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Abstract— This paper revisits the problem of checking the
robust stability of matrix families generated by interval pa-
rameters in a matrix. Previous research on this topic (including
that of this author) erroneously assumed that this family can
be represented as a standard convex combination of vertex
matrices (matrices evaluated at the end points of the interval
parameters). Solutions offered to this important problem with
this erroneous assumption suffered various set backs in the form
of counterexamples which caused considerable disillusionment
in the research community, especially for this author, warrant-
ing continued research on this problem. As a result of this
new research, for the first time in the literature, in this paper,
explicit expressions for the convex combination coefficients in
terms of the interval parameters are derived. These expressions
help to clarify and explain the misconceptions that currently
exist in the research community about the nature of the convex
combination coefficients induced by the interval parameters
and shed significant insight into the ‘correct’ scenario for this
case. A previously presented ‘vertex algorithm’ by the author
for this tough problem was derived under the misunderstood
mapping of the parameter space to the matrix element space
that currently exists in the literature (in the absence of the
explicit expressions derived in this paper). Based on the correct
mapping presented in this paper, a thorough and correct vertex
solution is offered for this tough problem. Several examples
are given which clearly demonstrate effectiveness of the new,
corrected algorithm.

I. INTRODUCTION

The problem of analyzing the stability of matrix families

arises in many applications of systems and control theory

[1]. The matrix family that has attracted considerable amount

of research over the last two decades is the one arising

in the area of linear state space systems with structured

real parameters varying within given intervals. Let us start

by considering a linear state space system with uncertain

interval parameters qi (i = 1,2, , ..r) given by

ẋ(t) = A(q)x(t) q ∈ Q (1)

where x(t) ∈ Rn is the state vector and q ∈ Rr is a vector

of r parameters varying in the prescribed compact set Q.

Specifically , let the parameters qi be given apriori bounds

as

qiL ≤ qi ≤ qiU i = 1,2, ...r (2)

In this paper, we restrict our attention to the linear dependent

variations qi in the entries of A(q) , and write the matrix A(q)

as

A(q) = A0 +
r

∑
i=1

qiAi (3)

where A0 is the ‘nominal’ matrix and Ai are constant, spec-

ified matrices, reflecting the ‘structure’ of the perturbation

(i.e. reflect the presence of the uncertain parameters qi in

the different elements of A). Thus, the ‘nominal’ matrix A0

is the matrix A(q) when the perturbation structure matrices

Ai are all zero. In this situation, in the current literature such

as [2], it is stated that the set of possible A(q) matrices

[A(q) : qεQ], labeled as a ‘polytope of matrices’ in Rn×n,

can be represented as convex combination of matrices as

follows:

Denoting qi as the ith extreme point of the set Q and the

extreme matrix with A(qi) as Avi , the above matrix family

is deemed to be written as a convex combination of these

vertex matrices given by

A =

{

A =
h

∑
i=1

αiA
vi,αi ≥ 0,∑αi = 1

}

, (4)

It is crucial to notice that in the above expression, the convex

combination coefficients αi are not explicitly expressed as

a function of the uncertain parameters qi. Instead, what

is guaranteed is that all the matrices in the family are

completely captured by the above convex combination. Till

now in the literature, in the above convex combination,

it was taken that all αi are ≥ 0 and that they add up to

one for any given number of αis. This representation was

accepted since it does capture all the matrices of the matrix

family but the absence of functional dependence of these

convex combination coefficients in terms of the uncertain

parameters qi was never questioned. Since this functional

dependence could hold the key to the answers to many

discrepancies occurring in the examples, it was taken up as

a topic of further research by this author. As a result of this

research, for the first time in the literature, in [3], explicit

expressions for these convex combination coefficients are

derived in terms of the interval parameters. However in that

paper no proofs and elaborate clarifications were offered.

In this paper, we provide these expressions with proofs and

more clarifications. The main insight provided by these

explicit expressions is that the convex combination nature

exists only for combinations with number of vertex matrices
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being equal to exponent of two. This is a significant

observation which has profound influence on the final

solution offered. In other words,the most important feature

of this ‘structured’ convex combination is that these ‘vertex’

matrices Avi are all formed and predetermined by the

structure of the uncertainty and are thus interrelated and that

the property of these coefficients adding up to one (which

is the property that makes these nonnegative coefficients

labeled as convex combination coefficients) happens only

when the number of these coefficients is an exponent of

two. In other words, the convex combination happens only

for number of these coefficients being two (one parameter

varying at a time), four (two parameters varying at a time),

eight (three parameters varying at a time) and and so on.

