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Abstract— This paper develops a model-based networked
control and scheduling framework for plants with intercon-
nected units and distributed control systems that exchange
information using a resource-constrained wireless sensor net-
work (WSN). The framework aims to enforce closed-loop
stability while simultaneously minimizing the rate at which
each node in the WSN must collect and transmit measure-
ments so as to conserve the limited resources of the wireless
devices and extend the lifetime of the network as much as
possible. Initially, the exchange of information between the
local control systems is reduced by embedding, within each
control system, dynamic models that provide forecasts of
the evolution of the plant units when measurements are not
transmitted through the WSN, and updating the state of each
model when communication is re-established at discrete time
instances. To further reduce WSN utilization, only a subset of
the deployed sensor suites are allowed to transmit their data
at any given time to provide updates to their target models.
By formulating the networked closed-loop plant as a combined
discrete-continuous system, an explicit characterization of the
maximum allowable update period is obtained in terms of
the sensor transmission schedule, the transmission times of
the different sensor suites, the uncertainty in the models as
well as the controller design parameters. It is shown that
by judicious selection of the transmission schedule and the
models, it is possible to enhance the savings in WSN resource
utilization over what is possible with concurrent transmission
condigurations. Finally, the results are illustrated using a
network of chemical reactors with recycle.

I. INTRODUCTION

The convergence of recent advances in sensor manu-

facturing, wireless communications and digital electronics

has produced low-cost wireless sensor networks (WSNs)

that can be installed for a fraction of the cost of wired

devices (e.g., [1], [2], [3], [4]). WSNs offer unprecedented

flexibility ranging from high density sensing capabilities

to deployment in areas where wired devices may be dif-

ficult or impossible to deploy (such as inside waterways

and high-temperature areas in oil refineries). Augmenting

existing process control systems with additional WSNs has

the potential to expand the capabilities of the existing

control technology beyond what is feasible with the wired

networked architectures alone. Specifically, deploying ad-

ditional WSNs throughout the plant and interfacing those

devices with the existing control systems, permit collecting

and broadly disseminating additional real-time information

about the state of the plant units which in turn can be
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used to enhance the performance and robustness of the

plant operations. The extra information, together with the

increased levels of sensor redundancy achieved with WSNs,

also enable achieving proactive fault-tolerance and real-time

plant reconfiguration based on anticipated market demand

changes. These are appealing goals that coincide with the

recent calls over the last few years for expanding the

traditional process control and operations paradigm in the

direction of smart plant operations [5], [6].

To harness the full potential of WSNs in process control,

there is a need to address the fundamental challenges

introduced by this technology from a control point of view.

One of the main challenges to be addressed when deploying

a low-cost WSN for control is that of handling the inherent

constraints on network resources, including the limitations

on the computation, processing and communication capa-

bilities. Other constraints such as limited power (battery

energy) are also important when the WSN is deployed

in harsh or inaccessible environments where a continuous

power supply is not feasible and the wireless devices have

to rely on battery power instead [4]. A tradeoff exists

between the achievable control performance and the extent

of network resource utilization. Specifically, maximizing

the control performance requires continuous (or at least

frequent) collection of data and disseminating it broadly to

the target control systems. On the other hand, the limited

resources of a WSN, together with the difficulty of frequent

battery replacement in a plant environment, suggest that

sensing and communication should be reduced in order to

aggressively conserve resources and extend the lifetime of

the network as much as possible. Realizing the potential of

WSNs to improve process control requires proper charac-

terization and management of this tradeoff.

An effort to address this problem was initiated in [7]

where a quasi-decentralized networked control architecture

was developed for plants with interconnected units that ex-

change information over a shared communication network

and the minimum allowable communication frequency was

characterized for the case when all sensor suites are given

simultaneous access to the network. In addition to control-

ling the transmission frequencies of individual sensors in

the network, another important way of conserving the WSN

resources is to select and activate only a subset of the de-

ployed sensor suites at any given time to communicate with

the rest of the plant. Under this restriction, the stability and

performance of each unit in the plant becomes dependent
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not only on the controller design but also on the selection

of the scheduling strategy that, at any time, determines the

order in which the sensor suites of the neighboring units

transmit. The scheduling problem is also important in cases

where access constraints in the wireless communications

medium limit the number of available channels so that at

any one time only some of the sensors and actuators can

exchange information, while others must wait (e.g., see

[8], [9], [10], [11]; see also [12], [13], [14], [15], [16] for

additional results and references on networked control).

