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Abstract— All flexible materials such as textiles, papers, poly-
mers or metals are handled on rollers during their processing.
Maintaining web tension in the entire processing line under
changing web speed is a key factor for achieving good final
product quality. Two approaches are mostly used for tension
control: load cells which provide direct web tension measure-
ment or dancers which indirectly regulate web tension via
regulation of dancer position. Dancers are mobile mechanisms
located in specific area of the processing line to regulate web
tension. The focus of this paper is to propose an improved
alternative to web processing industry practice (PI controllers)
based on H∞ synthesis for pendulum dancers. Even though
pendulum dancers are widely used on industrial plants, they
have been studied very rarely. The nonlinear and linearized
phenomenological models of the subsystem containing the
dancer are first proposed. The position controller of the dancer
is then synthesized using the standard H∞ framework and the
mixed sensitivity approach. The performance of the proposed
approach is illustrated by experimental results carried out on
a large experimental web handling platform containing four
driven rollers and the pendulum dancer in the unwind section.
These are the first published results of successful application
of an H∞ controller to a real plant containing a pendulum
dancer.

I. INTRODUCTION

Any continuous and flexible material whose width is

significantly less than its length and whose thickness is

significantly less than its width can be described as a web.

The unwinder-winder systems handling web material such

as textiles, papers, polymers or metals are very common

in the industry, because they represent a more convenient

way of transporting and processing a product from one

form to another. Printing, coating and drying are examples

of operations that can be performed in sections of a line.

Web tension and speed are two key variables in order

to achieve the expected final product quality. One of the

main objectives in web handling machinery is to reach

an expected web speed while maintaining the web tension

within a close tolerance band over the entire processing line.

This tolerance depends obviously on the type of material

that has to be processed. Due to a number of sources of

disturbance, i.e. web vibrations, temperature and moisture,
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strong coupling between speed and tension is introduced by

the web mechanical behavior, especially in the case of large

scale systems with many actuators. This coupling makes

regulation of web tension under speed changes difficult.

It has been common practice in industrial web transport

systems to use decentralized PI-type controllers. But recently,

to answer increasing requirements, more efficient control

strategies have been proposed to improve tension control.

Modeling of the longitudinal dynamics of the web has

now been studied for several decades, [3], [11], [12], [14].

Overviews of problems and solutions in tension control can

be found in [9], [15], [16], [18]. Typically a web tension

measurement is obtained in a span of the processing line

and is used as a feedback signal for a driven roller. The

most commonly used methods to perform tension control

are load cells and dancers. Both have been compared in [6].

Tension control is performed using direct measurement of

web tension in the case of load cells. Several centralized and

distributed robust control strategies based on H∞ controllers,

LQG controllers or state feedback are proposed in [2], [7],

[8], [9], [14], [15] using load cells mounted on idler rollers.

But the focus of this paper is to discuss a class of H∞-based

control strategies using a pendulum dancer.

Contrary to load cells, the use of dancer mechanisms is an

indirect method to ensure tension control. The variable that

is regulated is not web tension but the position of the dancer

which provides regulation of tension indirectly. Usually web

handling plant designers have recourse to dancer mechanisms

close to the unwinder and the rewinder because they act

naturally as mechanical filters to attenuate various distur-

bances. These disturbances are mainly eccentricity and non-

circularity of web material rolls. Mechanically, two kinds of

dancer structures can be distinguished: linear and pendulum

dancers (a picture of the pendulum dancer used in this work

is shown in Fig. 2). The first is the most commonly studied in

the literature, [5], [13]. Nevertheless, pendulum dancers seem

to be more used than linear dancers in industrial processing

plants because they are more convenient to manufacture.

First models of the pendulum dancer have been introduced

in [10], [17]. The use of dancers can be divided into two

categories: active and passive dancers. A comparative study

is proposed in [5] for web tension disturbance attenuation

using a linear dancer. Active dancers are mainly used for

tension disturbance attenuation requiring a tension measure-

ment provided by a load cell, like in [13]. In such a case,

the position of dancer is imposed by an actuator that acts

directly on the dancer. On the other side, passive dancers

can be seen in some cases as “free-to-move” roller whose
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Fig. 1. Experimental Web Platform (O.S.U).