Also what is not discussed in the literature concerning

these convex combination representation is the nature of

the vertex matrices and the linear (in)dependence among

the columns of these matrices. Note that in a structured

convex combination arising out of the interval parameter

nature, the interrelationship between the ‘vertex’ matrices

is clearly brought out with a ‘linear (in)dependence’ test as

follows: Consider a convex combination of h vertex matrices,

with h = 2r, with r = 1,2,3... Since the vertex matrices are

interrelated it turns out that we always find linear dependency

of these column vectors of these vertex matrices. When there

are h vertex matrices of order n, then the h by n matrix

consisting of the first columns of the above summation ma-

trix set is always rank deficient indicating linear dependency

among the column vectors. Similar situation occurs for the

second, third and so on for all the n column vectors of this

matrix set. Thus if we denote the h by n matrix formed with

column i vectors of this h matrix set as Si, for each i we

have Rank[Si] < Min(h,n). This is the characteristic feature

of a ‘structured convex combination’ arising out of ‘interval

parameter’ matrices.

Assuming these ‘vertex’ matrices are Hurwitz stable, the

issue of research is to analyze if every matrix within this fam-

ily is also Hurwitz stable or not. Very informative accounts

of various aspects of this research are summarized in [1],

[4], [5]. Note that the stability of the ‘vertex’ matrices is not

sufficient to guarantee stability of the entire matrix family.

The author recently presented a necessary and sufficient

vertex algorithm in terms of new set of matrices formed

at the ‘vertices’ of the parameter space as a solution to the

above linear interval parameter case in the journal publication

[6], without realizing that αis add up to one only when the

number of αis is equal to an exponent of two. Also in the sub-

sequent papers,[7], [8], the mapping between the parameter

space and matrix element space was not clearly understood

as the current literature assumed convex combination nature

to exist for any given number of coefficients. This resulted

in some ‘discrepancy’ in the satisfaction of the necessary

and sufficient conditions for some examples. In this paper,

we present the ‘final’ version of this vertex solution with

complete clarifications. With this backdrop, the paper is

organized as follows. In the next section, we carry out the

most important step of deriving the explicit expressions for

the convex combination coefficients in terms of the interval

parameters, which in turn clarifies the misconceptions that

exist in the current literature with respect to this mapping.

Then in section III, we revisit the strategy of converting the

stability problem to that of checking nonsingularity via the

‘Kronecker Lyapunov’ matrix space, along with the prelimi-

naries needed to state all the upcoming theorems. In section

IV, we present the final version of the necessary and sufficient

vertex solution for ‘interval parameter matrix families’, with

the new insight provided by the correct mapping. Then in

section V, few examples are presented illustrating the final

result. Finally in section VI, some concluding remarks are

presented along with future directions of research.

II. PROBLEM FORMULATIONS: INTERVAL PARAMETER

MATRIX FAMILES:

A. Single Parameter (i.e. Two Vertex) Case:

Let us consider an interval parameter matrix family with

only a single interval parameter as follows:

ẋ(t) = A(q)x(t) q ∈ Q (5)

where

A(q) = A0 +q1A1 (6)

with

q1L ≤ q1 ≤ q1U (7)

Then we get two vertex matrices, and the convex combina-

tion is given by

A =
{

A = α1Av1 +α2Av2,αi ≥ 0,∑αi = 1
}

, (8)

In this case, it may be noted that α2 = 1−α1 (or α1 =
1−α2) and thus there is only one freely varying coefficient.

1) Explicit Expression of αs in terms of interval parame-

ter q:: It can be shown that, for the single parameter case,

the relationship between the convex combination coefficients

and the interval parameters is given as follows:

α1 = (q1U −q1)/(q1U −q1L) (9)

α2 = (q1 −q1L)/(q1U −q1L) (10)

Here, the vertex matrices Av1,and Av2 are given by

Av1 = A0 +q1LA1 (11)

Av2 = A0 +q1U A1 (12)

Notice that the coefficient α1 which has q1U in the numerator

is multiplying Av1 which has q1L in it and vice versa. In

other words, which coefficients are multiplying which vertex

matrices is important.
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B. Multiple Parameter Case: r interval parameters:

Next, we consider the case of multiple interval parameters,

say r parameters. Thus we have

ẋ(t) = A(q)x(t) q ∈ Q (13)

where

A(q) = A0 +
r

∑
i=1

qiAi (14)

with

qiL ≤ qi ≤ qiU i = 1,2, ...r (15)

Then, for this case, we obtain a convex combination of

matrices given by

A =

{

A =
h

∑
i=1

αi(qi)A
vi,∑αi = 1

}

, (16)

In the current literature, it is stated that αi ≥ 0 and that this

matrix family is a ‘polytope of matrices’ in Rn×n(see [2]).

However, if we derive the explicit expressions for these

convex combination coefficients in terms of the interval

parameters, it turns out that these αi add up to one whenever

the number of αis is equal to 2r where r = 1,2,3... and

that too with some restrictions on the allowable summations.

