
 
 

 

  

Abstract— In this paper, a single and multi-layer neural 
network (NN) controllers are developed for a class of nonlinear 
discrete time systems.  Under a mild assumption on the system 
uncertainties, which include unmodeled dynamics and bounded 
disturbances, by using novel weight update laws and a robust 
term, local asymptotic stability of the closed-loop system is 
guaranteed in contrast with all other NN controllers where a 
uniform ultimate boundedness is normally shown. Simulation 
results are presented to show the effectiveness of the controller 
design.  

I. INTRODUCTION 
ignifcant research has been performed in the past decade 
in the area of neural network (NN) control for nonlinear 

system.  The NNs became popular [1] due to their function 
approximation capabilities, which are utilized to learn 
uncertainties. Due to a functional reconstruction errors with 
a NN [2], typically the controller designs render a uniformly 
ultimately boundedness result since this reconstruction error 
is assumed to be upper bounded by a known constant [2-4].  

The NN controller designs were first introduced for 
continuous-time systems [2-3] and later extended to control 
nonlinear discrete-time systems [4-5]. Development of stable 
controllers for discrete-time systems is rather difficult since 
the first difference of a Lyapunov function candidate is not 
linear with respect to its states in contrast to a first derivative 
of a Lyapunov candidate for continuous-time systems.  All 
these controllers relax the persistence of excitation condition 
on the input signals.  The NN controller designs were then 
extended to a more general class of nonlinear systems with 
state and output feedback [2] and for nonlinear discrete-time 
systems [5].  

Recently, a robust integral of the sign of the error (RISE) 
feedback method is used in conjunction with a NN to show 
semi global asymptotic tracking of continuous-time 
nonlinear systems [6].  To ensure asymptotic performance of 
the NN controller, an attempt has been made in [7] for a 
class of continuous and discrete-time nonlinear systems by 
using a sector boundedness assumption on the uncertainties 
[7]. A single layer NN is utilized in the controller design. 

By contrast, in this paper, however, we develop a suite of 
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NN controllers for a class of nonlinear discrete-time systems 
that guarantee local asymptotic stability under a mild 
assumption on the uncertainties [6-9]. Note, unlike other NN 
controller designs [1, 4-5], the proposed design is guaranteed 
to render local asymptotic stability. The proposed controllers 
utilize the filter tracking error notion and a robust term. This 
new robust term is a function of the NN weights. Initially, a 
linearly parameterized NN is utilized in the controller design 
and later extended to multilayer NNs. The stability is shown 
using the Lyapunov theory.  Finally, a simulation example is 
utilized to illustrate the performance of the proposed NN 
controllers.  

II. BACKGROUND 

A. Neural Networks 

A general nonlinear continuous function ( ) ( )kf x C s∈  

which maps : k
Sf → ℜ , where S is a simply-connected set 

of n
ℜ and ( )kC s is the space where f is continuous can be 

written as  

1( ) ( )( )
T T

W V x kf x σ ε= +                       (1) 
where V  and W represent input-to the hidden layer and 
hidden-to-the output layer weights respectively and 1 ( )kε is a 
neural net functional reconstruction error vector such that 

1 1N
εε ≤  for all nx ∈ ℜ . Additionally the activation 

functions σ (.) are bounded, measurable, non-decreasing 
functions from the real numbers onto [0, 1] which include 
for instance sigmoid etc. We define the output of a NN as 

ˆ ( ) ( ( ))ˆ ( )
T

W k x ky k ϕ=                        (2) 
where ˆ ( )W k  is the actual weight matrix and ( ( ))x kϕ  is the 
activation function which is selected as a basis function [2] 
in order to guarantee the function approximation. Apart from 
the single layer, a given continuous function f (.), could be 
written using a three layer NN as [3] 

3 2 1 13 2 1( ) ( ( ( )))) ( )( ) (
T T T

W W Wk x k kf x εϕ ϕ ϕ= +                    (3) 

where 1W , 2W , and 3W  are the ideal weights. Additionally, the 
ideal weights are considered to be 
bounded 1max1W W≤ , 2 max2W W≤  and 3 max3W W≤  and 1ϕ (.), 

2ϕ (.) and 3ϕ (.) are the activation functions of the first, 
second and third layer of the NN respectively. Next we 
define the output of a three-layer NN as  
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3 2 1 13 2
ˆ ˆ ˆ( ) ( ( ) ( ) ( ( ))))ˆ ˆ ˆˆ ( ) (

T T T
W W Wk k k x ky k ϕ ϕ ϕ=                                 (4) 

where 3 12
ˆ ˆ ˆ( ) ( ), ( ),W W W kk k are the actual NN weights of the third, 

second and first layer respectively and 1
ˆ ( ( ))x kϕ  represent the 

activation function vector of the input layer. Then 

1 12
ˆˆ ˆ( ( ) ( ( )))

T
W k x kϕ ϕ  , 2 1 13 2

ˆ ˆˆ ˆ ˆ( ( ) ( ) ( ( ))))(
T T

W Wk k x kϕ ϕ ϕ  denote the 
hidden layer and output layers activation function 
respectively at the th

k  instant. For a multilayer function 
approximation, the activation function vector need not be a 
basis function [2, 6]. Next the class of nonlinear discrete-
time system to be considered in this paper is introduced. 