Motivated by these considerations, we present in this

work a model-based sensor scheduling approach for enhanc-

ing power management in WSNs deployed within a large-

scale distributed plant with interconnected processing units.

The objective is to find an optimal strategy for establishing

and terminating communication between the sensors suites

(or nodes) of the WSN and the target controllers that

minimizes the rate at which each node in the WSN must

collect and disseminate data to the rest of the plant without

jeopardizing closed-loop stability. The rest of the paper

is organized as follows. Following some preliminaries in

Section II, the problem of scheduling sensor transmissions

in a WSN is formulated. Section III then presents the quasi-

decentralized control structure and describes its implemen-

tation using the WSN with the aid of appropriate process

models and sensor transmission scheduling. The closed-loop

system is then formulated and analyzed in Section IV where

precise conditions for closed-loop stability are provided.

The approach is illustrated in Section V using a chemical

plant example, and conclusions are given in Section VI.
II. PRELIMINARIES

A. Plant description

We consider a large-scale distributed plant composed of

n interconnected processing units, each of which is modeled

by a continuous-time linear system, and represented by the

following state-space description:

ẋ1 = A1x1 + B1u1 +
∑n

j=2A1jxj

ẋ2 = A2x2 + B2u2 +
∑n

j=1,j 6=2A2jxj

...
ẋn = Anxn + Bnun +

∑n−1
j=1 Anjxj

(1)

where xi := [x
(1)
i x

(2)
i · · · x

(pi)
i ]T ∈ IRpi denotes the

vector of process state variables associated with the i-th

processing unit, ui := [u
(1)
i u

(2)
i · · · u

(qi)
i ]T ∈ IRqi

denotes the vector of manipulated inputs associated with

the i-th processing unit, xT denotes the transpose of a

column vector x, Ai, Bi, and Aij are constant matrices.

The interconnection term Aijxj , where i 6= j, describes

how the dynamics of the i-th unit are influenced by the j-

th unit in the plant. Note from the summation notation in

Eq.1 that each processing unit can in general be connected

to all the other units in the plant.

B. Problem formulation and solution methodology

Referring to the schematic plant in Fig.1, we consider

a quasi-decentralized control structure in which each unit

in the plant has a local control system with its sensors

and actuators connected to the local controller through

a dedicated wired communication network. An additional

suite of wireless sensors is deployed within each unit to

transfer measurements of the local state variables to the

plant supervisor as well as the other distributed control

systems in the plant in order to account for the interactions

between the units and minimize disturbance propagation.

The various sensor suites form a plant-wide WSN through

which the plant units communicate. The overall objective

Fig. 1. Quasi-decentralized control structure with cross communication
over a plant-wide wireless sensor network.

is to stabilize all the plant units at the origin while keeping

the data collection and dissemination by the WSN to a

minimum. Minimizing the frequency at which each suite

(or node) in the WSN needs to collect and broadcast its

data is desired to avoid the unnecessary utilization of the

WSN power resources and help prolong the service life of

the network. To address the resource-constraint problem,

we develop in the next section an integrated model-based

quasi-decentralized control and scheduling strategy that

reduces the exchange of information between the plant

units without loss of stability. This is accomplished by (1)

including models within each control system to estimate

the interaction terms when measurements are not available,

and (2) limiting the number of WSN nodes that, at any

given time, transmit their data to update the corresponding

target models. The problem is to find an optimal scheduling

strategy for establishing and terminating communications

between the sensor suites and the target controllers. To

illustrate the main ideas, we will consider as an example

the configuration where only one wireless sensor suite

is allowed to transmit its measurement updates to the

appropriate units at any one time, while the others remain

dormant for some time before the next suite is allowed to

transmit its data. Also, to simplify the presentation of our

results, we will focus in this work on the full state feedback

problem where the states of all the units are available as

measurements. Extensions to the output feedback case are

possible and the subject of other research work.

III. QUASI-DECENTRALIZED NETWORKED CONTROL

WITH SCHEDULED SENSOR TRANSMISSIONS

A. Controller synthesis

To realize the quasi-decentralized control structure, the

first step is to synthesize for each unit a stabilizing feedback

controller of the general form:

ui(x) = Kixi +
∑n

j=1,j 6=iKijxj
(2)
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where Ki is the local feedback component responsible for

stabilizing the i-th subsystem in the absence of intercon-

nections, and Kij is a “feedforward” component that com-

pensates for the effect of the j-th neighboring subsystem on

the dynamics of the i-th unit. Note that the implementation

of the control law of Eq.2 requires the availability of state

measurements from both the local subsystem being con-

trolled and the connected units. Without loss of generality,

we consider the case where measurements of the local state

are available to the local controller more frequently than

measurements from the other connected plant units. This

is a reasonable scenario given that the local information is

transmitted over a dedicated wired network, while transmis-

sion of the other measurements involves using the shared

plant-wide WSN, which is potentially unreliable. However,

it is possible to generalize the control structure to account

for possible limitations in the local networks.
B. Handling network resource constraints