Thus a more accurate way of representing this matrix family

is as follows :

Denoting qi as the ith extreme point of the set Q and the

extreme matrix with A(qi) as Avi , we can write the above

matrix family as

A =

{

A =
h

∑
i=1

αiA
vi,

c

∑
i=1

αi = 1, ,c = 2k,k = 1, ...r

}

,(17)

where 0 ≤ αi ≤ 1 and with only specific designated αis

adding up to one. This can be seen if we express the

convex combination coefficients as a function of the interval

parameters. In fact, explicit expressions for these convex

combination coefficients in terms of the interval parame-

ters are available with the author and space considerations

preclude presenting those long expressions for the general

case but are now shown here for a two parameter case. Let

us denote the four ‘vertex matrices’ as follows, where the

nomenclature for the indices of the vertex matrices follows

the pictorial representation of the mapping given in Figure

1.

Av1 = A0 +q1LA1 +q2LA2 (18)

Av2 = A0 +q1LA1 +q2U A2 (19)

Av3 = A0 +q1U A1 +q2LA2 (20)

Av4 = A0 +q1U A1 +q2U A2 (21)

Then if we denote the convex combination coefficients αi

as the coefficients multiplying the vertex matrix Avi, then

the explicit expressions for those coefficients are as follows:

α1 =
(q1U −q1)(q2U −q2)

(q1U −q1L)(q2U −q2L)
(22)

α2 =
(q1U −q1)(q2 −q2L)

(q1U −q1L)(q2U −q2L)
(23)

α3 =
(q1 −q1L)(q2U −q2)

(q1U −q1L)(q2U −q2L)
(24)

α4 =
(q1 −q1L)(q2 −q2L)

(q1U −q1L)(q2U −q2L)
(25)

It interesting and important to notice the specific association

of each convex combination coefficient with the appropriate

vertex matrix and also the nature of that specific association.

In other words, notice that α1 which has q1U and q2U in the

numerator is multiplying the vertex matrix formed by q1L and

q2L whereas α4 which has q1L and q2L in the numerator is

multiplying the vertex matrix formed by q1U and q2U . This

type of complementary or opposite nature follows for the

other two coefficients and vertex matrices as well. In fact, it is

this realization that was lacking in the previous descriptions

and caused confusion in the proof of the solution. Another

critical point to emphasize is that, in the above description

of the convex combination coefficients, we have

α1 +α2 = 1 (26)

α2 +α4 = 1 (27)

α4 +α3 = 1 (28)

α3 +α1 = 1 (29)

which are obtained by making only one parameter vary at a

time (i.e. edges in the parameter space, i.e by making one

of the parameters take on its extreme value) and

α1 +α2 +α3 +α4 = 1 (30)

which is obtained by making both parameters vary simulta-

neously. Note that, in this representation,

α1 +α4 6= 1 (31)

α2 +α3 6= 1 (32)

α1 +α2 +α3 6= 1 (33)

α1 +α3 +α4 6= 1 (34)

α2 +α3 +α4 6= 1 (35)

α1 +α2 +α4 6= 1 (36)

1) An alternative, differential parameter representation of

the matrix family: In this representation, which we call ‘dif-

ferential parameter’ representation, given the interval ranges

as above, we can take the ‘center’ value (average value) of

each of these interval parameters and evaluate the matrix

at these ‘center’ values of the parameters and denote that

matrix as the ‘center’ matrix. Then the resulting ‘differential

parameter’ interval range can be described as

−δqi ≤ δqi = 0 ≤ +δqi i = 1,2, ...r (37)

3712



Then the vertex matrices can be denoted, for a two parameter

case, as

Av1 = Ac −δq1A1 −δq2A2 (38)

Av2 = Ac −δq1A1 +δq2A2 (39)

Av3 = Ac +δq1A1 −δq2A2 (40)

Av4 = Ac +δq1A1 +δq2A2 (41)

The advantage with representation is that the parameter space

rectangle can have symmetric bounds within the interval

ranges with ‘center’ parameter serving as the zero value

for the ‘differential parameter’ δqi. Thus the ‘rectangle’

of the ‘differential parameter’ space is symmetric. For this

situation, the explicit expressions for the convex combination

coefficients are given by

α1 =
(δq1 +δq1)(δq2 +δq2)

2(δq1 ·δq2)
(42)

α2 =
(δq1 +δq1)(δq2 −δq2)

2(δq1 ·δq2)
(43)

α3 =
(δq1 −δq1)(δq2 +δq2)

2(δq1 ·δq2)
(44)

α4 =
(δq1 −δq1)(δq2 −δq2)

2(δq1 ·δq2)
(45)

Note that both representations above are equivalent and

for a given set of interval ranges produce the same vertex

matrices and same convex combination coefficient values.