B. Dynamics of the mnth-Order MIMO System 
Consider a mnth-order multi-input-multi-output (MIMO) 

discrete time nonlinear system given by 
1 2

1

( 1) ( )

( 1) ( )

( 1) ( ( )) ( ) ( )

.

.

.

n n

n

x k x k

x k x k

x k f x k u k d k

−

+ =

+ =

+ = + +

                               (5) 

where 1( ) [ ( ), ........, ( )]
T

nx k x k x k= with ( ) , 1, .......,i
m

x k i n∈ ℜ =

( )k
mu ∈ ℜ is the input vector, and ( )kd denotes a disturbance 

vector at th
k instant with ( ) Md k d≤ a known constant. 

Given a desired trajectory ( )ndx k  and its delayed values, we 
define the tracking error as 

( ) ( ) ( )n n nde k x k x k= −  

Define the filtered tracking error ( )
m

kr ∈ ℜ [1], as 

1 11 1( ) ( ) ( ) ( ).........
nn c n ck e k e k e kr λ λ

−−= + ++                     (6) 

where 1 1( ) ( ).........,,ne k e k−  are the delayed values of the error  

( )ne k , and 
1 1

,........,
nc cλ λ

−
are constant matrices selected so 

that  

1 1

1 2 ........
n

n n
c cz zλ λ

−

− − ++ + is within a unit disc. 

Subsequently, (6) can be written as 

1 11 1( 1) ( 1) ( 1) ( 1).........
nn c n ck e k e k e kr λ λ

−−+ = + + + + ++           (7) 

By substituting (5) in (7), we get  

2
( 1) ( ( )) ( 1) ( ) ( ) ( ) ( )

1 1
...

nndk f x k k e k k u k d k
nc cx er λ λ+ = + + +

−
− ++ +     (8) 

Now define the control input ( )u k as 

( ) 2
ˆ( ) ( 1) ( ( )) ( )

1 1
( ) ( )....

nd
r kv nu k x k f x k k v k

nc ce k e kλ λ= + + −
−

− − − −    (9) 

where vk is a user selectable diagonal matrix, ( )v k is the 

robust term vector which is defined later and ˆ ( ( ))f x k is an 
estimate of ( ( ))f x k . The closed-loop error system becomes 

( ) ( ) ( )( 1) ( ( ))r k v k d kvk k f x kr + + ++ = %                                (10) 

where ˆ( ( )) ( ( )) ( ( ))f x k f x k f x k= −% is the functional estimation 
error.  In the next section, we propose the NN weight update 
law and the robust term. Additionally, the stability of the 
proposed NN controller will be demonstrated.  

III. NN CONTROLLER DESIGN 
In this section, we propose a single and a three-layer NN 

based controllers by using a novel weight update law by 
relaxing the persistency of excitation condition and certainty 
equivalence principle [2].   Initially, we consider a single 
layer NN then a multilayer NN. 

A. Single layer network 
By considering constant ideal weightsW , the nonlinear 

function in (5) could be written as  

1( ( )) ( )( )
T

W x k kf x ϕ ε= +  
where the target weight matrix is assumed bounded such that 

maxWW ≤ . Define the NN functional estimate as  

ˆ ( ) ( ( ))ˆ ( )
T

W k x kf x ϕ=                                                              (11) 
and the weight estimation error as  

ˆ( ) ( )W k W W k= −%                                                                (12) 
Thus the control input (9) is given by  

( )
1 1 2

ˆ( ) ( 1) ( ) ( ( )) ( ) ( ) ( )...T

nd nr k
nv c cu k x k W k x k k v k e k e kϕ λ λ

−
+ + −= − − − −  

Substituting the above equation in (8) results in the 
following closed-loop filtered error dynamics as 

1 1( ) ( )( 1) ( ) ( ) ( )r k v kvk k k d k kr ε− + Ψ+ = + +                   (13) 

where 1 ( ) ( ) ( ( ))
T

Wk k x kϕΨ = % . Define the robust term as 

1

1

1

( )

( )( )

ˆ

ˆ ˆ
( )

T

T T

k

B k c

B

k B

w

w w
v k

c
=

+
, where 1

1

l
B

×
∈ ℜ is a constant vector 

and 0cc >  is a constant.  The purpose of the robust term is 
to improve the stability of the controller as explained later in 
this paper.  Substitution of the robust term into (13) renders  

1

1
1

1

( )
1 ( )

( )
( ) ( ) ( )

( )

ˆ

ˆ ˆ

T

T T

k
r k

B k
v

c

B
k k k k

k B

w
r

w w c
ε− Ψ+ = + +

+
          (14) 

where 1( ) ( ) ( )k d k kε ε= + . Adding and subtracting 

1

11

1( )( )ˆ ˆ

T

T T
B k c

B C

k B

w

w w c

−

+
in (14), where 1

1

n
C

×
∈ ℜ  is a constant 

vector.  The filtered tracking error dynamics becomes 

( )
1

1 1
2 1

1

1 ( )
( )

