstruction theorems [12], [13]

for non-uniformly-sampled signals are used, in this article, to

develop conditions on the calibration sample for guaranteed

reconstruction of the position trajectory with the image-based

approach. The implications of these conditions, for modeling

the dynamics of SPM nanopositioners, are discussed using a

scanning tunneling microscope (STM) example.

II. PROBLEM FORMULATION AND SOLUTION

A. SPM Imaging

To acquire an image, the SPM probe is scanned above

a surface as depicted in Fig. 1(a). Typically, a square area

(Fig. 1(a)) is scanned by using a periodic probe-position

trajectory in the x direction and an increasing probe-position

trajectory in the y direction, as shown in Fig. 1(b). Dur-

ing this scanning process, tip-surface interactions can be

measured and plotted to create an image. For example, in

the scanning tunneling microscope (STM), variations in the

tunneling current between the probe-tip and sample surface

(related to the distance between the sample and the probe-

tip as well as the sample’s electronic properties [14]) can
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Fig. 1. Illustration of the SPM scan process. (a) The SPM probe scans
an area over the calibration surface, following (b) the desired xd and yd

trajectories (raster scan pattern).

be measured and plotted with respect to the desired probe

position (xd, yd) to produce an image as shown in Fig. 2(a).

Positioning errors lead to distortions in images. For ex-

ample, if there is substantial difference between the desired

SPM-probe position (xd, yd) and actual position trajectories

(x, y), then the resulting images (plotted using xd, yd) will

be distorted as shown in Fig. 2(b). As discussed before,

poor sensor resolution during wide-bandwidth (high-speed)

SPM operation limits the ability to measure and therefore to

plot the sensor data against the actual x and y positions to

obtain an image. Moreover, even if sensor data was available,

positioning errors (x 6= xd, y 6= yd) will lead to undesirable

distortions of the achieved nanoscale features in SPM-based

nanofabrication applications. Therefore, there is a need to

correct SPM positioning errors.

B. Image-based approach to modeling

1) Need to estimate position trajectory for modeling:

Models of the SPM dynamics have been used to correct for

positioning errors using feedback and feedforward control

methods [1], [6], [15]. To obtain a model of the (linear or

nonlinear) input-output relationship G,

G : u → x (1)

the probe position x needs to be known for different in-

puts u. If available, the input-output data can be used

to identify the nanopositioner dynamics G using standard,

model-identification techniques, e.g., linear SPM models

are developed in [6] and nonlinear models are developed

in [16]. However, the position x cannot be directly measured

in high (angstrom scale) resolution imaging applications.

Therefore, to enable the use of standard, model-identification

techniques, the image-based approach estimates the achieved

position trajectory x from the acquired STM image.
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Fig. 2. Images using experimental data from STM. (a) A 1nm x 1nm
image of a highly oriented pyrolytic graphite (HOPG) surface, which shows
a hexagonal lattice structure that can be described by the lattice vectors L1 ,
L2, and L3 and the sample orientation φ. (b) SPM-probe positioning error
(at high scan frequency) distorts the hexagonal lattice structure.

2) Data points on position trajectory from image: To

determine data points on the SPM-position trajectory x from

an image I, points of interest (POI) in the image I are

compared with POI in a statically-calibrated, reference image

Iref acquired at low scan frequency., e.g., see Fig. 2(a). Such

POI can include centers of carbon atoms in highly oriented

pyrolytic graphite (HOPG) samples.

To illustrate this approach, consider the example in Fig. 3.

A POI P from the image I (Fig. 3(b)) is acquired at time

ti. The image I can be compared to the reference image

Iref (Fig. 3(a)) to find the corresponding POI Pref in the

reference image Iref — P and Pref are the same point on

the sample surface, they just appear at different locations

in the two images due to positioning errors. Since the POI

position does not change with the operating speed of the

SPM, the location of the reference image POI Pref can be

used to infer the position of the POI P acquired at time ti,
yielding a data point {ti, x(ti)} on the position trajectory

x(t) as shown in Fig. 3(c). Similarly, other POI in the image

can be used to obtain a set of data points

X = {ti, x(ti)}Ni

i=1
(2)

on the position trajectory x(t). Implementation details, such

as image-processing to find the POI and mapping of the POI

to the reference image, are discussed in [5], [6].