1) A model-based networked control structure: The first

step in conserving the plant-wide WSN resources is to

reduce the transfer of information between the wireless

sensor suites and the target control systems as much as

possible without sacrificing closed-loop stability. To this

end, and following the idea presented in [7], we include in

each control system a set of dynamic models that provide

estimates of the evolution of the states of the neighboring

units when their state measurements are not available from

the WSN. The use of a model to recreate the interactions

of a given unit with one of its neighbors allows the

wireless sensor suite of each neighboring unit to send its

data in a discrete fashion since the model can provide an

approximation of that unit’s dynamics. “Feedforward” from

one unit to another is then performed by updating the states

of the model using the actual state measurements provided

by the wireless sensors of the corresponding unit at discrete

time instances. With this setup, the local control law for

each unit is implemented as follows:

ui(t) =Kixi(t) +

n∑

j=1,j 6=i

Kij x̂
i
j(t), t 6= tjk, i = 1, 2, · · · , n

˙̂xi
j(t) = Âj x̂

i
j(t) + B̂j û

i
j(t) + Âjixi(t) +

n∑

l=1,l 6=i,l 6=j

Âjlx̂
i
l(t), t 6= tjk

ûi
j(t) =Kj x̂

i
j(t) + Kjixi(t) +

n∑

l=1,l 6=i,l 6=j

Kjlx̂
i
l(t), t 6= tjk

x̂i
j(t

j
k)=xj(t

j
k), j = 1, · · · , n, j 6= i, k = 0, 1, 2, · · ·

(3)

where x̂i
j is an estimate of xj , used by the local control

system of the i-th unit, Âj , B̂j , Âjl are constant matrices

that do not necessarily match the actual dynamics of the j-th

process, i.e., in general Âj 6= Aj , B̂j 6= Bj , Âjl 6= Ajl. No-

tice that since xi is available continuously, it is used directly

by all the models embedded in the i-th control system. The

notation tjk is used to indicate the k-th transmission time

for the j-th sensor suite in the WSN.

Remark 1: By limiting the rate at which measurements

from a given unit need to be communicated to the rest of

the plant, the quasi-decentralized control structure offers a

possible compromise (in terms of implementation) between

the complexity of traditional centralized controllers and

the performance limitations of fully decentralized control

schemes (e.g., see [17], [18], [19]). The problem of con-

trolling large-scale multi-unit plants has also been studied

within other frameworks, such as passivity-based control

[20], distributed model predictive control (e.g., [21], [22]),

agent-based systems [23] and singular perturbation for-

mulations [24]. In these works, however, the problem of

integrating WSNs into the plant-wide control structure and

the subsequent communication issues that this raises have

not been studied.

2) WSN power management through scheduled sensor

transmissions and model updates: A key parameter in the

analysis of the control and update laws in Eq.3 is the update

period for each sensor suite, hj := tjk+1 − tjk, which deter-

mines the frequency at which the j-th wireless sensor suite

collects and sends measurements to the other units through

the network to update the corresponding model estimates.

To simplify the analysis, we consider in what follows only

the case when the update period is constant and the same

for all units, so that tjk+1 − tjk := h, j = 1, 2, · · · , n. The

update period is also an important measure of the extent

of network resource utilization, with a larger h indicating

a larger reduction in resource utilization. To further reduce

network utilization, we perform sensor scheduling whereby

only one wireless sensor suite is allowed to transmit its

measurements to the appropriate units at any one time, while

the other suites remain dormant for some time before the

next suite is allowed to transmit its data (the analysis can

be generalized to cases where multiple suites transmit at the

same time). The transmission schedule is defined by (1) the

sequence (or order) of transmitting suites:

{sj , j = 1, 2, · · · , n}, sj ∈ N := {1, 2, · · · , n},

where sj is a discrete variable that denotes the j-th transmit-

ting entity in the sequence, and (2) the time at which each

node in the sequence collects and transmits measurements.

