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Abstract— This paper considers the mixed H2/H∞ control of
networked control systems where random time delays existing
in sensor-to-controller (S-C) and controller-to-actuator (C-A)
links are modeled by Markov chains. The designed output
feedback controller is two-mode-dependent, which depends on
the available S-C and C-A delay information. The closed-loop
system is formulated as a special jump linear system. The
definitions of the H2 and H∞ norms are further proposed
to reflect the special characteristics of the system. The H2

and mixed H2/H∞ control problems are solved via the linear
matrix inequality (LMI) optimization approaches. Simulation
examples illustrate the effectiveness of the proposed methods.

I. INTRODUCTION

With the development of network techniques, the integra-

tion of networks into control systems has attracted much

attention recently. Networked control system (NCS) is a type

of distributed system, in which the information of system

components is exchanged via the communication networks.

Compared with the traditional control systems, the main ad-

vantages of NCSs include low cost, easy diagnosis, and high

reliability. Hence, NCSs have many industrial applications

[1]–[3], and the stability and control problems in NCSs have

received increasing attentions in the past decade.

The existence of communication networks also brings

some problems. One of the main issues is the network-

induced time delay, which is a source of poor performance

and instability in control systems. Ample papers have been

found in the literature to model and control NCSs in the

presence of time delays. Markov and Bernoulli processes are

widely used to model the network-induced time delay and

packet loss [2], [4]–[7]. The using of Markov process takes

the dependencies between time delays into account, and also

can include the packet dropout naturally [4]. The Bernoulli

process can be taken as a special case of Markov process [8].

Various control methods have been proposed to cope with

the network-induced delays modeled by Markov chains. Gen-

erally, these controllers can be classified into three categories

based on their dependency on the delay information.

• Mode-independent controller. The controller does

not depend on either sensor-to-controller (S-C) or

controller-to-actuator (C-A) delays. In [4], the authors

model the time delays as Markov chains and propose

the mode-independent output feedback controller design

method. In [8], the authors consider the Markovian
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packet loss process and a mode-independent state feed-

back controller is designed.

• One-mode-dependent controller. The controller only

depends on the S-C delays. In [4], a one-mode-

dependent state feedback controller is designed to sta-

bilize the NCSs with S-C delays modeled by Markov

chains. In [2], an H∞ controller is designed for the vehi-

cle control problems under the framework of Markovian

jump linear systems (MJLSs) [9]–[11]; only the S-C

delay is considered. In [6], both the S-C and C-A packet

dropouts modeled as Markov chains are considered

and a one-mode-dependent state feedback controller

design method is provided; the authors introduce a new

classification of NCSs to simplify the modeling and

avoid incorporating the C-A dropouts in the controller.

• Two-mode-dependent controller. The controller de-

pends on both S-C and C-A delays. In [5], the au-

thors propose a two-mode-dependent state feedback

controller design method to guarantee the stochastic

stability. The controller depends on the current S-C

delay (τk) and the preceding C-A delay (dk−1). In [7],

the Markov processes are used to model the continuous

S-C and C-A delays, and further a two-mode-dependent

state feedback controller depending on both current S-C

and C-A delays is designed to maintain the stability.

It is worth noting that the two-mode-dependent controller

can include the mode-independent and one-mode-dependent

controllers as special cases. Hence, it can reduce the con-

servativeness and achieve better performance. However, the

two-mode-dependent controller design has not been fully

investigated, especially for the practical controller and the

control synthesis. In our previous work [12], we propose that

at the current time k, the C-A delay dk−τk−1 can be obtained

by the controller instead of dk−1 in [5] as the preceding C-A

delay obtained by the embedded processor at the plant node

has to be transmitted through the S-C link as shown in Fig. 1.

This moves a step towards the practical application of two-

mode-dependent controller and further the output feedback

controller is designed for the stochastic stability [12]. The

contributions of this paper lie in that the control performance

(H2 and mixed H2/H∞ control) is included in the controller

design while only the stabilization problem is considered in

the previous work [5], [7], [12], [13].