( ) ( ) ( ) ( )
( )ˆ ˆ

T

T T
r k

B k
v

c

w B C
k k k k k

k B
r

w w c
ε+ Ψ Ψ

−
+ = + + −

+
(15) 

where ( )1 1

1

2
1

( )

( )
( )

( )ˆ ˆ

T

TT

w k B C

B k c

k
k Bw w c

−
Ψ =

+

%

. Next, the following lemma 

on the modeling uncertainty and bounded disturbances is 
introduced before proceeding further.  
Lemma 1: The term ( ε ) comprising of the approximation 
errors , 1ε , and bounded disturbance, ( )d k  is assumed to be 
upper bounded by a smooth nonlinear function of filter 
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tracking error and the NN weights [6-9] as 
2 2

0 1 2( ) ( )(4 5 ( ) ( )) ( ) ( )
T T

k kk k d r k dd w kαϕ ϕ ε ε+ ≤ + + %     

                                                 3 ( ) ( )d r k w k+ %                  (16)        

where 0 1 2, ,,d d d and 3d  are computable positive constants. 
Proof: Using some standard norm inequalities, the fact that 

(.)ϕ vector is bounded by constants for RBF, sigmoid, and 
tanh, it is easy to show that the reconstruction error is a 
function of the filtered tracking and weight estimation errors. 
Remark 1: Similar relationship is stated by a number of 
researchers [6-9] in continuous and discrete-time.  This 
assumption is mild in comparison with the assumption that 
the functional reconstruction error and disturbances are 
bounded above by a known constant.   

Next in the theorem, it will be shown that the proposed 
control law renders an asymptotically stable system.  
Theorem 3.1: Let ( )ndx k  be the desired trajectory, and the 
initial conditions be bounded in a compact set S. Consider 
bounded uncertainties and the control law (9) be applied to 
the system. Let the NN weight update law be provided by 
ˆ ˆ( 1) ( )  ( ) ( 1)

T
w k w k k r kα ϕ+ = ++                 (17) 
where 0α >  is the learning rate. Then, the filter tracking 
error ( )r k  and the NN weight estimation errors, ( )w k% are 
locally asymptotically stable. 
Proof: Consider a Lyapunov function candidate as 

1
( ) ( )( ) ( ) [ ]T T

w k w kk kV r r tr
α

= + % %  

The first difference is given by 

1

2

[1 1 ( 1) ( 1) ( ) ( )]
1

( ) ( ) ( ) ( )T T T T

V
V

V k k k kk r k r k r kr tr w w w w
α

Δ
Δ

Δ = + + + + + −− % % % %
14444244443

1444442444443
  (18) 

Substitute the filter tracking error (15) in 1VΔ  of (18) , and 
after performing some mathematical manipulations, we get 

1 1 2( ) ( ) ( ) ( )( ) ( ) ( ) ( )2 2 2
T T T T TT T T

vk k k kv v v vV k k r k k k kr k k kr r r εΨ ΨΔ ++= +  

1

1 1

1 1
1 1

1 1

1 1

( ) ( )
( ) ( )

( )
2

( ) ( )

( )
2

ˆ ˆ ˆ ˆ

( ) ( )T T T T T

T

T T T T

v
k k

B k B kc c

B C k B C

k B k B

r k k w w

w w w wc c
Ψ Ψ

− Ψ −
− −+

+ +
 

2

2

1

1
1 2 1 2

1

1

( ) ( ) ( ) ( ) ( ) ( )
( )

( )
2

( )

2
2

ˆ ˆ

( )T T

T T T

T T
k k k k k k

B k c

k B C

k B

w

w w c
εΨ Ψ Ψ ΨΨ

Ψ −
++ + −

+

( )
2

1 1 1

1 1 1

2

1 1 1

1

( ) ( )
( )

( )
2

( ) ˆ ˆ( ) ( )

2

ˆ ˆ

( ) ( ) ( )T T T T T

T

T T T T

c

k k
B k c

k B C B C B C

k B B w k w k B c

w w w

w w c

ε
εΨ

− − −
+

+

− +
+

                  

( )( ) ( ) ( )
T T

kk r k r kε ε+ −                                        (19)  
Next the weight update law (17) is substituted in the second 
term, 2VΔ of (18), and using (12), to get 

2 ( )( ) ( ) ( ) ( ) ( )
1

[( ) .( ) ]T T
kV w k w k w k w k w kwtr

α
Δ Δ + Δ + −= % % % % %%  

2 ( ) ( )[ . ( ) 2 . ( )]
1 T T

V k kw k w kw wtr
α

Δ Δ Δ + Δ= % %% %  

       2
12 ( )[ 1 1 ( )