Fig. 2. Picture of the Pendulum Dancer Mechanism (O.S.U).

role is to avoid fast large tension variations thanks to their

damping characteristics. But this paper investigates another

common application of passive dancers, i.e. tension control.

The principle consists in the position control of the dancer:

a force is applied to the dancer by a cylinder that is com-

pensated by the expected web tension in a specific position.

During the unwinding-rewinding process, the pressure in the

cylinder remains constant while the position feedback is used

to adjust the speed of a driven roller which is most of the

time the unwinder or the rewinder next to the dancer.

Since web handling systems are large scale systems, de-

centralized control strategies with each subsystem containing

only one actuator (i.e. one driven roller) are commonly used.

The emphasis of this paper is on the unwind section of a

large experimental platform containing four driven rollers as

shown in Fig. 1). The roller labeled as “PD” in the unwind

section is the pendulum dancer roller – picture shown in

2. The angular position of the pendulum dancer is used as a

feedback signal to provide a speed reference correction of the

unwind roll. It remains common in industrial practice to tune

manually a PI-controller for dancer position regulation. But

in this contribution, the pendulum angular position control

will be performed with a SISO H∞ controller calculated

from a simplified phenomenological model of the unwind

section. The controller is synthesized using the standard

H∞ framework based on the mixed sensitivity approach.

This paper presents the first experimental results of an

H∞ controller applied to the unwinding section of a web

handling system using a pendulum dancer (some preliminary

simulation results are given in [10]).

The rest of the paper is organized as follows. Section

II recalls the main physical laws to model web handling

systems. A model of the pendulum dancer is also presented.

A LTI model is derived in order to design the H∞ controller.

Section III deals with the discussion of the synthesis of a full-

order H∞ controller for the unwind section together with the

pendulum dancer. Experimental results are also shown and

discussed in Section III.

II. SYSTEM MODELING

Figure 1 is an example of a web handling system which

exhibits the classical structure of an industrial processing

line. Such a line is usually divided into several subsections

that are controlled independently either in tension or in

speed. Each subsection contains a driven roller and a web

span, i.e. a span between two consecutive driven rollers

whose purpose is to ensure web tension control, except in

one case where the subsection is only composed of a driven

roller. It is usually called the master speed roller and its

purpose is to regulate web speed over the entire processing

line.

The system in Fig. 1 which has been used to experiment the

controllers is composed of an unwinder, two intermediate

driven rollers and a rewinder. Web tension regulation in the

unwind zone is done by using a pendulum dancer and is the

focus of this paper. Tension control is performed using load

cell (LC) feedback in the pull-roll and rewind sections. The

load cell in the unwind section is only used for monitoring.

The intermediate driven rollers (denoted as S-Wrap Section)

are the master speed rollers.

The nonlinear model of a web transport system, [11], [12],

is built from the equations describing web tension behavior

between two consecutive rollers and the velocity of each

roller. Moreover, the pendulum dancer dynamics has to be

taken into account to complete the behavior of the whole

system. It is a common assumption to neglect free roller

dynamics in the development of a model because they

have only effects during transient states. This assumption is

reasonable and will be used in this paper. The only free roller

whose dynamics is included in the model is of the pendulum

dancer in order to consider the effects of dancer rotation on
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the tensions of the spans downstream and upstream dancer

roller.

A. Web Velocity Dynamics

The velocity dynamics of the kth roll is given by torque

balance on it. Assuming the absence of slippage between

the web and the roll, the web velocity Vk is equal to the

peripheral velocity of the roller. The velocity dynamics is:

d(JkΩk)

dt
= Rk (Tk+1 − Tk) + KkUk − Crk (1)

where Ωk = Vk/Rk is the angular velocity of the kth roll, Tk is

the web tension between the kth and the (k+1)th rolls, KkUk

is the motor torque (if the roll is driven), Crk corresponds

to all the friction torques, Jk is the roll inertia and Rk is the

roll radius.