The remainder of this paper is organized as follows.

Section II formulates the problem and presents the objectives

of this work. In Section III, the definitions of H2 and

H∞ norms are proposed, and further the H2 and mixed
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Fig. 1. Diagram of a networked control system.

H2/H∞ control problems are solved in terms of linear

matrix inequalities (LMIs) with nonconvex constraints. The

comparison and design examples are given in Section IV.

Finally, the concluding remarks are addressed in Section V.

II. PROBLEM FORMULATION

Consider the NCS setup in Fig. 1. The discrete-time linear

time-invariant plant model is

x(k + 1) = Ax(k) + Bũ(k) + Jω(k), (1a)

y(k) = Cx(k), (1b)

where x(k) ∈ R
n, ũ(k) ∈ R

m, y(k) ∈ R
p, ω(k) ∈ R

l and

A, B, C, and J are known real matrices with appropriate

dimensions. Bounded random delays exist in the links from

sensor to controller and controller to actuator as shown in

Fig. 1. Here, τ ≥ τk ≥ 0 represents the S-C delay and

d ≥ dk ≥ 0 stands for the C-A delay. In this paper, τk

and dk are modeled as two homogeneous Markov chains

[4], [5], [12] that take values in M = {0, 1, ..., τ} and N =
{0, 1, ..., d}, and their transition probability matrices are Λ =
[λij ] and Π = [πrs], respectively. That means τk and dk jump

from mode i to j and from mode r to s, respectively, with

probabilities λij and πrs, which are defined by

λij = Pr(τk+1 = j|τk = i), πrs = Pr(dk+1 = s|dk = r)

with the constraints λij , πrs ≥ 0 and

τ∑

j=0

λij = 1,

d∑

s=0

πrs = 1 (2)

for all i, j ∈ M and r, s ∈ N .

It is noticed that when the controller is designed at

current time k, the S-C delay τk can be obtained using the

time-stamping technique and the embedded processor can

calculate the preceding C-A time delay dk−1. Furthermore,

by considering the random delays in the S-C link, dk−τk−1

can be obtained by the controller at current time k for

sure [12]. The dynamic output controller is designed based

on the available information (τk, dk−τk−1), and thus has the

following form:

z(k + 1) = F (τk, dk−τk−1)z(k) + G(τk, dk−τk−1)ỹ(k), (3a)

u(k) = H(τk, dk−τk−1)z(k) + T (τk, dk−τk−1)ỹ(k), (3b)

where z(k) ∈ R
n is the state vector of the output feedback

controller; and F , G, H , and T are appropriately dimen-

sioned matrices to be designed.

Consider the time delays in S-C link, we have

x(k + 1) = Ax(k) + Bũ(k) + Jω(k), (4a)

ỹ(k) = y(k − τk) = Cx(k − τk). (4b)

At sampling time k, if augment the state variable as

X̃(k) =
[

x(k)T y(k − 1)T y(k − 2)T · · · y(k − τ )T
]T

,

then
X̃(k + 1) = ÃX̃(k) + B̃ũ(k) + J̃1ω(k), (5a)

ỹ(k) = C̃1(τk)X̃(k), (5b)

where

Ã =








A 0 · · · 0 0
C 0 · · · 0 0
0 I · · · 0 0
.
..

.

..
. . .

.

..
.
..

0 0 · · · I 0








, B̃ =








B
0
.
..
0
0








, J̃1 =








J
0
.
..
0
0








,

C̃1(τk) =







[
C 0 · · · 0 0 · · · 0

]
, for τ (k) = 0

[
0 · · · 0 I 0 · · · 0

]

︸ ︷︷ ︸

(1+τk)th block being identity

, for τ (k) > 0.