3) Periodic trajectories: If the the same probe-position

trajectory is followed for each scan line, then the position
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Fig. 3. Obtaining a data point {ti, x(ti)} on the position trajectory x(t) by
comparing a high-frequency-scan image I with the reference image Iref .
(a) Low scan-frequency reference image. (b) High scan-frequency image.
(c) Data point on high scan-frequency trajectory.
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Fig. 4. Periodic trajectory case. (a) Data points in a periodic position
trajectory x(t). (b) data points mapped to a single time period T = [0, Tp)
of the position trajectory.

trajectory x(t) is periodic with time period Tp as shown in

Fig. 4(a). Therefore, the position trajectory x(t) only needs

to be evaluated over the time interval T = [0, Tp) — see

Fig. 4(b). The data points at time instants tk outside this

time interval T can be mapped into time points t̂k in the

time interval T where

tk = t̂k + NkTp (3)

for some integer Nk . These new data points {t̂k, x(tk)} are

included in the set of data points X used to determine the

position trajectory x(t) with time t in the interval T =
[0, Tp) as shown in Fig. 4(b).

C. Reconstruction of position x(t) from data points X
1) Reconstruction problem definition: For a position tra-

jectory x(t) that is band limited to fbw Hz (i.e., frequency

content is zero above fbw) and a specific calibration sample

(i.e., a defined POI pattern), the problem is to reconstruct

the position trajectory x(t) from the set of data points X
obtained by using the image-based approach from section II-

B.2.

2) Conditions for reconstruction: The position signal x(t)
can be reconstructed from a set of data points provided the

image-based approach results in a sufficient number of well-
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Fig. 5. Maximal spacing ∆x between adjacent POI along scan path x(t)
and maximal spacing ∆x,p between adjacent projected POI along the x
axis.

spaced data points in the set X , as shown in the following

theorem.

Theorem: [Image-based reconstruction] The reconstruction

problem (X → x(t) in section II-C.1) can be solved if

the minimal range δ of the position trajectory over all time

intervals of length Tny/2 is greater than the maximal spacing

∆x between adjacent POI along the scan trajectory x(t)
(illustrated in Fig. 5), i.e.,

δ > ∆x (4)

where Tny is the Nyquist period, Tny = 1/(2fbw).

Proof: If the data points in X are uniformly spaced in

time, then the position trajectory x(t) can be reconstructed,

provided the sampling period Tu is less than the Nyquist

period Tny by Shannon’s theorem, e.g. [17]. In general, the

image-based method data points X are not uniformly spaced.

However, a data point is always present within a quarter of

the Nyquist period Tny from any sequence of time instants

tk that are uniformly spaced at time interval Tu. This is

because the range of the position trajectory x(t) in the time

interval [tk−Tny/4, tk+Tny/4) (of length Tny/2) is greater

than the distance between the POI along x(t) according

to the theorem’s condition (see equation 4). The presence

of a data point within a quarter of the Nyquist period

Tny from the uniformly spaced time instants tk satisfies

the small-deviation-from-uniform-sampling condition (data

samples less than Tu

4
away) for stable reconstruction from

nonuniform samples according to the Paley, Wiener, and

Levinson theorem, e.g., [18].

Corollary: [Reconstruction for periodic trajectories] When

the position trajectory is periodic (with period Tp), let the

POI in the scan area be projected onto the x axis and then

let the maximal spacing between adjacent projected POI

along the x axis be ∆x,p as shown in Fig. 5. Then, the

reconstruction result in the above theorem follows provided

δ > ∆x,p. (5)
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III. APPLICATION TO STM

The implications of the reconstruction condition (Eq. 5) on

the modeling of the nanopositioner dynamics in a scanning

tunneling microscope (STM) are discussed in this section us-

ing images of a standard, highly-oriented-pyrolytic-graphite

(HOPG), calibration sample, followed by experimental re-

sults.

A. Calibration sample properties

1) POI locations on calibration samples: Typical SPM

calibration surfaces have spatially periodic features which

can be used as POI. The feature locations can be described

using 2-dimensional lattice vectors,

L = {L1, L2, . . . , Ln}, (6)

where Li ∈ <2. Using these lattice vectors, all feature

locations can be determined as

pi1,i2,...,in
= (x0, y0) + i1L1 + i2L2 + · · ·+ inLn, (7)

where (x0, y0) is an initial feature location in the image and

i1, i2, . . . , in are integers.

For example, HOPG samples have hexagonal lattice struc-

tures as shown in Fig. 2(a), which can be represented with

three lattice vectors given by

L1 = (x1, y1) = (l cos (φ), l sin (φ))

L2 = (x2, y2) = (l cos (φ + π/3), l sin (φ + π/3)) (8)

L3 = (x3, y3) = (l cos (φ + 2π/3), l sin (φ + 2π/3))

where l = 2.46Å is the lattice spacing and φ is the sample

orientation measured from the positive x axis.
2) Worst-case sample orientation: The sample orientation