To characterize the transmission times, we introduce the

variable:
∆tj := t

sj+1

k − t
sj

k , j = 1, 2, · · · , n − 1,

which is the time interval between the transmissions of two

consecutive nodes in the sequence. Fig.2 is a schematic
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Fig. 2. A schematic showing the time-line for the transmission of each
sensor suite in an h-periodic schedule.

representation of how sensor scheduling is performed. Note

that the schedule is h-periodic in that the same sequence of

transmitting nodes is executed repeatedly every h seconds

(equivalently, each node transmits its data every h seconds).

Note also from the definitions of both h and ∆tj that
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we always have the constraint
∑n−1

j=1 ∆tj < h. Since the

update periods for all units are the same, the time intervals

between the transmission times of two specific units are

constant, and within any single execution of the schedule

(which lasts less than h seconds), each sensor suite can only

transmit its measurements through the WSN and update its

models in the local control systems of its neighbors once.

This can be represented mathematically by the condition:

si 6= sj when i 6= j. By manipulating the time intervals

∆tj (i.e., the transmission times) and the order in which

the nodes transmit, one can search for the optimal sensor

transmission schedule that leads to the largest update period

(or the smallest communication rate between each sensor

suite and its target units).

IV. NETWORKED CLOSED-LOOP STABILITY ANALYSIS

A. A combined discrete-continuous system formulation

The successful implementation of the networked control

and scheduling strategies described in Section III requires

characterizing the minimum allowable frequency at which

each wireless sensor suite must collect and transmit its

data to the appropriate target control systems (or maximum

allowable update period) for a given sensor transmission

schedule. To this end, we define the model estimation errors

by ei
j = xj − x̂i

j , for j 6= i, and ei
j = 0, for j = i, where ei

j

represents the difference between the state of the j-th unit

and the state of its model embedded in the local control

system of the i-th unit. Note that since measurements of xi

are assumed to be available to the local control system of the

i-th unit at all times, we always have ei
i = 0. Introducing the

augmented vectors: ej := [(e1
j)

T (e2
j)

T · · · (en
j )T ]T , e :=

[eT
1 e

T
2 · · · e

T
n ]T , x := [xT

1 xT
2 · · · xT

n ]T , it can be shown

that the overall closed-loop plant of Eq.1 and Eq.3 can be

formulated as a combined discrete-continuous system of the

form:
ẋ(t) = Λ11x(t) + Λ12e(t)

ė(t) = Λ21x(t) + Λ22e(t), t 6= tjk
ej(t

j
k) = 0, j = 1, 2, · · · , n, k = 0, 1, 2, · · · ,

(4)

where the plant states evolve continuously in time and the

estimation errors are reset to zero at each transmission

instance. Note, however, that unlike the case of simultane-

ous sensor transmission (where no scheduling takes place)

which was investigated in [7], not all models within a

given unit are updated (and hence not all estimation errors

are re-set to zero) at each transmission time. Instead, only

the model of the transmitting unit is updated using the

measurements provided by the wireless sensor suite of that

particular unit.

Referring to Eq.4, Λ11, Λ12, Λ21, and Λ22 are m×m, m×
mn, mn×m, and mn×mn constant matrices, respectively,

where m =
∑n

i=1 pi and pi is the dimension of the i-th
state vector. These matrices are linear combinations of Ai,

Bi, Aij , Âi, B̂i, Âij , Ki, Kij , which are the matrices used

to describe the dynamics, the models, and the control laws

of the different units. The explicit forms of these matrices

are omitted for brevity but can be obtained by substituting

Eq.3 into Eq.1. Defining the augmented state vector ξ(t) :=
[xT (t) e

T (t)]T , the dynamics of the overall closed-loop

system can be written as:

ξ̇(t) = Λξ(t), t 6= t
j

k

ξ(tj
k) =

[
x

T (tj
k) e

T
1 (tj

k) · · · e
T
j−1(t

j
k) 0 e

T
j+1(t

j
k) · · · e

T
n (tj

k)
]T

(5)
where k = 0, 1, 2, · · ·, and Λ =

[
Λ11 Λ12

Λ21 Λ22

]
.

B. Characterizing the scheduled closed-loop response

In order to derive conditions for closed-loop stability, we

need first to express the plant response as a function of the

update period and the sensor transmission schedule. The

following proposition provides the needed characterization.

Proposition 1: Consider the closed-loop system

described by Eq.5 with a transmission schedule

{s1, s2, · · · , sn} and the initial condition ξ(ts1

0 ) =
[xT (ts1

0 ) e
T
1 (ts1

0 ), · · · , e
T
n (ts1

0 )]T = ξ0, with es1
(ts1

0 ) = 0.