Similarly, at sampling time k, augment the state variable as

Z̃(k) =
[

z(k)T u(k − 1)T u(k − 2)T · · · u(k − d)T
]T

,

then we have

Z̃(k + 1) = F̃ (τk, dk−τk−1)Z̃(k) + G̃(τk , dk−τk−1)ỹ(k), (6a)

ũ(k) = H̃(τk , dk , dk−τk−1)Z̃(k) + T̃ (τk , dk, dk−τk−1)ỹ(k), (6b)

where

F̃ (τk, dk−τk−1) =








F (τk, dk−τk−1) 0 · · · 0 0
H(τk, dk−τk−1) 0 · · · 0 0

0 I · · · 0 0
...

...
. . .

...
...

0 0 · · · I 0








,

G̃(τk, dk−τk−1) =








G(τk, dk−τk−1)
T (τk, dk−τk−1)

.

..
0
0








,

H̃(τk, dk−τk−1, dk)

=







[
H(τk, dk−τk−1) 0 · · · 0

]
, for d(k) = 0,

[
0 · · · 0 I 0 · · · 0

]

︸ ︷︷ ︸

(1+dk)th block being identity

, for d(k) > 0,

T̃ (τk, dk−τk−1, dk) =

{
T (τk, dk−τk−1), for d(k) = 0,

0, for d(k) > 0.

Combining (5) and (6), and letting the state variable as

X(k) =
[

X̃(k)T Z̃(k)T
]T

,

we have the following closed-loop system dynamics:

X(k + 1) =
[
Ā + B̄K(τk, dk−τk−1, dk)C̄(τk)

]
X(k) + J̃ω(k),

(7a)

y(k) = C̃X(k), (7b)

4039



where

Ā =

[

Ã 0
0 0

]

, B̄ =

[

0 B̃
I 0

]

, C̄(τk) =

[
0 I

C̃1(τk) 0

]

,

K(τk, dk−τk−1, dk)

=

[

F̃ (τk, dk−τk−1) G̃(τk, dk−τk−1)

H̃(τk, dk−τk−1, dk) J̃(τk, dk−τk−1, dk)

]

,

J̃ =
[

JT 0 · · · 0 0 0 0 · · · 0 0
]T

,

C̃ =
[

C 0 · · · 0 0 0 0 · · · 0 0
]
.

Remark 1 The closed-loop system in (7) cannot be trans-

formed to a standard MJLS as in [2], [4] because the system

depends on τk, dk, and dk−τk−1, and dk−τk−1 is related to

τk and dk. Hence, the results on MJLSs cannot be directly

applied. The special feature results from that the controller

depends on dk−τk−1. This makes the system more complex

and the control of the special system more challenging.

Remark 2 The controller (3) is two-mode-dependent. It

can include the mode-independent and one-mode-dependent

controllers as special cases, as shown in Remark 2 in [12].

Hence, the two-mode-dependent controller can reduce the

conservativeness and achieve better performance, which will

be shown in numerical examples.

To the best of the authors’ knowledge, to incorporate

the control performance (H2 and H∞ norms) into the

two-mode-dependent controller design has not been fully

investigated. The objective of this paper is to solve the H2

and mixed H2/H∞ two-mode-dependent control problems

for networked systems. For H2 control synthesis, we aim to

design the output feedback controller (3) to guarantee that:

• The closed-loop system in (7) is stochastically stable;

• The H2 norm of the system is minimized.

For mixed H2/H∞ control synthesis, we aim to design the

output feedback controller (3) to guarantee that:

• The closed-loop system in (7) is stochastically stable;

• The H2 norm of the system is minimized while the H∞

norm of the system is lower than the prescribed level.

III. H2 AND MIXED H2/H∞ CONTROL

A. Stability analysis

Definition 1: [12] The system in (7) with ω(k) = 0 for

all k ≥ 0 is said to be stochastically stable if for every finite

X0 = X(0), initial mode τ0 = τ(0) ∈ M, and d−τ0−1 =
d(−τ0 − 1) ∈ N , there exists a finite W > 0 such that the

following holds:

E

{
∞∑

k=0

‖X(k)‖2|X0, τ0, d−τ0−1

}

< X0
TWX0. (8)

The following theorem provides the sufficient and neces-

sary condition for the stochastic stability of the system in

(7).