1
]( ( ) )( ( ))T T T

kr rk k w ktr rα ϕ ϕ α ϕ
α

+−+ += %  

1 2

2

1

11

1

[ ( ) ( ) ( )
( )

( )
( )

( )1
( )

ˆ ˆ

T
T

T Tvk r k k k
B k c

B C
k

k B

w
tr

w w c
α ϕ

α
εΨ Ψ

−
+ −+ +=

+
 

1 2

1

11

1

( ) ( ) ( )
( )

( )
( )

( )
( )

ˆ ˆ
T

T

T Tvk r k k k
B k c

B C
k

k B

w

w w c
ϕ εΨ Ψ

−
+ −+ +

+
 

1 2

1

11

1

( ) ( )
( )

2 ( ) ( ) ( ) ( )
( )

(
]

ˆ ˆ

)
( )

T

T

T Tvw k k r k
B k c

B C
k k k k

k B

w

w w c
α ϕ εΨ Ψ

−
− −++ +

+
%  

Applying Cauchy-Schwarz inequality 
( 1 2 1 2( .... ) ( ... ).n n

Ta a a a a a+ + + + + +  

1 1 2 2.( .... )T T T

n nn a a a a a a≤ + + + ) for the first term in the above 
equation, and applying the trace operator (given a 
vector n

x ∈ ℜ  , ( )T Ttr xx x x= ) to obtain  

21 1 2( ) ( )5 ( ) ( )( ) ( ) ( ) ( )( )T T T T TT
k kv k kvr k k k r k k kϕ ϕα ε εΨ Ψ Ψ Ψ≤ +++                     

( )
1 1

1 1

2

1 1
5

ˆ ˆ( ) ( )

( ) ( )T T T

T

T T

c

B C B C

B w k w k B c

w w
ϕ ϕα

− −
+

+

1 1 2

1

11

1

( )
( )

( ) ( ) ( ) ( )
( )

( )
2

ˆ ˆ
( )

T

T

T Tvk e k
B k c

B C
k k k k

k B

w

w w c
εΨ Ψ Ψ

−
−− ++ +

+
    (20)           

Next, the overall first difference of the Lyapunov function 
candidate, 1 2V V VΔ Δ Δ= + , can be obtained from (19) and 
(20) as  

1 2( ) ( ) ( ) ( )( ) ( ) ( ) ( )2 2 2
T T T T TT T T

vk k k kv v v vV k k r k k k kr k k kr r r εΨ ΨΔ ≤ ++ +  

1

1 1

1 1
1 1

1 1

1 1

( ) ( )
( ) ( )

( )
2

( ) ( )

( )
2

ˆ ˆ ˆ ˆ

( ) ( )T T T T T

T

T T T T

v
k k

B k B kc c

B C k B C

k B k B

r k k w w

w w w wc c
Ψ Ψ

− Ψ −
− −+

+ +

2

2

1

1
1 2 1 2

1

1

( ) ( ) ( ) ( ) ( ) ( )
( )

( )
2

( )

2
2

ˆ ˆ

( )T T

T T T

T T
k k k k k k

B k c

k B C

k B

w

w w c
εΨ Ψ Ψ ΨΨ

Ψ −
++ + −

+

( )
2

1 1 1

1 1 1

2

1 1 1

1

( ) ( )
( )

( )
2

( ) ˆ ˆ( ) ( )

2

ˆ ˆ

( ) ( ) ( )T T T T T

T

T T T T

c

k k
B k c

k B C B C B C

k B B w k w k B c

w w w

w w c

ε
εΨ

− − −
+

+

− +
+

( )( ) ( ) ( )
T T

kk r k r kε ε+ −  

2( ) ( ) 1 1 25 ( ) ( ) 5 ( ) ( )5
T T T T TT T

vr k r kvk k k k k kϕ ϕ ϕ ϕα αϕ ϕα+ Ψ Ψ Ψ Ψ+ +  

( )
1 1

1 1

2

1 1
5 ( ) ( )

ˆ ˆ( ) ( )

5
( ) ( )T T T

T T T

T T

c

k k
B C B C

B w k w k B c

w w
ϕ ϕα ϕ ϕα ε ε

− −
+ +

+

 

                    
1 21 1 1( ) ( ) ( )( ) ( )2 ( ) 2 2

T T T
k k kv k kk r kΨ Ψ Ψ Ψ Ψ−− −  

                             1

1

1
1

2 ( ) 1

1

( ) ( )
( )( )