Then:

(a) For t ∈ [t
sj

k , t
sj+1

k ), j = 1, 2, · · · , n−1, k = 0, 1, 2, · · ·,
the closed-loop system response is given by:

ξ(t) = eΛ(t−t
sj

k
)Isj

s Γj(∆tj , I
sj
s )Mkξ0 (6)

where

Γj =

j−2∏

j−1−µ=0

eΛ∆tµIsµ
s , for j ≥ 2, and Γj = I, for j = 1 (7)

and M as given in Eq.9.

(b) For t ∈ [tsn

k , ts1

k+1), k = 0, 1, 2, · · ·, the closed-loop

system response is given by:

ξ(t) = eΛ(t−t
sn
k

)Isn
s

[
n−2∏

n−1−µ=0

eΛ∆tµIsµ
s

]
Mkξ0 (8)

where

M = e
Λ(h−

∑
n−1

j=1
∆tj)Isn

s

[
n−2∏

n−1−µ=0

eΛ∆tµIsµ
s

]
(9)

Isj
s =





I O · · · O
O H1 · · · O
...

...
...

O O · · · Hn




, Hi=

{
I, i 6= sj

O, i = sj

(10)

for j = 1, 2, · · · , n, t
sj

k+1 − t
sj

k = h and ∆tj = t
sj+1

k −
t
sj

k , j = 1, 2, · · · , n − 1.

Proof: First, we have from Eq.5 that at times tjk only the

error ej(t) is reset to zero. This can be represented by

writing ξ(tjk) = Ij
sξ(tj−k ), where Ij

s is given in Eq.10. Then

on the interval t ∈ [t
sj

k , t
sj+1

k ), j = 1, 2, · · · , n − 1, the

system response is:

ξ(t) = eΛ(t−t
sj

k
)ξ(t

sj

k ) = eΛ(t−t
sj

k
)Isj

s ξ(t
sj−

k ) (11)

In view of Eq.11, we obtain by induction:

ξ(t) = eΛ(t−t
sj

k
)I

sj
s eΛ(t

sj

k
−t

sj−1

k
)ξ(t

sj−1

k )

= eΛ(t−t
sj

k
)I

sj
s eΛ∆tj−1I

sj−1

s ξ(t
s−

j−1

k )
...

= eΛ(t−t
sj

k
)I

sj
s Γjξ(t

s1−
k )

(12)
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On the interval t ∈ [tsn

k , ts1

k+1), the system response is:

ξ(t) = eΛ(t−t
sn
k

)ξ(tsn

k ) = eΛ(t−t
sn
k

)Isn
s ξ(tsn−

k ) (13)

Using Eq.12 to calculate ξ(tsn−
k ) we get:

ξ(t) = eΛ(t−t
sn
k

)Isn
s

n−2∏

n−1−µ=0

eΛ∆tµIsµ
s ξ(ts1−

k ) (14)

which can be used to write:

ξ(t) = eΛ(t−t
sn
k

)Isn
s ΓneΛ(t

s1
k

−t
sn
k−1

)Isn
s Γnξ(ts1−

k−1)
...

= eΛ(t−t
sn
k

)Isn
s Γn

[
e
Λ(h−

∑
n−1

j=1
∆tj)Isn

s Γn

]k

ξ(ts1

0 )

= eΛ(t−t
sn
k

)Isn
s ΓnMkξ(ts1

0 ), t ∈ [tsn

k , ts1

k+1)
, k = 0, 1, 2, · · ·

where Γn can be obtained from Eq.7. In the same way, we

obtain from Eq.12 that:

= eΛ(t−t
sj

k
)I

sj
s Γje

Λ(t
s1
k

−t
sn
k−1

)Isn
s Γnξ(ts1−

k−1)
...
= eΛ(t−t

sj

k
)I

sj
s Γj [e

Λ(h−
∑

n−1

j=1
∆tj)Isn

s Γn]kξ(ts1

0 )

= eΛ(t−t
sj

k
)I

sj
s ΓjM

kξ(ts1

0 ), t ∈ [t
sj

k , t
sj+1

k )

This completes the proof of the proposition.

Remark 2: The expression in Eqs.6-7 captures the closed-

loop response during the time periods between the transmis-

sions of two consecutive sensor suites in a given execution

of the schedule, while the expression in Eq.8 provides

the closed-loop response for the time period between the

transmission of the last sensor suite in a given execution

and the transmission of the first sensor suite in the next

execution round (see Fig.2). As expected the responses

are parameterized by the transmission sequence (which

determines the structure of the matrices I
sj
s ) as well as

the transmission times (which are determined by ∆tj ).