Theorem 1: [12] Under the proposed output feedback

control law (3), the resulting closed-loop system in (7) is

stochastically stable if and only if there exists symmetric

P (i, r) > 0 such that the following matrix inequality:

τ∑

j=0

d∑

s1=0

d∑

s2=0

λijΠ
1+i−j
rs2

Πj
s2s1

[
Ā + B̄K(i, r, s1)C̄(i)

]T

× P (j, s2)
[
Ā + B̄K(i, r, s1)C̄(i)

]
− P (i, r) < 0 (9)

holds for all i ∈ M and r ∈ N .

B. Definitions of H2 and H∞ norms

For a stable discrete-time LTI system, the classical H2

norm has the following time-domain interpretation: The l2
norm of the output equals the H2 norm of the system if the

input is the unit impulse [14]. A definition of H2 norm for

MJLSs is given in [9]. However, as the closed-loop system in

(7) under consideration is a special discrete-time jump linear

system, the definitions of the classical H2 norm and MJLS

H2 norm are not suitable. Following the general definitions

of the H2 norm, define the following H2 norm for the system

in (7) to take the special feature into account, which can be

used as a performance index.

Definition 2: We define the H2 norm of system in (7) with

X(0) = 0 as

‖Hyω‖
2
2 =

l∑

so=1

τ∑

io=0

d∑

ro=0

α(io,ro)‖E(yso,io,ro
)‖2

2, (10)

where yso,io,ro
is the output sequence of the system in (7)

when

(1) the input sequence is given by ω = (ω(0), ω(1), · · · ),
ω(0) = es, ω(k) = 0, k > 0, es ∈ R

l the unitary vector

formed by one at the soth position and zero elsewhere;

(2) τ(0) = io;

(3) d(−τ0 − 1) = ro.

The initial distribution for (τ0, d−τ0−1) is given by

α = (α(io,ro)), where io ∈ M, ro ∈ N and
∑

io∈M,ro∈N
α(io,ro) = 1.

Remark 3 When τ = 0, d = 0, the Definition 2 of H2 norm

is reduced to the classical H2 norm. Hence, the definition

can be viewed as a generalization of the H2 norm from LTI

systems to the special system. Moreover, when d = 0, the

Definition 2 is reduced to the H2 norm for MJLSs [9].

The definition of classical H∞ norm for LTI systems can

be interpreted as a measure of robust stability that represents

the worst-case energy attenuation for any energy-bounded

disturbance. Following the time-domain interpretation, the

H∞ norm for the special system in (7) is defined as follows.

Definition 3: Let X(0) = 0 and define the H∞ norm as

‖Hyω‖∞ = sup
τ(0)∈M

sup
d(−τ0−1)∈N

sup
ω∈l2(0,∞)

‖y‖2

‖ω‖2
. (11)

C. H2 control

The following theorem establishes the relationship be-

tween the H2 norm and the state-space model of the jump

linear system in (7).
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Theorem 2: The H2 norm of system in (7) can be com-
puted as follows.

‖Hyω‖
2
2

=

τ∑

io=0

d∑

ro=0

τ∑

jo=0

d∑

so2=0

α(io,ro)λiojo
Π1+io−jo

roso2
tr

{
J̃TS(jo, so2)J̃

}
,

(12)

where S(jo, so2) > 0 is the solution of the following

discrete-time Lyapunov equation

S(i, r)

=

τ∑

j=0

d∑

s1=0

d∑

s2=0

λijΠ
1+i−j
rs2

Πj
s2s1

[
Ā + B̄K(i, r, s1)C̄(i)

]T

× S(j, s2)
[
Ā + B̄K(i, r, s1)C̄(i)

]
+ C̃TC̃, (13)

for i ∈ M, r ∈ N .