( )
2

ˆ ˆ

T T

T T

T k
k k

B k c

B C

k B

w

w w c
ε

Ψ
Ψ

−
− −

+
       

After some mathematical manipulation and using Lemma 1, 
the first difference is rewritten as 
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1 1( ) ( ) ( )( ) ( ) ( )4
T T T T

vk k kvV k k r k r k r kr Ψ ΨΔ −≤ −                               

            ( ) ( ) 1 15 ( ) ( )5
T T T T T

vr k r kvk k k kϕ ϕ ϕ ϕα α+ Ψ Ψ+  

                  2 2

0 1 2( ) ( )d r k dd w k+ + + %                  

1 1 1 1

2 2

4 4( ) (4 5( ) )( ( ) ( ) )
T T T T

r k dd w k B w k w k B C Cαϕ ϕ+ ++ + +% % %  

               
1 1 1 1 1 1

(4 5 2)( )
T T T T T

B ww B B wC C Cαϕ ϕ+ + − +  

Taking 4 3 / 2d d= , and
2 2

max 1

1

min

2

0 max

min 1

))
1 maxmax

min

2
( (4 5

2

/ 2d B w C
C

w B

αϕ+
=

++
, 

applying the Frobenius norm, the first difference can be 
expressed in compact form as 

2

max 1 4max max

22 2
( ) ( )1 4 5

v v
d d kV k k rαϕΔ ≤ − − − − −          

 2 4 2

min max max 2 41 1max max

22 2
( ) ( )45 5 d d w kB Bϕ αϕ αϕ− − − − − − %        (21) 

Hence 0VΔ <  provided the gains are taken as  

1 4

2

max

max
(4 5 )

1
v

d d
k

αϕ+

− −
≤ ,

2

max

1max

2

4 5( )
B

α

αϕ+
= ,  

4

max 2 4min 5 d dϕ αϕ α≥ + + + , and 0 1α< << .                        �                                                                                  
As long as the gains are selected above, 0VΔ < in (21), which 
shows stability in the sense of Lyapunov. 
Hence ( )r k and ( )w k%  are bounded, provided if 0( )r k and 0( )w k%  
are bounded in the compact set S. Summing both sides of 
(21) to show that both ( )r k and converges ( )w k% approaches to 
zero asymptotically.   

Next, we extend the above results for a three-layer NN 
controller. 

B. Three-Layer NN controller 
Here consider a three-layer NN, by using (4), the NN 

output of a nonlinear function in (5) could be written as  

3 2 1 13 2
ˆ ˆ ˆ( ) ( ( ) ( ) ( ( ))))ˆ ˆ ˆ ˆ( ) (

T T T
W W Wk k k x kf x ϕ ϕ ϕ=                 (22)                          

Define the weight estimation errors as  

1 1 1
ˆ ( )( )W W W kk −=% , 2 2 2

ˆ ( )( )W W W kk −=%  and 3 3 3
ˆ ( )( )W W W kk −=% . 

Next the following fact can be stated. 
Fact 3.1.1: The activation functions are bounded by known 
positive values so that 1 1max( )ˆ kϕ ϕ≤ , 2 2 max( )ˆ kϕ ϕ≤  

and 3 3max( )ˆ kϕ ϕ≤ . Define activation function vector error as  

1 1 1( ) ( )ˆk kϕ ϕ ϕ= −% , 2 2 2( ) ( )ˆk kϕ ϕ ϕ= −%  and 3 3 3( ) ( )ˆk kϕ ϕ ϕ= −% .  
Thus by using (22) in the control input (9), we get   

3 2 1 13 2
ˆ ˆ ˆˆ ˆ ˆ( ) ( 1) ( ) ( ( ) ( ) ( ( )))) ( ) ( )(

T T T

nd W W W vu k x k k k k x k k r k v kϕ ϕ ϕ= + − −+  

1 1 2( ) ( ).........
nc n ce k e kλ λ

−
− − −                               (23) 

Then, the closed-loop filtered error dynamics become 

31 1 3( 1) ( ) ( ) ( ) ( ) ( ) ( ( ))
T

Wvk k r k v k k d k k x kr ε ϕ+ Ψ+ = − + + + %     (24)  

where 31 3
ˆ( ) ( ) ( ( ))

T
Wk k x kϕΨ = % , and the robust term for this 

control design is given by 3

3 3

ˆ ( )

ˆ ˆ( ) ( )
( )

T

T T

m

v

v v

W k B

B W k W k B
v k

c
=

+
, 

where 0mc > is a constant and vB is an appropriate 
dimensioned constant vector, to be defined later. Hence (24) 
would be modified to  

3

1

3 3

( 1) 1 3( ) ( ) ( ) 3( ) ( ( ))

ˆ ( )

ˆ ˆ( ) ( )

T

T T

m

k
Tv

v v

r k k d kvk k W x k
W k B

r
B W k W k B c

ε ϕ+ Ψ+ += − + +
+

%

Next by adding and subtracting 3

3 3
ˆ ˆ( ) ( )

T

T T

m

v

v v

vW B C

B W k W k B c

−

+
in the 

above equation, where vC  is an appropriate dimensioned 
constant vector, to get  

3

3 3

2 1( )
(

( 1) ( ) ( ) ( )
)

ˆ ˆ( ) ( )

T

T T

m

v

v v

v
r kv

W B C
k k k k k

B W k W k B c
r ε+ Ψ + Ψ

−
+ = + −

+
 (25) 

where 

3

3 3

2

( )
( )

ˆ ˆ( ) ( )

T

T T

m

v

v v

vW k B C
k

B W k W k B c
Ψ

−
=

+

%

, 31 3( ) ( ) ( ) ( ( ))
T

Wk d k k x kε ε φ= + + % . 