Thus the most important feature of the above convex

combination representation is that the convex combination

coefficients add up to one only when the number of those α
coefficients is equal to an exponent of two. It is important to

note that one vertex cannot be represented as a convex com-

bination of other vertex matrices. However, it is interesting

to realize that one vertex matrix can be expressed as a linear

combination of the other vertex matrices.For example, it can

be easily seen that

Av1 = Av2 +Av3 −Av4 (46)

Av2 = Av1 −Av3 +Av4 (47)

Av3 = Av1 +Av4 −Av2 (48)

Av4 = Av2 +Av3 −Av1 (49)

Recall the pictorial representation of the mapping from

the parameter space rectangle to the matrix element space

rectangle for the case of an ‘interval matrix’ with two varying

elements, depicted in Figure 1. Unfortunately, all these years,

with the absence of these explicit expressions derived for

the convex combination coefficients of this paper, the fact

that the convexity nature exists only when the number of

coefficients take on a value of exponent of two was never

recognized! The above ‘correct’ interpretation explains the

reason why the ‘vertex’ algorithm presented by the author

under the assumption of a general convex combination of

matrices [6], [9] requires slight modification,and in the

next few sections, this modification of the vertex algorithm

for checking the robust stability of this matrix family is

presented. Since the ‘vertex’ matrices Avi are all formed and

predetermined by the structure of the uncertainty and are

thus interrelated imparting a special structure to them, from

now on, we continue to label this convex combination as

‘Structured’ convex combination.

Fig. 1. Mapping from parameter space to matrix element space

III. STABILITY PROBLEM AS A NONSINGULARITY

PROBLEM VIA THE ‘KRONECKER LYAPUNOV’ MATRIX:

It is known from references [10], [11], [12], [13] that the

stability assessment problems posed in the introduction for

both formulations can be converted to a nonsingularity prob-

lem involving Kronecker based matrix operations.The above

cited literature presents these conditions in terms of three

matrices (each of which employs different Kronecker based

operations ) namely: (i) Kronecker Sum matrix (denoted as

K matrix) (ii) Lyapunov matrix (later in this paper labeled

as ‘Kronecker Lyapunov’ matrix to distinguish it from the

standard and familiar Lyapunov matrix equation solution)

denoted by L and iii) ‘Bialternate Sum’ matrix, denoted by

B matrix. In this research, we consider only the second of

these matrices i.e. the ‘Kronecker Lyapunov’ matrix denoted

by L i.e.

L = A† = A× In + In ×A (50)

where ‘×’ denotes an operation similar to the Kronecker

Sum (see Jury [12]) for details ). In order to conserve

notation, henceforth, we will label the matrix given in ( 50)

as the ‘Kronecker Lyapunov’ matrix and denote the matrix

operation as ‘dagger’ operation. Note that L is a square

matrix of dimension m = 1
2
n(n + 1),whose eigenvalues are

the pairwthe pairwise summation of the eigenvalues of A.

In Tesi and Vicino [14] and in Jury [12] , simple computer

amenable methodologies are given to form L matrix from

the given matrix A.

Example 1: For n=2,

A =

[

a11 a12

a21 a22

]

with µ1 and µ2 as eigenvalues, the Kronecker Lyapunov

matrix L is given by

L =





2a11 2a12 0

a21 a11 +a22 a12

0 2a21 2a22





with eigenvalues µ1 + µ2, 2µ1 and 2µ2.

Note that there is an alternative form for the above L matrix
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where the element ai j could be interchanged with the element

a ji.

Mathematical Preliminaries Related to ‘Kronecker Lya-

punov’ Operation:

• Property 1:

For two square matrices A1 and A2,

(k1A1 + k2A2)
† = k1A1

† + k2A2
† (51)

where k1 and k2 are scalars.

We define the vertex matrices Lvi as follows:

Lvi = (Avi)†. (52)

Machinery and Concepts Needed to State the Main Theo-

rems:

In this section we present the necessary concepts needed

to set the stage to state the ‘Theorems’ of this paper. The

following holds for any h ≥ 2.
‘Virtual Center’ matrix:: Let Lvc,h denote the ‘virtual

center’ matrix formed with all the h vertex matrices Lv1

,Lv2..Lvh taken together at a time given by

Lvc,h = (Lv1 +Lv2 +Lv3 + ...Lvh) (53)

The corresponding ‘virtual center’(or ‘summation’) matrix

Avc,h can also be easily defined for the original matrix space.

A Necessary Condition For Stability: All the matrices

belonging to the given matrix family are Hurwitz stable only

if

the ‘virtual center’ matrix Avc,h is Hurwitz stable.