Note that the term Mk captures the repetitive nature of

the transmission schedule execution.

C. Characterizing the maximum allowable update period

The following theorem provides a sufficient condition

for stability of the closed-loop plant under the quasi-

decentralized networked control structure with scheduled

sensor transmissions in the WSN.

Theorem 1: Referring to the system of Eq.5 with a trans-

mission schedule {s1, s2, · · · , sn} and the initial condition

ξ(ts1

0 ) = [xT (ts1

0 ) e
T
1 (ts1

0 ), · · · , e
T
n (ts1

0 )]T = ξ0 with

es1
(ts1

0 ) = 0, the zero solution, ξ = [xT
e

T ]T = [0 0]T , is

globally exponentially stable if the eigenvalues of the test

matrix given in Eq.9 are strictly inside the unit circle.

Proof: Evaluating the norm of the response of the scheduled

closed-loop system described in Proposition 1, we have

from Eq.6 that for t ∈ [t
sj

k , t
sj+1

k ), j = 1, 2, · · · , n−1, k =
0, 1, 2, · · · :

‖ ξ(t) ‖ ≤ ‖ eΛ(t−t
sj

k
) ‖‖ Isj

s ‖‖Γj(∆tj , I
sj
s ) ‖‖Mk ‖‖ ξ0 ‖

where ‖Γj(∆tj , I
sj
s ) ‖ ≤

∏j−2
j−1−µ=0‖ eΛ∆tµ ‖‖ I

sµ
s ‖.

Since ‖ I
sj
s ‖ = 1, j = 1, 2, · · · , n − 1, and ∆tj < h,

we can write:

‖ ξ(t) ‖ ≤ k1‖ eΛ(t−t
sj

k
) ‖ · ‖Mk ‖‖ ξ0 ‖ (15)

where k1 =
∏j−2

j−1−µ=0‖ eΛ∆tµ ‖ is a positive constant.

Analyzing the first term on the right hand side of Eq.15:

‖ eΛ(t−t
sj

k
) ‖ ≤

∑∞
i=0 ‖

1
i!Λ

i(t − t
sj

k )i ‖

=
∑∞

i=0 ‖
1
i! (t − t

sj

k )iσi ‖

= eσ(t−t
sj

k
) ≤ eσ∆tj := k2

(16)

where σ is the largest singular value of Λ. In general this

term can always be bounded since the time difference t−t
sj

k

is always smaller than ∆tj . In other words, even if Λ has

eigenvalues with positive real parts, ‖ eΛ(t−t
sj

k
) ‖ can only

grow a certain amount, and this growth is independent of k.

The second term on the right hand side of Eq.15 is bounded

if and only if all the eigenvalues of M lie inside the unit

circle, i.e.,:
‖Mk ‖ ≤ k3e

−αk = k3e
αe−α

t
s1
k+1

h (17)

for some k3, α > 0, where we have used the fact that k =
ts1

k /h to establish the equality. Since t ∈ [t
sj

k , t
sj+1

k ) and

ts1

k+1 > t, we obtain:

‖Mk ‖ ≤ k3e
αe−α

t
s1
k+1

h ≤ k3e
αe−α t

h := k̄3e
−ᾱt (18)

where k̄3 = k3e
α > 0 and ᾱ = α/h > 0. Combining Eq.15

with Eqs.(16) and (18), we finally arrive at the following

bound on the augmented state:

‖ ξ(t) ‖ ≤ k4‖ ξ0 ‖e
−ᾱt, t ∈ [t

sj

k , t
sj+1

k ) (19)

where k4 = k1k2k̄3 > 0. In a similar fashion, one can show

that on the interval t ∈ [tsn

k , ts1

k+1), k = 0, 1, 2, · · ·, the

closed-loop response satisfies a bound of the form ‖ ξ(t) ‖ ≤
k5‖ ξ0 ‖e−β̄t for some k5, β̄ > 0. This, together with Eq.19,

implies that the origin of the networked closed-loop system

is globally exponentially stable. This completes the proof.

Remark 3: The requirement that the eigenvalues of the

matrix M lie strictly inside the unit circle ensures stability

by limiting the growth of the closed-loop state within each

sub-interval of the transmission schedule (see Fig.2) as

the schedule is executed repeatedly over time (i.e., as k
increases).