The following theorem guarantees asymptotic stability of the 
closed-loop system using the proposed control law in (23). 
Theorem 3.2: Let ( )ndx k  be the desired trajectory, and the 
initial conditions be bounded in a compact set S. 
Considering bounded uncertainties and the control law 
proposed in (23), where the three layer NN is tuned online 
using the following weight update laws for the input and 
hidden layers as  

11 1 1 11ˆˆ ˆ ˆ( 1) ( )  ( )[ ( ) ( )]
T

vw k w k k y k B k r kϕα+ = +−            (26) 

22 2 2 22ˆˆ ˆ ˆ( 1) ( )  ( )[ ( ) ( )]
T

vw k w k k y k B k r kϕα+ = +−           (27) 

with ˆˆ ˆ( ) ( ) ( )
T

i i iy k w k kϕ=  and
i iB κ≤ , 1, 2i = . Take the 

weight update law for the output-layer as  

3 3 3 3
ˆˆ ˆ( 1) ( )  ( ) ( 1)

T
w k w k k r kα ϕ+ = ++                (28) 

where 0iα > , 1, 2, 3i∀ = , denotes the learning rate or 
adaptation gains. Then, the filter tracking error ( )r k  is 
locally asymptotically stable, while the NN weight 
estimation errors 1 ( )w k% , 2 ( )w k% and 3 ( )w k% are bounded. 
Proof: Consider a Lyapunov candidate as 

31 1 2 2 3

1 2 3

1
( ) ( )

1
( ) ( ) ( ) ( ) [ ( ) ( )]

1
[ ] [ ]

T T T T
k kV w k w k w k w kr r tr w k w ktr tr

α α α
+= + +% % % % % %   

The first difference is given by   

1 1

1
1

2

1 1( 1) ( 1)
1

( ) ( ) ( 1) ( 1) ( ) ( )[ ]
T T T T

k k

V

V

k k w k w k w k w kV r r r r tr
α

+ +

Δ

Δ

− + + −Δ = + % % % %1442443
14444244443

2 2

3

2 2
2

( 1) ( 1) ( ) ( )
1

[ ]T T

V

w k w k w k w ktr
α

Δ

+ + −+ % % % %

1444442444443
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                    3 3

3

4

3 3

1
( 1) ( 1) ( ) ( )[ ]T T

V

w k w k w k w ktr
α

Δ

+ + −+ % % % %

1444442444443

             (29)  

Substituting (25) to (28) in (29), collecting terms together 
and completing square yields 

1 2( ) ( ) ( ) ( )( ) ( ) ( ) ( )2 2 2
T T T T TT T T

vk k k kv v v vV k k r k k k kr k k kr r r εΨ ΨΔ ≤ ++ +  

        3 1 3

1

3 3 3 3

1( ) ( )
( ) ( )( )

2
ˆ ˆ ˆ ˆ( ) ( ) ( ) ( )

( )
2

T T T T T

T

T T T T

m m

v v v v v

v v v v

k k
W B C k W B C

B W k W k B B W k W k B

r k k

c c
Ψ Ψ

− Ψ −
−

+ +
−+   

        2 3

2

3 3

1 2 1 2( ) ( ) ( )( ) ( ) 2 ( )
2 ( )( )

2
ˆ ˆ( ) ( )

T T

T T T

T T

m

v v

v v

k k kk k k
k W B C

B W k W k B c
ε ΨΨ Ψ Ψ Ψ+

Ψ −
+

+
+ −   

     
( )

3 3 3

2

3 3 3 3

2
( ) ( )

( )( ) ( ) ( )
2

ˆ ˆ ˆ ˆ( ) ( ) ( ) ( )

2
T T T T T

T

T T T T
m m

v v v v v v

v v v v

k k
k W B C W B C W B C

B W k W k B B W k W k Bc c

ε
εΨ

− − −
+

+ +

− +  

              
              ( )( ) ( ) ( )

T T
kk r k r kε ε+ −  

      1 1 1

1 1 1 1 1

1 1 1

ˆ ˆ( ) ( )
ˆ ˆ(1 ( ) ( ))

ˆ(2 ) ( ) ( )
ˆ ˆ(2 ( ) ( ))

T

T T

T
k k

k k
W k k

k k
ϕ ϕ

α ϕ ϕ
α ϕ

α ϕ ϕ

−
− − −

−
%  

                   2

2 2

22

2 max

2

2

2 2 2
ˆ( ( ) ( ))

ˆ ( )

ˆ ( )(2 )

T
W k B k r kv

W k

k
ϕ

ϕ

ϕα
× + +

−
 

                   1 1 max 1 max

1 1 1 1 1 1

max1
22 2

max ( ) ( )2

ˆ ˆ ˆ ˆ(2 ( ) ( )) (2 ( ) ( ))T T

vv r k r kk W

k k k k

kκ κ ϕ

α ϕ ϕ α ϕ ϕ
+ +
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             2 2 2