φ affects the maximal spacing ∆x,p between adjacent pro-

jected POI along the x axis. Without loss of generality, it is

assumed that a POI is at the origin, i.e. (x0, y0) = (0, 0), and

that the orientation is the rotation of the sample about the

origin. Then, over all orientations φ, the worst-case, maximal

distance between adjacent projected POI

∆x,p = max
φ

∆x,p, (9)

occurs when the orientation is φ = π/6 and is given by

∆x,p = l cos(π/6) =

√
3

2
l = 2.13Å. (10)

At this worst-case orientation, many POI project on the same

point on the x axis as shown in Fig. 6(a).
3) Optimizing surface orientation: For the maximal dis-

tance between projected POI ∆x,p to be small, the number

of POI should be large and, ideally, be equally spaced in

the x-direction. For example, deviations in orientation from

the worst-case φ = π/6 case result in POI projecting onto

different points on the x axis, and thereby, resulting in a

smaller maximal distance ∆x,p between projected POI as

shown in Fig. 6(b). Assuming that the POI will not leave

the scan area, the deviation Ψ in the orientation from the

worst-case orientation (φ = π/6 ) can be found by requiring

that the projected POI are equally spaced along the x axis.
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Fig. 6. Calibration sample orientation. (a) Orientation φ = π/6, which
corresponds to the maximal distance ∆x,p between adjacent projected POI
over all orientations φ. Note that many POI project on the same point on the
x axis. (b) Deviations from this φ = π/6 orientation result in POI projecting
onto different points on the x axis resulting in a smaller maximal distance
∆x,p between projected POI.

For example, let the scan amplitude be an integer Ns

multiple of the lattice vector l. Thus, there are Ns POI

above and below the central POI included in the scan area

as shown in Fig. 7(a). With a change in orientation of Ψ,

the projected spacing between the central POI and the POI

that was directly above it (when Ψ = 0) becomes l sin(Ψ)
as shown in Fig. 7(b). This is true for any two, vertically

adjacent, POI in any column of Fig. 7(a). To enable equal

spacing between the projected POI, the projection of the top-

most POI above the central POI must be separated from the

projection of the bottom-most POI on the column to the left

by l sin(Ψ), i.e.,

Nsl sin(Ψ) +

(

Ns −
1

2

)

l sin(Ψ)

+ l[1 − cos(Ψ)] cos(π/6)

+ l sin(Ψ) = l cos(π/6). (11)

Therefore, the optimal deviation Ψ∗ (from orientation φ =
π/6) for the smallest maximal distance between projected

POI is

Ψ∗ = tan−1

( √
3

4Ns + 1

)

. (12)

The corresponding smallest maximal distance between pro-

jected POI is

∆x,p = l sin(Ψ∗) = l sin

[

tan−1

( √
3

4Ns + 1

)]

(13)

For Ns = 2 (scan amplitude of approximately 5Å) the

optimal deviation from φ = π/6 is Ψ = 0.190rads, or a

total sample rotation of φ = 0.714rads. This corresponds to

a smallest maximum distance ∆x,p = 0.465Å.

4) Variation of maximal spacing with orientation: The

variation of the maximum projected POI spacing (∆x,p)

with orientation is illustrated in Fig. 8. For this example,

the maximum projected POI spacing (∆x,p) is plotted with

respect to surface orientation (φ) from 0 to 60 degrees for

a 1nm x 1nm scan area and a lattice spacing of l = 2.46Å

(HOPG). From Fig. 8, the worst case maximal distance is
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Fig. 8. Simulation results for maximum distance between adjacent POI
(∆x,p) as a function of rotation (φ).

∆̄x,p = 2.13Å and occurs at φ = 30o = π/6, as calculated

in Eq. 10. The calculated smallest maximal distance ∆x,p

is not captured in this plot, due to POI leaving the scan

area. The trends related to the smallest maximal distance are,

however, captured. Starting from φ = 30, as the sample is

rotated (Ψ), the maximal distance decreases because the POI

column endpoints get closer, eventually reaching a minimum.

B. Sinusoidal position trajectory

The effects of position trajectory properties (frequency and

amplitude) on the minimal range δ of the position trajectory

(see Eq. 5) over all time intervals of half the Nyquist length

Tny/2 are investigated below.

1) Frequency of position trajectory: Consider a sinusoidal

position trajectory of frequency ω rads/s and amplitude Ax

x(t) = Ax sin(ωt) (14)

as shown in Fig. 9. Then, the time period is Tp = 2π/ω, the

Nyquist period is Tny = Tp/2, and the minimal range δ is

to be found over all time intervals of half the Nyquist length

Tny/2 = Tp/4. This minimum range δ occurs when the time

interval of length Tp/4 is centered around the turning points

of the sinusoid, e.g., at Tp/4 or 3Tp/4 and is given by

δ = Ax {sin[ωTp/4]− sin[ω(Tp/4 − Tp/8)]}
= Ax (1 − sin(π/4)) = Ax(1 − 1/

√
2)

(15)

0

x(t) 0 

t(s) 

4

 Tp/4 Tp/2 3Tp/4 Tp

Tp

-Ax

 Ax

Fig. 9. Illustration for calculating the minimum range for a sinusoidal
trajectory in Eq. 14.