Remark 4: By examining the structure of the test matrix

M in Eq.9, it can be seen that its eigenvalues depend on the

update period h, the closed-loop matrix Λ (which depends

on the plant-model mismatch as well as the controller

gains), the time intervals between sensor transmissions

∆t1, ∆t2, · · · , ∆tn−1, as well as the sensor transmission

sequence {s1, s2, · · · , sn}. The stability criteria in Theorem

1 can therefore be used to compare different schedules (by

varying the transmission sequence as well as the trans-

mission times) to determine the schedules that require the

least communication rate between the sensors and the target

controllers and therefore produce the biggest savings in the

WSN resource utilization (e.g., battery power). For a fixed

schedule, the stability criteria can also be used to compare

different models and different controllers in terms of their

robustness with respect to communication suspension (i.e.,

which ones require measurement updates less frequently
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than others). Note that choosing ∆t1 = ∆t2 = · · · =
∆tn−1 = 0 reduces the problem to one where all nodes in

the WSN transmit their measurements simultaneously. As

expected, in this case stability of the networked closed-loop

system depends only on Λ and h.

V. SIMULATION STUDY: APPLICATION TO CHEMICAL

REACTORS WITH RECYCLE

We consider a plant composed of three cascaded non-

isothermal continuous stirred-tank reactors (CSTRs) with

recycle. The output of CSTR 3 is passed through a separator

that removes the products and recycles unreacted A to

CSTR 1. The reactant species A is consumed in each reactor

by three parallel irreversible exothermic reactions. Due to

the non-isothermal nature of the reactions, a jacket is used

to remove/provide heat to each reactor. Under standard

modeling assumptions, a plant model of the following form

can be derived from material and energy balances:

dTj

dt
=

F 0
j

Vj

(T 0
j − Tj) +

Fj−1

Vj

(Tj−1 − Tj)

+
∑3

i=1

(−∆Hi)
ρcp

Ri(CAj , Tj) +
Qj

ρcpVj

dCAj

dt
=

F 0
j

Vj

(C0
Aj − CAj) +

Fj−1

Vj

(CA(j−1) − CAj)

−
∑3

i=1
Ri(CAj , Tj), j = 1, 2, 3

where Tj , CAj , Qj , and Vj denote the temperature, the

reactant concentration, the rate of heat input, and the

volume of the j-th reactor, respectively, Ri(CAj , Tj) =

ki0 exp
(

−Ei

RTj

)
CAj is the reaction rate of the i-th reaction,

F 0
j denotes the flow rate of a fresh feed stream associated

with the j-th reactor, Fj is the flow rate of the outlet stream

of the j-th reactor, with F0 = Fr, T0 = T3, CA0 = CA3 de-

noting the flow rate, temperature and reactant concentration

of the recycle stream, ∆Hi, ki, Ei, i = 1, 2, 3, denote the

enthalpies, pre-exponential constants and activation energies

of the three reactions, respectively, cp and ρ denote the heat

capacity and density of fluid in the reactor. Using typical

values for the process parameters, the plant with Qj = 0,

C0
Aj = C0s

Aj and a recycle ratio of r = 0.5, has an unstable

steady state. The control objective is to stabilize the plant at

the (open-loop) unstable steady-state. Operation at this point

is desired to avoid high temperatures, while simultaneously

achieving reasonable conversion. The manipulated variables

for each reactor are chosen to be Qj and C0
Aj , j = 1, 2, 3.

A plant-wide WSN composed of 3 wireless sensor suites is

deployed. Each sensor suite collects measurements of the

local state variables in a given unit and broadcasts it to the

rest of the plant. It is desired to stabilize the plant with

minimal data exchange over the WSN to conserve battery

power for the wireless devices.

Linearizing the plant around the unstable steady state

yields a system of the form of Eq.1 to which the networked

control and scheduling architecture described in the previ-

ous section is applied. The synthesis details are omitted due

to space limitations. As mentioned in Section III, we focus

on scheduling configurations where at each transmission

time, only the wireless sensor suite of one reactor is

allowed to transmit its measurement updates to the local

controllers of the other two reactors. This configuration is

represented in Fig. 2, where the time intervals between

the transmission times of consecutive transmitting nodes

are defined as ∆t1 := ts2

k − ts1

k and ∆t2 := ts3

k − ts2

k ,

for k = 0, 1, 2, · · ·, where {s1, s2, s3} is the transmission

sequence, sj ∈ {1, 2, 3}, and si 6= sj if i 6= j. Note that the

sequence is executed repeatedly every h seconds and that

∆t1 + ∆t2 < h.