B. Web Tension Dynamics

The calculation of web tension between two consecutive

rollers is based on three laws [11], [12]: Hooke’s law,

Coulomb’s law and mass conservation law. The equation of

continuity applied to the web transport systems gives:

d

dt

(

Lk

1 + εk

)

= −
Vk+1

1 + εk

+
Vk

1 + εk−1

(2)

where Lk is the web length between the kth and the

(k+1)th rollers and εk is the strain in the corresponding web

span. Finally this relationship yields the following tension

dynamics[11], [12]:

Lk

dTk

dt
= ES (Vk+1 − Vk) + Tk+1Vk − Tk (2Vk − Vk+1)

(3)

C. Pendulum Dancer Modeling

A sketch of the pendulum dancer mechanism is shown in

Fig. 3. It is composed of an articulated pivoted arm whose

end point contains a free roller R2. A cylinder imposes a

force Fj to the dancer. This force depends on the expected

web tension and varies with tension references. In operation,

the objective of the regulation is to maintain the dancer in

an angular equilibrium position so that the web tensions T2

and T3 of the downstream and upstream strips compensate

the force applied by the cylinder. This angular position is

denoted by α and its dynamics is derived based on torque

balance which is expressed as:

Jd

d2α

dt2
= FjLj cos (α + αj) − (Ld − R2) T2 cos (α − θ2)

− (Ld + R2) T3 cos (α − θ3) − MdgLgc sinα − Cf (4)

where α corresponds to the angular position of the dancer,

αj is the angular position of the cylinder, θ2 and θ3 are

the angular displacements of the downstream and upstream

strips from their initial horizontal positions. Jd, Ld, Lj , Lgc

and Md, respectively, are the dancer inertia, the length of

the dancer arm, the distance of the pneumatic cylinder to

the pivot point, the distance to the center of gravity, and

the dancer mass. T2 and T3, respectively, are web tensions

in the upstream and downstream spans. In steady state, the
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Fig. 3. Pendulum Dancer Sketch for Modeling.

purpose is usually to have the dancer in a vertical position.

Consequently, if T0 is the nominal tension in the web (i.e.

tension reference), the nominal force Fj that has to be

applied by the cylinder to maintain a reference tension in

both upstream and downstream spans will be:

Fj =
2LdT0

Lj
(5)

The movement of the pendulum dancer mechanism implies

some changes in the values of the system parameters. These

are L2, L3, θ2, θ3 and αj . These changes are based on

geometrical considerations (more details on this issue can

be found in [17]). Moreover the angular velocity of the

pendulum creates a difference in the tangential velocities of

the roller R2 for the downstream and upstream webs which

can be formulated as [17]:

V2d = V2 + α̇(Ld − R2) (6)

V2u = V2 − α̇(Ld + R2) (7)

where V2d is the downstream web speed, V2u is the upstream

web speed, V2 is the roller circumferential velocity calculated

with the relationship (1) and α̇ is the angular velocity of the

dancer.

D. Linear Plant

The relationship (6) that gives the angular position dynam-

ics of the dancer can be linearized assuming that the position

α varies slowly and is very small (i.e. α << 1):

Jd

d2α

dt2
= FjLj−(Ld − R2) T2−(Ld + R2) T3−PLgcα−Cf

(8)

The linear model of web tension is deducted from (3)

by considering a plant working point [11]. If V0 and T0

are respectively the nominal web velocity and tension, the

relationship (3) becomes in the general case:

Lk

dTk

dt
= (ES + T0) (Vk+1 − Vk) + V0 (Tk−1 − Tk) (9)

But it is slightly different for the web tensions downstream

and upstream of the dancer because, as mentioned above,

903



it has to take into account the dancer rotation. The speed

V2 is replaced in (9) by the expression of V2d for k = 2
(T2-dynamics) and V2u for k = 3. These relations can be

formulated as follows:

L20

dT2

dt
= (ES +T0)(V2−V1 +(Ld−R2)α̇)+V0(T1−T2)

(10)

L30

dT3

dt
= (ES +T0)(V3−V2 +(Ld +R2)α̇)+V0(T2−T3)

(11)

Note that the lengths used in these equations are considered

as constant according to the previous assumption that the

variations in the dancer angular position are very small.