So in the rest of the statements of the main theorems, we

assume that this necessary condition is satisfied.

In order to state the theorems in later sections, we need a

set of ‘specific’ matrices labelled ‘Kronecker Nonsingularity

Matrices’ as follows:

‘Kronecker Nonsingularity’ Matrices: These special ma-

trices are ‘specific’ matrices given by

L(ns;h; j) = −[(L(vc;h))−1Lv j] (54)

( j = 1,2, ..h) (55)

For example, in a 4 vertex case, L(ns;4;1) denotes the matrix

−[(Lv1 + Lv2 + Lv3 + Lv4)−1Lv1] and L(ns;4;2) denotes the

matrix −[(Lv1 +Lv2 +Lv3 +Lv4)−1Lv2]. Note that there are h

KN matrices. For the two vertex case, the two KN matrices

are given by −[(Lv1 + Lv2)−1Lv1] and −[(Lv1 + Lv2)−1Lv2].
Also note that in the 4 vertex case, there are 8 KN matrices

with two vertex matrices taken at a time (essentially those

associated with ‘exposed edges’).

• ‘Real Axis Stability’: We say a matrix is Real Axis

Stable if its real eigenvalues are all negative.

• Another Necessary Condition for Robust Stability of

the matrix family [6]: The matrix family is stable only

if all the KN matrices are real axis stable.

• A Sufficient Condition for Robust Stability of the

matrix family: The matrix family is stable if all the

KN matrices are Hurwitz stable.

Proofs are omitted in this version of the paper but they follow

the lines of proofs given in [6].

IV. NECESSARY AND SUFFICIENT VERTEX SOLUTIONS

FOR CHECKING THE ROBUST STABILITY OF INTERVAL

PARAMETER MATRIX FAMILIES:

A. Theorem for Single parameter (Two Vertex) Case:

Theorem 4.1: All the matrices belonging to the convex

combination matrix family (with vertex matrices Av1 and

Av2 and the ‘virtual center’ matrix Av1 +Av2 being Hurwitz

stable) are Hurwitz stable

if and only if

the two ‘Kronecker Nonsingularity Matrices’ (KN matrices),

namely

−[(Lv1 +Lv2)−1Lv1] and (56)

−[(Lv1 +Lv2)−1Lv2] (57)

are Real Axis Stable.

Proof: As in [6].

Next, we switch our attention to the multiple parameter

case. To state the main theorem for this case, we introduce

the concept of ‘virtual stability’. Since the correct convex

combination representation holds for only the cases when

the number of coefficients is equal to an exponent of two,

and each of the convex combination coefficients is nonneg-

ative, it turns out that the complete Hurwitz stability of

KN matrices with four taken at a time is not a necessity

any more. Instead,what is necessary is ‘Virtual Stability’.

Let us elaborate on this ‘virtual stability’ concept. In the

two parameter case, the number of convex combination

coefficients is four but as each of these coefficients is

nonnegative, and the three coefficients taken at a time is

not a convex combination any more (but only a positive real

combination), there is slack in the KN matrix eigenvalue

distribution and this slack is manifested as positive real parts

in the complex eigenvalues of the KN matrices. In the case

this happens, the dilemma would be to decide how much

slack or how much positive real part can be tolerated in

these complex eigenvalues of these KN matrices with the

matrix family could still be hurwitz stable. We say that the

KN matrix is ‘Virtually stable’ if the sum of the positive

real parts of a complex conjugate pair added is less than

a ‘coupling bound’, κs. In this paper, finally we present a

correct threshold for this bound κs which interestingly gets

determined by the nature and explicit expressions we derived

for the convex combination coefficients before, which in turn

explicitly bring in the size of the rectangle in the parameter

space being considered! This insight was missing in the

previous solutions presented by this author. In this paper,

for brevity, this threshold for the bound κs is presented

only for the two parameter case and not for the general r

parameter case. This threshold value for the bound for the

two parameter case is κs = 1/[3(q1U −q1L)(q2U −q2L)]. Note

that the product [(q1U −q1L)(q2U −q2L)] amounts to the area

of the parameter space rectangle. For brevity, we write κs =
1/(3×Area). Again for brevity a formal proof of this bound

is not presented here. It suffices to note that the number 1/3

appears in the bound expression because when four αi are

present, when one of the coefficients is very close to zero,

3714



only three coefficients add up to close to one but because

three coefficients adding up does not represent a convex

combination situation, each of the αis can accommodate a

maximum of 1/3 and this slack appears as a positive real

part in KN matrix eigenvalue distribution. In previous papers

[8], this bound was derived to be 1/h which unfortunately

now turns out to be incorrect because it was derived under

the lack of insight about the nature of convex combination

being considered. An eigenvalue distribution in which the

summation of all the positive real parts of the complex

eigenvalues of KN matrices is less than this bound κs is

lebeled as ‘practical stability’. Let us now label the concepts

of ‘practical stability’ and ‘hurwitz stability’ together as

‘Virtual Stability’. That is, ‘Virtual stability’ includes both

‘practical stability’ as well as ‘hurwitz stability’.