Proof: The system in (7) depends on three parameters

τk, dk, and dk−τk−1. As these three parameters are inter-

dependent, the multi-step jump of Markov chain happens in

the system evolvement [12]. The Proposition 1 in [12] can be

used to handle the multi-step jump. Further, considering the

system dynamics and the Definition 2, the theorem can be

completed. The detailed proof is omitted here for the length

limitation of the paper.

Now, we are in a good position to solve the H2 control

problem for this special system. The objective is to design a

controller in (3) such that the H2 norm of system in (7)

is minimized. The H2 control for LTI systems has been

studied [15], [16] and the H2 control for MJLSs has been

investigated in [11]. In the following, the H2 control problem

will be transformed to an optimization problem.

Theorem 3: Under the proposed output feedback control

law (3), the closed-loop system in (7) is stochastically stable

and ‖Hyω‖2 < β, if and only if there exist matrices F (i, r),
G(i, r), H(i, r), T (i, r), and symmetric matrices X̄(j, s2) >
0, P (i, r) > 0 satisfying the following inequalities with

nonconvex constraints

τ∑

io=0

d∑

ro=0

τ∑

jo=0

d∑

so2=0

α(io,ro)λiojo
Π1+io−jo

roso2
tr{J̃TP (jo, so2)J̃}

< β2, (14a)
[

−P (i, r) + C̃TC̃ V (i, r)T

V (i, r) −X(i, r)

]

< 0, (14b)

X̄(j, s2)P (j, s2) = I, (14c)

for all i, j ∈ M and r, s2 ∈ N , where

V (i, r) =
[

V0(i, r)
T V1(i, r)

T · · · Vτ (i, r)T
]T

,

Vj(i, r) =
[

Vj,0(i, r)
T Vj,1(i, r)

T · · · Vj,d(i, r)
T

]T
,

Vj,s2
(i, r) =








(λijΠ
1+i−j
rs2

Πj
s20)

1

2

[
Ā + B̄K(i, r, 0)C̄(i)

]

(λijΠ
1+i−j
rs2

Πj
s21)

1

2

[
Ā + B̄K(i, r, 1)C̄(i)

]

...

(λijΠ
1+i−j
rs2

Πj
s2d)

1

2

[
Ā + B̄K(i, r, d)C̄(i)

]








,

X(i, r) = diag{X0(i, r) X1(i, r) · · · Xτ (i, r)},

Xj(i, r) = diag{Xj,0(i, r) Xj,1(i, r) · · · Xj,d(i, r)},

Xj,s2
(i, r) = diag







X̄(j, s2) X̄(j, s2) · · · X̄(j, s2)
︸ ︷︷ ︸

d+1







.

(15)
Proof: The proof is omitted due to the limited space.

D. Mixed H2/H∞ control

The following theorem provides the sufficient condition

for mixed H2/H∞ control.

Theorem 4: If

τ∑

j=0

d∑

s1=0

d∑

s2=0

λijΠ
1+i−j
rs2

Πj
s2s1

[
Ā + B̄K(i, r, s1)C̄(i)

]T

× P (j, s2)
[
Ā + B̄K(i, r, s1)C̄(i)

]
− P (i, r) + C̃TC̃

+
1

γ2
P (i, r)J̃ J̃TP (i, r) < 0, (16)

then

1) The system in (7) is stochastically stable;

2) ‖Hyω‖∞ < γ;

3) ‖Hyω‖
2
2 ≤

τ∑

io=0

d∑

ro=0

τ∑

jo=0

d∑

so2=0

α(io,ro)λiojo
Π1+io−jo

roso2

× tr
{

J̃TP (jo, so2)J̃
}

.

Proof: Omitted here for the length limitation of the

paper.

Then it can be transformed to an equivalent condition

expressed as a set of LMIs with nonconvex constraints.