III. H∞ TENSION CONTROL

The typical control scheme for tension regulation in each

subsystem of an industrial plant is proposed in Fig. 4. K1

and K2 are scaling factors which depend on unwinder radius

and gear ratio between the roller and motor shafts. But the

product of these two factors cancels the effects of time-

varying radius. The control scheme is composed as follows:

an inner loop ensures speed control whereas an outer loop

performs tension control, i.e. position control in the case

of a dancer. Note that the output of the controller of the

outer loop is used to adjust speed reference which is the

speed reference for the entire line. Industrial web handling

systems use commonly two PI or PID controllers to regulate

a processing span. For safety reasons, the inner speed loop is

generally let inside the drives calculators using PI controllers.

The addition of a feedforward term at the output of the speed

controller provides improved speed loop performance. This

feedforward term is adaptive and is required to compensate

for roll inertia (and its variations) and frictions (i.e. static and

dynamic frictions). The calculation of this feedforward term

has been explored in [7] and [14]. Assuming that inertia

and friction are compensated, the drive can be seen as an

integrator and the closed-loop as a second-order transfer

function expressed as follows:

G(s) =
Ω

Ωref

=
k(s + ω)

s2 + ks + kω
(12)

where Ωref and Ω are respectively drive angular velocity

reference and angular velocity, k and ω are respectively the

proportional gain and the lead frequency of the PI controller.

A. H∞ Problem Formulation

The computation of the SISO H∞ position controller is

performed using the scheme of the Fig. 4. The inner speed

loop is taken as in (12). The simplified model neglecting idler

rollers which is used to describe the unwinder and dancer

section is illustrated in Fig. 5. L1 and L2 are the lengths

between the unwinder and the dancer roller and between

dancer roller and master speed roller respectively. The system

can be formulated using the classical state space model:
{

ẋ(t) = Ax(t) + Bu(t)
y(t) = Cx(t)

(13)

V
ref
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!ref 
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Position
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Feedforward

! (rpm)

!"#$%&'

Fig. 4. Dancer Position Control Strategy.

Vu V2

Fj
!

T2, L2

T1, L1

Fig. 5. Dancer Subsystem Model.

where xT = [x1 x2 T1 V2 T2 α α̇] is the state vector. Note

that x1 and x2 refer to the speed loop state variables.

u = [∆V Fj ] is the system inputs which are control value

for speed reference adjustment and cylinder force in our case

and y = α is the dancer position measurement.

The decentralized position SISO H∞ controller has been

synthesized using the framework of Fig. 6 with output

weighting. By decomposing the system G as follows:

G =

[

G∆V →y

GFj→y

]

(14)

the frequency weighting functions Wp, Wu, Wt and Wd

appear in the closed-loop transfer function matrix in the

following manner:

Trd→z =





WpS −WpRWd

WuKS −WuKRWd

WtT WtRWd



 (15)

where S is the sensitivity function, S = (1+KG∆V →y)−1,

T is the complementary sensitivity function, T =
KG∆V →yS, and R = GFj→yS. r is the position reference

and d can be seen as a disturbance on the force Fj that

is applied by the cylinder on the dancer. The H∞ problem

consists of finding a stabilizing controller K which mini-

mizes the H∞-norm of the transfer function Trd→z between

external inputs r and d and performance outputs z:

‖Trd→z‖∞ = sup
ω

(σ (Trd→z)) ≤ γ (16)

The weighting function Wp is usually taken with a high

gain at low frequency in order to reject low frequency

disturbances. The form of Wp is as follows [1]:

Wp(s) =
s
M

+ ωB

s + ωBε0
(17)

where M is the maximum peak magnitude of the sensitivity
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S, ωB is the required frequency bandwith ε0 is the steady

state error allowed. Considering a small value for ωBε0 is

usually a sufficient condition to obtain a pole close to zero.