B. Theorem for the Two Parameter Case:

Now we state the main result of this paper specializing it

to the two parameter case to make the theorem more coherent

and understandable.

Theorem 4.2: All the matrices belonging to the convex

combination matrix family (with four vertex matrices Avi

and the ‘virtual center’ matrix Av1 + Av2 + Av3 + Av4 being

Hurwitz stable) are Hurwitz stable

if and only if

the 8 exposed ‘Kronecker Nonsingularity Matrices’ (KN

matrices) of two vertex matrices taken at a time, namely

−[(Lv1 + Lv2)−1Lv1] and −[(Lv1 + Lv2)−1Lv2];−[(Lv2 +
Lv4)−1Lv2] and −[(Lv2 + Lv4)−1Lv4];−[(Lv4 + Lv3)−1Lv4]
and −[(Lv4 + Lv3)−1Lv3];−[(Lv3 + Lv1)−1Lv3] and −[(Lv3 +
Lv1)−1Lv1] are ‘Real Axis stable’ and the 4 ‘Kronecker

Nonsingularity Matrices’ (KN matrices) of all four vertex

matrices taken at a time, namely −[(Lv1 + Lv2 + Lv3 +
Lv4)−1Lv1]; −[(Lv1 + Lv2 + Lv3 + Lv4)−1Lv2]; −[(Lv1 + Lv2 +
Lv3 + Lv4)−1Lv3]; −[(Lv1 + Lv2 + Lv3 + Lv4)−1Lv4] are all

‘Virtually stable’.

Proof: It is essentially in the lines of the proof available in

[6]. However, here we discuss some salient points of that

proof. In [6], it is shown that, because of the special nature

of the dagger space matrices, in the linear domain of dagger

space (i.e. addition of matrices), nonsingularity and stability

are equivalent. In other words, the real parts of complex

eigenvalues and the real eigenvalues are coupled and for

nonsingularity (i.e. stability) the real parts are required to

behave the same way as the real eigenvalues. Then the

necessity of stability of the product domain KN matrices is

established based on the generalized eigenvalue problem of

the ‘virtual ray’ matrix Lvc + ρLi, where the positive scalar

variable ρ varies within the open interval (0,∞).

V. ILLUSTRATIVE EXAMPLE:

Example 1: Let us consider an ‘interval matrix’ with
two entries (a11 and a44) varying in an interval as follows:
−1.5026 ≤ a11 ≤ −0.5026 and −4.0026 ≤ a44 ≤ −1.5026.

This gives rise to four vertex matrices given by

A1 =







−1.5026 −12.06 −0.06 0
−0.25 −0.0329 1.0 0.5
0.25 −4.0 −1.0329 0

0 0.5 0 −4.0026







A2 =







−1.5026 −12.06 −0.06 0
−0.25 −0.0329 1.0 0.5
0.25 −4.0 −1.0329 0

0 0.5 0 −1.5026







A3 =







−0.5026 −12.06 −0.06 0
−0.25 −0.0329 1.0 0.5
0.25 −4.0 −1.0329 0

0 0.5 0 −4.0026







A4 =







−0.5026 −12.06 −0.06 0
−0.25 −0.0329 1.0 0.5
0.25 −4.0 −1.0329 0

0 0.5 0 −1.5026







Note that the absolute parameter ranges are 1 and 2.5

making the Area of the parameter space rectangle equal

to 2.5 and thus the κs bound for virtual stability testing

is 0.13333. A brute force simulation shows the region of

stability/instability in the parameter space as shown in Fig 2.

The region formed by the convex combination of the above

vertex matrices is labeled as c1d1c26d26. Also we know

that this interval family is formed due to the variation of

the elements A(1,1) = a11 and A(4,4) = a44 of the original

A(q) matrix. In the figure the a11 variation is marked along

the Y-axis and the a44 variation is marked along the X-

axis. So we can denote a member matrix in the region as

an ordered pair (a11,a44). So by the region c1d1c26d26we

mean the rectangle in the parameter space formed by

the points c1(−1.5026,−4.0026), c26(−1.5026,−1.5026),
d26(−0.5026,−1.5026) and d1(−0.5026,−4.0026). Let

us denote The Kronecker Nonsingularity matrices, as

KNLi i=1,2,3,4 . The eigenvalue distribution of the KN

matrices corresponding to two exposed edge vertex matrices

taken at a time indicate that they are all real axis stable.