2 2 2 2 2

2 2 2

ˆ ˆ( ) ( )
ˆ ˆ(1 ( ) ( ))

ˆ(2 ) ( ) ( )
ˆ ˆ(2 ( ) ( ))

T

T T

T
k k

k k
W k k

k k
ϕ ϕ

α ϕ ϕ
α ϕ

α ϕ ϕ

−
− − −

−
%  

                   2

2 2

22

2 max

2

2

2 2 2
ˆ( ( ) ( ))

ˆ ( )

ˆ ( )(2 )

T
W k B k r kv

W k

k
ϕ

ϕ

ϕα
× + +

−
 

                 2 2 max 2 max

2 2 2 2 2 2

max2
22 2

max ( ) ( )2

ˆ ˆ ˆ ˆ(2 ( ) ( )) (2 ( ) ( ))T T

vv r k r kk W

k k k k

kκ κ ϕ

α ϕ ϕ α ϕ ϕ
+ +

− −
 

        
1 1 1 2 11( ) ( ) ( ) ( ) ( ) ( ) ( )( ) 2 22 2

T T T TT
k k k k k k kv kkr εΨ Ψ Ψ Ψ ΨΨ− − − −  

  1 3

3 3 3 3

3 3

3 3 1 1
ˆ ˆ ( ) ( ) ( ) ( )ˆ ˆ5

( )( )
2 5

ˆ ˆ( ) ( )

T T T

T T

T T

vT T

m

v v
v

v v

r k r k k kk k
k W B C

B W k W k B c
ϕ ϕα α ϕ ϕ Ψ Ψ+

Ψ −
+

+
+  

      
3 3 23 2 3( ) ( ) 3 3

ˆ ˆ ( ) ( )ˆ ˆ5 5
T T T T

k k k kα ϕ ϕ α ϕ ϕ ε εΨ Ψ+ +  

            
( )

3 3

3 3

3 23 3

( ) ( )
ˆ ˆ

ˆ ˆ( ) ( )

5
T T T

T

T

m

v v v v

T

v v

W B C W B C

B W k W k B c
α ϕ ϕ

− −

+

+           (30) 

Next, the following lemma is introduced. 
Lemma 2: Using Lemma 1, the term ( ε ), and the ideal 
weights of the NN are assumed to be bounded above by a 
smooth nonlinear function of filter tracking error and the NN 
weights [6-9] as 

3 3 32 2

max

2

ˆ ˆ

2

1

ˆ ( )

5 4) ( ) ( )(

ˆ ( )( )

ˆ(2 ( ) )

T T

i i

i i i
i

k

k k

iW k

k
ϕ ϕ

ϕ

α ε ε

ϕ

α ϕ

κ
=

+ +
−

+∑
                                                    

    3

2 2

0 1 2 3 3( ) ( ) ( ) ( )r k w k r k w kβ β β β≤ + + +% %  (31)                 

where 0 1 2, , ,β β β and 3β   are computable positive constants. 
Proof: Similar to Lemma 1, using some standard norm 
inequalities, the fact that 1 (.)ϕ , 2 (.)ϕ , and 3 (.)ϕ vectors are 
bounded by constants for RBF, sigmoid, and tanh; and the 
reconstruction error is a function of the filtered tracking 
error and the weight estimation errors. 
 

Using Lemma 2, taking the Frobenious norm of (30) and 

taking
2 2 2

1 3 1 0 3 3 3

1 3

max max max

min min

min

/ ˆ ˆ3 ( (4 5 ))

2

T

v

B W C
C

B W

β α ϕ ϕ+
=

+ +
, we get  

2 2 2

1 4max max
( )(1 4 )v v r kV k k β βγΔ ≤ − − − −−  

            1 1 1

1 1 1 1 1

1 1 1

ˆ ˆ( ) ( )
ˆ ˆ(1 ( ) ( ))

ˆ(2 ) ( ) ( )
ˆ ˆ(2 ( ) ( ))

T

T T

T
k k

k k
W k k

k k
ϕ ϕ

α ϕ ϕ
α ϕ
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−
− − −

−
%                  

                      
2

1 1 1
ˆ( ( ) ( ))

T
W k B k r kvϕ× +  

             2 2 2

2 2 2 2 2

2 2 2

ˆ ˆ( ) ( )
ˆ ˆ(1 ( ) ( ))

ˆ(2 ) ( ) ( )
ˆ ˆ(2 ( ) ( ))

T

T T

T
k k

k k
W k k

k k
ϕ ϕ

α ϕ ϕ
α ϕ

α ϕ ϕ

−
− − −

−
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2

2 2 2
ˆ( ( ) ( ))

T
W k B k r kvϕ× +  

       3 3 3 3

2

2 4 3

2 2
ˆ ˆ1 5 ( ) ( ) ( )( )k k w kα ϕ α β β ϕ− − − − − %        (32) 

where 4 3 / 2β β= ,  and

2

3 3

2

1 2

2
ˆ5 ( )

ˆ ( )