It can be verified that the test matrix M in Eq.9 is given

by:

M(h) = eΛ(h−∆t1−∆t2)Is3

s eΛ∆t2Is2

s eΛ∆t1Is1

s

which shows that the eigenvalues of M depend on the

update period h, as well as the time intervals, ∆t1 and

∆t2, and the sensor transmission sequence (determined

by Is1
s , Is2

s , Is3
s ). In the remainder of this section, we

will investigate the impact of the choices of the intervals

between transmissions and the sensor transmission schedule

on the stabilizing update period. Since closed-loop stability

requires all eigenvalues of M to lie within the unit circle,

it is sufficient to consider only the maximum eigenvalue

magnitude, denoted by λmax(M).

TABLE I

SENSOR TRANSMISSION SCHEDULES FOR A 3-UNIT PLANT.

Schedule s1, s2, s3, s1, s2, s3, · · ·

1 1, 2, 3, 1, 2, 3, · · ·

2 1, 3, 2, 1, 3, 2, · · ·

3 2, 1, 3, 2, 1, 3, · · ·

4 2, 3, 1, 2, 3, 1, · · ·

5 3, 1, 2, 3, 1, 2, · · ·

6 3, 2, 1, 3, 2, 1, · · ·

We consider first the case when ∆t1 = ∆t2 = ∆t.
Fig.3(a) is a contour plot showing the dependence of the

λmax(M) on both the interval between transmissions, ∆t,
and the update period, h, under the six possible sensor trans-

mission schedules listed in Table I when imperfect models

are embedded in the local control systems (each model has

a 30% parametric uncertainty in the heat of reaction). For

each schedule, the area enclosed by the unit contour line

is the stability region of the plant. It can be seen that the

update period obtained under any of the six schedules is

larger than the one obtained when no scheduling takes place

(i.e., with ∆t = 0). Forcing the different sensor suites to

transmit their data and update their target models at different

times (rather than simultaneously) in this case helps provide

a more targeted and timely (though only partial) correction

to model estimation errors that helps reduce the rate at

which each node in the WSN must collect and transmit data.

We also observe that sequences 2, 3 and 6 allow the use of

the largest update periods among all possible sequences.

These predictions are further confirmed by the closed-

loop state and manipulated input profiles shown in Fig.3(b),

which show that the linearized plant is stable under se-

quence 2 but unstable under sequence 1, when ∆t = 0.05
and h = 0.05 (for brevity, only the temperature profiles for
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Fig. 3. (a) Dependence of λmax on the sensor transmission interval ∆t

and the update period for different sensor transmission sequences with
a fixed model uncertainty, and (b) Closed-loop temperature profiles for
CSTR 3 under the model-based quasi-decentralized control strategy using
two different sensor transmission schedules with the same update period.

CSTR 3 are shown; the state and manipulated input profiles

for the other reactors exhibit similar behavior).

We consider next the more general case when ∆t1 6=
∆t2. Fig.4(a) is a contour plot showing the dependence of

λmax on ∆t1 and h for different values of ∆t2, when the

WSN nodes transmit following sequence 1 and an imperfect

model is used (nominal value of the heat of reaction is

30% higher than the actual value). It can be seen that one

can get a larger update period (and hence further reduce

the wireless network utilization) by carefully scheduling the

transmission times for the sensor suites of different units

than in the case when ∆t1 = ∆t2. For example, consider

the case when ∆t1 = 0.01 hr and h = 0.05 hr. This point

lies outside the stability region of schedule 1 with ∆t2 =
∆t1 = 0.01 hr. If we choose ∆t2 = 0.005 hr, however, the

point lies inside the stability region for schedule 1. These

observations are further confirmed in Fig.4(b).
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Fig. 4. (a) Dependence of λmax on ∆t1 and h for different values of
∆t2 under sensor transmission schedule 1 with a fixed model uncertainty,
and (b) Closed-loop temperature profiles for CSTR 3 when ∆t1 = 0.01

hr and h = 0.05 hr for two different values of ∆t2.

VI. CONCLUDING REMARKS

In this work, a model-based framework for networked

control and sensor scheduling was developed for plants

with quasi-decentralized control systems that communicate

using a resource-constrained WSN. An explicit condition

for characterizing the minimum allowable rate at which each

node in the WSN must transmit its data was provided. It

was shown that by judicious selection of the transmission

schedule and the models, it is possible to enhance the

savings in WSN resource utilization. Finally, the results

were illustrated through application to a linearized model

of a chemical plant example. Efforts to extend the proposed

framework to nonlinear plants are currently underway.
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