Theorem 5: Under the proposed output feedback control

law (3), the closed-loop system in (7) is stochastically stable

and ‖Hyω‖∞ < γ, ‖Hyω‖2 < β if there exist matrices

F (i, r), G(i, r), H(i, r), T (i, r), and symmetric matrices

X̄(j, s2) > 0, P (i, r) > 0, satisfying:

τ∑

io=0

d∑

ro=0

τ∑

jo=0

d∑

so2=0

α(io,ro)λiojo
Π1+io−jo

roso2
tr{J̃TP (jo, so2)J̃}

< β2, (17a)




−P (i, r) + C̃TC̃ V (i, r)T 1
γ
P (i, r)J̃

V (i, r) −X(i, r) 0
1
γ
J̃TP (i, r) 0 −I



 < 0, (17b)

X̄(j, s2)P (j, s2) = I, (17c)

for all i, j ∈ M and r, s2 ∈ N , with matrices defined in

(15).

Proof: The proof can be completed by using the Schur

complement and letting X̄(j, s2) = P (j, s2)
−1.

The conditions (14) and (17) contain a set of LMIs and

nonconvex constraints. This can be solved by the product

reduction algorithm (PRA) [17]. Detailed procedure about

how to apply PRA to this problem can be referred to [18].

Now, the H2 and mixed H2/H∞ two-mode-dependent

control design for networked systems can be summarized

as: For H2 control, minimize β subject to (14); for mixed
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H2/H∞ control, let γ be a certain given value, minimize β
subject to (17).

Remark 4 As the mode-independent controller and one-

mode-dependent controller can be viewed as the special

cases of the two-mode-dependent controller with certain

constraints. The H2 control method in Theorem 3 and the

mixed H2/H∞ control method in Theorem 5 can also handle

the mode-independent controller and one-mode-dependent

controller design.

IV. NUMERICAL EXAMPLES

Consider an inverted pendulum system shown in Fig. 2,

where θ is the angular position of the pendulum, and u is the

input torque. The state variables are chosen as [ θT θ̇T ]T.

The output is y = [ θ ]. The parameters here are: m =
0.1 kg, L = 1 m. The output feedback controller is designed

using the discrete-time model (sampling time Ts = 0.05s):

x(k + 1) = Adx(k) + Bdu(k) + Jdω(k), (18a)

y(k) = Cdx(k), (18b)

where

Ad =

[
1.0123 0.0502
0.4920 1.0123

]

, Bd =

[
0.0125
0.5020

]

,

Jd =

[
0.100
0.100

]

, Cd =
[

1 0
]
. (19)

The eigenvalues of Ad are 0.7312 and 1.3676. Hence, the

discrete-time system is unstable.

Fig. 2. An inverted pendulum system.

The random delays involved in this NCS are assumed

to be τk ∈ {0, 1, 2} and dk ∈ {0, 1}, and their transition

probability matrices are given by

Λ =





0.5 0.5 0
0.3 0.6 0.1
0.3 0.6 0.1



 , Π =

[
0.2 0.8
0.5 0.5

]

.

The initial distribution for (τ0, d−τ0−1) is equal for every

(α(io,ro)), where io ∈ M, ro ∈ N , which means α(io,ro) =
1
6 in the following examples.

A. H2 control

Firstly, apply the H2 control method in Theorem 3 to

design a two-mode-dependent output feedback controller,

and the minimum H2 norm βmin is 0.277. Secondly, design

the one-mode-dependent controller that only depends on

τk, and by using the Theorem 3, the minimum H2 norm

βmin is 0.285. Thirdly, the mode-independent controller is

designed and the minimum H2 norm βmin is 0.292. The

comparison for three types of controllers is provided in Table

I. Obviously, the two-mode-dependent controller provides

TABLE I

COMPARISON OF H2 CONTROL PERFORMANCE

Controller Two-mode One-mode Mode
Type -dependent -dependent -independent

Minimum H2 norm 0.277 0.285 0.292

more freedom for the controller design and outperforms both

the one-mode-dependent and mode-independent controllers.