Thus, for a single frequency sinusoidal position trajectory,

the minimum range δ, that affects the reconstruction condi-

tion (Eq. 5), is independent of the frequency.

2) Amplitude of position trajectory: The scan amplitude

Ax of the position trajectory can be chosen to increase the

minimum range δ (in Eq. 15) of the sinusoidal position

trajectory. Therefore, the amplitude can be chosen to satisfy

the reconstruction condition in Eq. 5. For example, a large

enough scan amplitude will ensure satisfying the recon-

struction condition over all orientations φ of the calibration

sample, i.e., (from Eqs. 5, 9)

δ > ∆x,p > ∆x,p (16)

which is satisfied provided, from Eqs. 9 and 15,

Ax(1 − 1/
√

2) >

√
3

2
l =⇒ Ax > l

√
3

(2 −
√

2)
= Ax.

(17)

For the HOPG sample (l = 2.46Å), a scan amplitude

greater than the minimum scan amplitude of Ax = 2.95l =
7.27Å will ensure that the sinusoidal output position can be

reconstructed for any orientation of the HOPG sample.

C. Experimental results

Experimental STM images of HOPG were used to identify

the model of the nanopositioner in a Burleigh Metris-1000

Scanning Tunneling Microscope.

1) Experimental setup: Images with a desired scan area of

1nm x 1nm were acquired (with 50 by 50 pixel resolution)

in constant height mode using a hand-cut PtIr (80/20) tip.

The images were obtained using a sinusoidal trajectory to

enable STM modeling (see section II-B1). The POI in the

images were chosen as the centers of the carbon atoms and

the POI in the image I and the reference image Iref were

mapped (i.e. the same points on the sample surface were

found – see section II-B2) based on proximity [5].

2) Calibration sample and position trajectory for given

scan area: The HOPG sample rotation angle was chosen

to be φ = π/4, which corresponds to a maximal distance

between projected POI of ∆x,p ≈ 0.64Å from Fig. 8. Given

this maximum distance ∆x, the minimum sinusoidal scan

amplitude can be found (similar to Eq. 17).

Ax(1 − 1/
√

2) > ∆x,p =⇒ Ax =
∆x,p

1 − 1/
√

2
, (18)
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yielding, when ∆x,p ≈ 0.64Å, a minimum scan amplitude

of Ax = 2.18Å. Thus, the sinusoidal x-trajectory magnitude

Ax = 5Å that is greater than 2.18Å is acceptable.

3) Swept Sine Modeling: A model of the STM system

can be identified using the swept sine modeling technique.

At any scan frequency (ω), the transfer function Ĝ(s)|s=iω,

i =
√
−1, can be found if the response of the system

to a sinusoidal input can be measured. In particular, let a

sinusoidal input, u = Mu sin (ωt + φu), where Mu and

φu are the magnitude and phase of the input, result in a

sinusoidal output of the same frequency (after transients have

died out), x = Mx sin (ωt + φx), where Mx and φx are

the magnitude and phase of the output. The magnitudes and

phases of the input (u) and output (x) can be compared to

determine the magnification, Mω = |Ĝ(s)|s=iω = Mx/Mu

and phase shift, θω = [∠Ĝ(s)]s=iω = φx − φu, of the

dynamic response at the given frequency (ω) [19].

The output (x) for a known input (u) can be measured

using the image-based method for a range of frequencies

from
⇀
ω , yielding magnification

⇀

Mω and phase shift
⇀

θω

vectors. From the magnification and phase shift information,

a transfer function model of the dynamics can be found

a using least-squares curve fitting algorithms such as the

MATLAB function invfreqs().
Following this method, the STM model was found up to

2KHz, in Ref. [6], as

Ĝ(s) =
3.71× 104(s2 − 3.23× 104s + 2.68× 108

(s + 3278)(s2 + 1840s + 3.87× 108)
. (19)

A frequency response plot of this model can be seen in

FIG. 10.
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Fig. 10. Frequency response obtained using the image based method [6].
The points obtained using the method are show as asterisks (*) and the
model is shown as a solid line.

IV. CONCLUSIONS

The article developed conditions on the calibration sam-

ple that allow for the image-based identification of SPM-

nanopositioner dynamics. In particular, relations were devel-

oped between: (a) the minimum spacing between features

and the orientation of the calibration sample, and (b) the

amplitude and frequency content of the SPM-probe’s posi-

tion trajectory. These conditions were applied to identify a

dynamics model of a STM using images of a HOPG sample.
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