The weighting function Wu is used to avoid large control

signals and the weighting function Wt increases the roll-off

at high frequencies. Wd is selected to minimize the effect of

d on z1 mainly; it has been taken as the identity matrix in

this work.

B. Frequency Analysis

This SISO subsystem describing the unwind section is an-

alyzed in the frequency domain. Figure 7 illustrates the plots

of the subsystem alone (a), the controller (b), the closed-loop

system (c) and the closed-loop sensitivity function.

The open loop system consists of an integrator and second-

order resonance model. The integral effect comes from the

relationship (8) which provides dancer position dynamics.

The bandwidth of the regulated system has been chosen small

in order to reject the low frequency disturbances coming

from rollers’ out-of-roundness and eccentricity. Note that

the resonance remains present in the closed-loop system,

but its gain compared to the gain in steady state is now

acceptable. As a result this resonance does not play a role

on the sensitivity function frequency response.

C. Experimental Results

The order of the resulting controller is nine. The controller

has been implemented on the experimental setup shown in

Fig. 1 by its discrete state-space representation using Tustin’s

approximation and a sampling period of 10 ms. During

the experiments, the only other section where tension is

controlled is the rewind zone using a basic industrial PI

controller. Tension is not regulated in the pull-roll section,

the roller is only driven by a speed loop. Experimental

results are shown in Fig. 8. The air pressure applied inside

the cylinder of the pendulum dancer corresponds to a web

tension of 21 lbf (93 N) if the dancer remains in its expected

vertical position. Web tension in the unwind section is

monitored using the available load cells in the Unwind and

Dancer Section (see fig. 1). The processing line is run for

velocity reference that varies between 100 fpm and 300 fpm

(approximately 30 m/min and 92 m/min, see fig. 8(c)).

The data plotted in fig. 8 are obtained using the following

sequence. First, since the web is slack (zero tension), the

dancer is pushed to its extreme position (-11 degrees) as the

air pressure is commanded into the cylinder. Then, at t=20 s,

(a) Open loop of the system alone

(b) Controller

(c) Closed-loop system

(d) Sensitivity function S

Fig. 7. Frequency Response of the System.

the outer position loop (see fig. 4) is closed with dancer

position feedback for the unwind roll. It results in bringing

the dancer back to its expected vertical down position and

in regulating web tension at the level of 20 lbf (fig. 8(b)).

Finally, at t=70 s, the line is run following the speed profile

shown in fig. 8(c). Results illustrate the efficiency of the

computed full-order controller in reference tracking. During

steady state operations, the dancer remains in a band of less

than 0.1 degree. Moreover, the occurrence of disturbances

caused by speed reference changes has small effects on

dancer position despite the well-known strong coupling that

exists between web speed and web tension. As a comparison,
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Fig. 8. Experimental Results.

many industrial setups can tolerate dancer position variations

up to 10 degrees.

Nevertheless, small oscillations occur around this average

constant tension value during all the unwinding-rewinding

process. But their amplitude does not vary with speed.

These oscillations are consequences of the rotation of the

intermediate rollers. A second phenomenon can be observed

on the tension response. The average values of web tension

when the line is stopped and when the line is running are

different. This offset is due to static and dynamic friction of

the rollers on their shaft and illustrates the role played by

idle rollers on web tension over the entire processing line.

IV. CONCLUSION

This contribution has focused on web tension regulation

in the unwind section using a pendulum dancer. This paper

for the first time presents experimental results of an H∞

controller computed using a simplified linear model of the

unwind section of a large plant containing a pendulum

dancer. A linear state space model of the unwinding section

containing the pendulum dancer has been derived to compute

the SISO H∞ position controllers. The H∞ synthesis is

carried out using the standard mixed sensitivity approach.

The experimental results carried out on a large plant illustrate

the efficiency of the controller. It has been observed that the

coupling between line speed and dancer position is nearly

nonexistent despite large velocity changes.

Future work should investigate the interactions of the other

subsystems on the unwinding section containing the pendu-

lum dancer in the controller synthesis.
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