B. Mixed H2/H∞ control

In this example, the mixed H2/H∞ control design will be

considered. The system matrices are shown in (19). γ is set to

be 2. By using Theorem 5, we can obtain that the minimum

value of H2 norm βmin is 0.286 and the corresponding

controller is

F (0, 0) =

[
0.9221 0.6237
−1.3405 −0.6901

]

, G(0, 0) =

[
2.5033
−0.6847

]

,

H(0, 0) =
[

0.7807 −0.7254
]

, T (0, 0) =
[

−8.1888
]

,

F (0, 1) =

[
0.6818 0.3012
−0.7984 −0.0182

]

, G(0, 1) =

[
2.6225
−0.7534

]

,

H(0, 1) =
[

−1.0050 −2.6649
]

, T (0, 1) =
[

−7.8262
]

,

F (1, 0) =

[
1.0712 0.8433
−0.9852 −0.2523

]

, G(1, 0) =

[
2.6060
−0.7075

]

,

H(1, 0) =
[

−1.5050 −3.6200
]

, T (1, 0) =
[

−8.2682
]

,

F (1, 1) =

[
1.1030 0.9091
−1.1002 −0.4253

]

, G(1, 1) =

[
2.6079
−0.7610

]

,

H(1, 1) =
[

−1.0833 −3.1329
]

, T (1, 1) =
[

−8.2084
]

,

F (2, 0) =

[
1.5169 1.2761
−1.2053 −0.4733

]

, G(2, 0) =

[
2.0694
−0.4630

]

,

H(2, 0) =
[

−2.6483 −4.5070
]

, T (2, 0) =
[

−6.2058
]

,

F (2, 1) =

[
1.7234 1.3308
−1.2488 −0.4495

]

, G(2, 1) =

[
1.5251
−0.2581

]

,

H(2, 1) =
[

−3.3034 −4.8754
]

, T (2, 1) =
[

−5.0632
]

.

To illustrate the performance of the mixed H2/H∞ con-

trol, a set of input signals are chosen as follows:

ω(k) =







1, for 1 ≤ k ≤ 10,

−1, for 21 ≤ k ≤ 30,

0, otherwise.

Figs. 3 and 4 show the network-induced delays τk and

dk, respectively. The responses of θ and θ̇ are shown in

Figs. 5 and 6. It is observed that the system is stabilized.

By calculation, we have ‖ω‖2 = 4.4721, ‖y‖2 = 2.2307,

which yields

‖y‖2

‖ω‖2
= 0.4988 < γ = 2.

The l2 norm of the impulse response according to Defini-

tion 2 is evaluated as
√
√
√
√

l∑

so=1

τ∑

io=0

d∑

ro=0

α(io,ro)‖E(yso,io,ro
)‖2

2 = 0.2372 < 0.286.
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These results show the effectiveness of the mixed H2/H∞

control method.
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Fig. 3. S-C delay τk .
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Fig. 4. C-A delay dk .
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Fig. 5. Mixed H2/H∞ control: The response of θ.
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Fig. 6. Mixed H2/H∞ control: The response of θ̇.

V. CONCLUSION

This paper proposes the H2 and mixed H2/H∞ con-

trol synthesis methods for NCSs with time delays mod-

eled as Markov chains. The designed two-mode-dependent

controller can reduce the conservativeness. The formulated

closed-loop system is a special jump linear system, which

cannot be converted to the classical MJLS. The H2 and

mixed H2/H∞ control problems are transformed to the

optimization problems in terms of LMIs with nonconvex

constraints. Numerical examples show the advantage of two-

mode-dependent controller and also verify the proposed

methods. It will be interesting to develop the robust H∞

two-mode-dependent control design for networked systems

with model uncertainties.
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