For brevity that distribution is not reported here. Now let

us consider the case of the KN matrices formed with all

four vertices taken at a time. The eigenvalue distribution of

the KN matrices are given on Table 1 where zkn1 denote

the eigenvalues of KNL1 matrix and similarly for the other

matrices.

zkn1 zkn2 zkn3 zkn4

-0.6812+0.6012i -0.1918+0.7495i 0.1812-0.6012i -0.3082-0.7495i
-0.6812-0.6012i -0.1918-0.7495i 0.1812+0.6012i -0.3082+0.7495i
-0.3296+0.0335i -0.3759 -0.1704-0.0335i -0.1241
-0.3296-0.0335i -0.1835+0.0682i -0.1704+0.0335i -0.3165-0.0682i
-0.3768 -0.1835-0.0682i -0.1232 -0.3165+0.0682i
-0.3752 -0.2073 -0.1248 -0.2927
-0.3655 -0.1337 -0.1345 -0.3663
-0.2500 -0.2500 -0.2500 -0.2500
-0.2500 -0.2500 -0.2500 -0.2500
-0.2500 -0.2500 -0.2500 -0.2500

TABLE I

EIGENVALUE DISTRIBUTION OF KN MATRICES FOR REGION

C1D1C26D26

This instability in the interior of the parameter space is
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verified by the theorem in the paper as one of the KN

matrices is unstable with a complex conjugate pair with

positive real parts adding upto 0.3625 (0.18125×2) which

is greater than κs = 0.1334.

To test the proposed necessary and sufficient vertex solution

algorithm with the virtual stability concept, we now deliber-

ately view the same above rectangle in the parameter space

as divided into several sub rectangles of different size , as

shown in Fig 2, and observe the eigenvalue distribution of

the corresponding KN matrices. Few of those are presented

here which corroborate the successful satisfaction of the new

theorem.

Fig. 2. Stability/Instability in Parameter Space

As shown in the figure, the region c1c26d26d1 was divided

into 25 narrow strips along the horizontal axis with each

strip width being equal to 0.1. Note that the vertical length

of each strip is 1. Let us now investigate the application

of the proposed vertex solution of this paper to the various

sub rectangle regions in the parameter space. For brevity,

let us consider some specific sub rectangle regions, de-

noted by c1c2d2d1, c6c7d7d6, c1c19d19d1, c1c20d20d1,

c1 c21d21d1, c1c22d22d1, c1d23d23d1, c1c24d24d1,

c1c25d25d1. It turns out that as expected, for regions

c1c22d22d1, c1d23d23d1, c1c24d24d1, the KN matrices

with two vertex matrices taken at a time are real axis unstable

thereby not even requiring to go for the KN matrix distribu-

tion of all four vertices taken at a time. So in what follows,

we present the eigenvalue distribution of the KN matrices

with all four vertices taken at a time, where it is verified (but

not reported here) that for all these cases, the KN matrices

with two vertices taken at a time turn out to be real axis

stable. Specifically Table 2 gives the KN matrix eigenvalue

distribution for region c1c2d2d1; Table 3 gives for region

c6c7d7d6; Table 4 gives for region c1c19d19d1,Table 5 for

region c1c20d20d1; Table 6 gives for region c1c21d21d1;

and finally Table 7 for region c1c25d25d1. The results in

Tables 2,3,4 are as expected. The theorem verifies the fact

that these regions are stable family regions. Consider the

results in Table 5. There is a KN matrix with positive real

part eigenvalues. So we need to apply the virtual stability

criterion. The sum of the positive real parts is 0.0166 which

is less than the coupling bound κs given by 0.1754 for this

region, rendering this KN matrix virtually stable. Thus the

theorem correctly predicts that this region is a stable region.

Next let us look at the results in Table 6. Again there is

a KN matrix with positive real parts whose sum is equal to

0.0592 but is less than the bound 0.167 for this region, again

rendering it virtually stable. Thus the theorem verifies that

this region is indeed a stable region. Finally, let us look at

Table 7. There is a KN matrix with positive real part whose

real part sum is equal to 0.2864 but is greater than the bound

0.139 for this region, rendering this KN matrix virtually

unstable. Thus the new vertex solution theorem verifies that

this region contains some unstable matrices which is indeed

the case. Similar computational experiments were carried out

on the above matrix family with different parameter space

regions and all these computational experiments validate the

proposed theorem given in terms of virtual stability of this

paper.