ˆ(2 ( ) )

i i i
i

i i

k

k

k
α ϕ

κ ϕ κ

α ϕ
γ =

+

+
−

=
∑

. Then 

0VΔ ≤ in (32) provided the following gains are selected  

1 4

max

1

4
vk

β β

γ

− −
≤

+
, 2 3 3

1

3 3

max

2

2

ˆ ( )

ˆ ( )(8 10 )

k

k

B
α ϕ

α ϕ+
= ,

3

3

2 4

2

1

ˆ ( )1 5 k

β β
α

ϕ

− −

+
= , 

and 2 4 1β β+ ≤ . 
Then the first difference, 0VΔ ≤ in (32), which shows 
stability in the sense of Lyapunov provided the gains are 
selected above. Hence ( )kr , 3 ( )w k% , 2 ( )w k% , and 1 ( )w k%  are 

bounded, provided if 0( )kr , 3 0( )w k% , 2 0( )w k% , and 1 0( )w k%  are 
bounded in the compact set S. Additionally by using [5], we 
could show that the tracking error ( ) 0r k →  as k → ∞ . 
Hence ( )kr converges asymptotically. 

In the next section, simulation results are introduced.   

IV. SIMULATION RESULTS 
Consider the following nonlinear discrete-time system [5]                     

1 2 1
1( ) .( ( )) ( )X X Xk t k k+ = Δ +            

2 1 2 2
1( ) .( ( )) ( ) ( ),X X X Xk t F U k D k+ = Δ + + +           (33) 
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where 
1 1 2
( ) [ ( ), ( )]

T
X k x k x k= , 

2 3 4
( ) [ ( ), ( )]

T
X k x k x k=  , 

1 2
( ) [ ( ), ( )]

T
U k u k u k=  and the nonlinear function 

1 2
( ),X XF is 

given by 
1 2 1 1 2

1
( ) [ ( )] ( ), ,X X X X XF M G

−
= , where 

1
[ ( )]XM =  

2 2 2

1 2 1 2 2 2 1 2 2 2 2 2 1 2 2

2 2

2 2 2 1 2 2 2 2

cos cos

cos

( ) 2 ( ( )) ( ( ))

( ( ))

b b a b a b a a x k b a b a a x k

b a b a a x k b a

+ + + +

+

⎡ ⎤
⎢ ⎥
⎣ ⎦

 

and  

1 2 2

2 1 2 1 2 2 2 1 2

1

sin 9.8 cos

( )

( ) ( ( )) ( ( ) ( ))
( ),

G
X X

k
G

b a a x k x k b a x k x k+ +
=

⎡ ⎤
⎢ ⎥
⎣ ⎦

 with 

2

2 1 2 3 4 4 2 1 2 1 11 sin 9.8 cos( ) (2 ( ) ( ) ( )) ( ( )) ( ) ( ( ))G k b a a x k x k x k x k b b a x k= − + + +    
             

2 2 1 29.8 cos( ( ) ( ))b a x k x k+ + .   
Also, ( )D k is the disturbance vector, which is given by 

2

2
( )D k =

⎡ ⎤
⎢ ⎥⎣ ⎦

for 0 20 seck t< Δ ≤ , else
3

3
( )D k =

⎡ ⎤
⎢ ⎥⎣ ⎦

. The system in 

(33) is sampled at 10msectΔ = . The desired trajectories are 

given as  ( )2
sin

25

k tπ Δ
 and ( )2

cos
25

k tπ Δ
. Additionally, the 

parameters of the nonlinear system are taken as 1 2 1a a= = , 

1 2b = and 2 1b = . The initial conditions of the nonlinear 

system are chosen to be 1 [1.5, 1]
T

X = and 2 [ 1.5, 1]
T

X − −= . Also, 
the controller gains are chosen to be 

{0.2, 0.2}vk diag= and
1

{0.9, 0.9}c diagλ = .  
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Figure 1: Tracking error for the reference trajectory 1 by the 
asymptotic and the bounded NN controllers.  

 
The tracking errors for both the reference trajectories are 

shown in Figs. 1 and 2. The proposed asymptotic controller 
(NN term + robust term) is compared against another 
bounded NN controller presented in [4] without a robust 
term. From the Figs. 1 and 2, it is evident that the proposed 
asymptotic controller achieves a highly satisfactory tracking 
performance even in the presence of disturbance when 
compared to a NN controller that renders uniformly 
ultimately bounded result.  On the other hand, a standard PD 
controller renders unstable results due to the size of the 
disturbance and therefore it is not suitable. 
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Figure 2: Tracking error for the reference trajectory 2 by the 
asymptotic and the bounded NN controllers. 

V. CONCLUSIONS 
In this paper, a suite of NN controllers were developed for 

nonlinear discrete time systems. By using a novel robust 
term and based on mild assumption on the NN 
approximation errors and in the presence of bounded 
disturbances, the asymptotic tracking is demonstrated 
through Lyapunov analysis.  Simulation studies verify the 
theoretical conjectures. 
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