zkn1 zkn2 zkn3 zkn4

-0.3291+0.4296i -0.3229+0.4300i -0.1709-0.4296i -0.1771-0.4300i
-0.3291-0.4296i -0.3229-0.4300i -0.1709+0.4296i -0.1771+0.4300i
-0.3759 -0.3759 -0.1241 -0.1241
-0.2807 -0.2748 -0.2193 -0.2252
-0.2524+0.0010i -0.2476-0.0011i -0.2476-0.0010i -0.2524+0.0011i
-0.2524-0.0010i -0.2476+0.0011i -0.2476+0.0010i -0.2524-0.0011i
-0.2532 -0.2468 -0.2468 -0.2532
-0.2500 -0.2500 -0.2500 -0.2500
-0.2500 -0.2500 -0.2500 -0.2500
-0.2500 -0.2500 -0.2500 -0.2500

TABLE II

EIGENVALUE DISTRIBUTION OF KN MATRICES FOR REGION C1C2D2D1

zkn1 zkn2 zkn3 zkn4

-0.3503+0.4977i -0.3412-0.4989i -0.1497-0.4977i -0.1588+0.4989i
-0.3503-0.4977i -0.3412+0.4989i -0.1497+0.4977i -0.1588-0.4989i
-0.3759 -0.3759 -0.1241 -0.1241
-0.2847 -0.2781 -0.2153 -0.2219
-0.2526+0.0013i -0.2474-0.0013i -0.2474-0.0013i -0.2526+0.0013i
-0.2526-0.0013i -0.2474+0.0013i -0.2474+0.0013i -0.2526-0.0013i
-0.2537 -0.2463 -0.2463 -0.2537
-0.2500 -0.2500 -0.2500 -0.2500
-0.2500 -0.2500 -0.2500 -0.2500
-0.2500 -0.2500 -0.2500 -0.2500

TABLE III

EIGENVALUE DISTRIBUTION OF KN MATRICES FOR REGION C6C7D7D6

VI. CONCLUSIONS

This paper presents a ‘vertex solution’ to the problem of

checking the stability of families of matrices described by

interval parameters, which in turn produce convex combina-

tions of Hurwitz stable ‘vertex’ matrices. In this paper,for

the first time in the literature,explicit expressions for the

convex combination coefficients in terms of the interval

parameters are derived. These expressions help to clarify and

explain the misconceptions that currently exist in the research

community about the nature of the convex combination
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zkn1 zkn2 zkn3 zkn4

-0.4891+0.5415i -0.2571-0.5867i -0.0109-0.5415i -0.2429+0.5867i
-0.4891-0.5415i -0.2571+0.5867i -0.0109+0.5415i -0.2429-0.5867i
-0.3760 -0.3759 -0.2045-0.1240 -0.1241
-0.3467 -0.2004+0.0387i -0.1533 -0.2996-0.0387i
-0.3019+0.0205i -0.2004-0.0387i -0.1981-0.0205i -0.2996+0.0387i
-0.3019-0.0205i -0.2279 -0.1981+0.0205i -0.2721
-0.3240 -0.1759 -0.1760 -0.3241
-0.2500 -0.2500 -0.2500 -0.2500
-0.2500 -0.2500 -0.2500 -0.2500
-0.2500 -0.2500 -0.2500 -0.2500

TABLE IV

EIGENVALUE DISTRIBUTION OF KN MATRICES FOR REGION

C1C19D19D1

zkn1 zkn2 zkn3 zkn4

-0.5083+0.5499i -0.2497+0.6034i 0.0083-0.5499i -0.2503-0.6034i
-0.5083-0.5499i -0.2497-0.6034i 0.0083+0.5499i -0.2503+0.6034i
-0.3761 -0.3759 -0.1239 -0.1241
-0.3055+0.0220i -0.1976+0.0424i -0.1945-0.0220i -0.3024-0.0424i
-0.3055-0.0220i -0.1976-0.0424i -0.1945+0.0220i -0.3024+0.0424i
-0.3510 -0.2251 -0.1490 -0.2749
-0.3294 -0.1705 -0.1706 -0.3295
-0.2500 -0.2500 -0.2500 -0.2500
-0.2500 -0.2500 -0.2500 -0.2500
-0.2500 -0.2500 -0.2500 -0.2500

TABLE V

EIGENVALUE DISTRIBUTION OF KN MATRICES FOR REGION

C1C20D20D1

coefficients induced by the interval parameters and shed

significant insight into the ‘correct’ scenario for this case.

A previously presented ‘vertex algorithm’ by the author for

this tough problem was derived under the misunderstood

mapping of the parameter space to the matrix element space

that currently exists in the literature (in the absence of the

explicit expressions derived in this paper). Based on the

correct mapping presented in this paper, a ‘correct’ vertex

solution is offered explaining away the ‘discrepancy’ in the

previous erroneous results. For better exposition, this paper

concentrates on the two parameter cae but the technique

presented here is easily extendable to three and other multiple

parameter cases.
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