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Abstract— This paper presents a quasi-decentralized non-
linear control methodology for multi-unit nonlinear plants
whose constituent subsystems communicate over a shared,
resource-constrained communication network. The objective
is to stabilize the plant while keeping the communication
requirements to a minimum in order to reduce the unnecessary
utilization of network resources. To this end, an uncertain
nonlinear model of the plant is initially used to design,
for each unit, a stabilizing nonlinear feedback controller
that requires state measurements from the neighboring units
for implementation. To reduce the frequency at which the
measurements are transmitted over the shared network, a copy
of the stable compensated plant model is embedded in each
unit to provide estimates of the states of the neighboring units
when measurements are not available through the network.
The state of the model is then updated at discrete time
instances when communication is re-established. By analyzing
the behavior of the model estimation error between updates,
and exploiting the stability properties of the compensated
model, a sufficient condition for practical stability of the
networked closed-loop plant is obtained in terms of the update
period, the plant-model mismatch and the controller design
parameters. The stability condition can be used to obtain
estimates of the maximum allowable update period and the
size of the achievable residual set. Finally, the implementation
of the networked control structure is demonstrated through
an application to a chemical plant example.

I. INTRODUCTION

Quasi-decentralized control refers to a distributed control

strategy in which most signals used for control are collected

and processed locally within each plant unit (typically

over dedicated networks), while some signals – the total

number of which is kept to a minimum – still need

to be transferred between the plant units and their local

controllers over a shared (possibly wireless) communication

network to account for the interactions between the different

units and minimize the propagation of disturbances and

process upsets. It represents a compromise solution that

aims to overcome the stability and performance limitations

of decentralized control approaches while avoiding, at the

same time, the complexity and lack of flexibility associated

with implementing traditional centralized control structures.

While significant research work has explored the benefits

and limitations of decentralized controllers (e.g., see [1],

[2], [3], [4], [5] and the references therein) and developed

various approaches for overcoming some of their limitations

(e.g., [6], [7], [8]), most of these studies have focused on
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plants described by linear systems. For nonlinear plants, on

the other hand, results on this problem have been more lim-

ited. Examples of recent works include the development of a

passivity-based framework for the analysis and stabilization

of process networks using concepts from thermodynamics

[9], the development of agent-based systems to control

reactor networks [10], and the analysis and control of

integrated process networks using time-scale decomposition

and singular perturbations [11].

One of the key problems in the design of quasi-

decentralized control systems for multi-unit plants is the

integration of communication issues and limitations in the

formulation and solution of the plant-wide control problem.

The significance of this problem stems in part from the

recent and growing interest in the process industries to

augment existing process control systems with low-cost

wireless sensor and actuator networks (WSANs)[12], [13].

The low cost, flexibility and ease of installation of WSANs

mean that more devices could be deployed and more process

variables and devices could be monitored and controlled

than is cost-effective with solely wired networks. The

availability of more sensor data, more information about

the plant and more intercommunication between plant units

open up new avenues not only for improving the existing

control quality but also for pursuing goals that cannot

be attained otherwise, including proactive fault-tolerance

and real-time plant reconfiguration to accommodate pro-

jected market demand changes [14]. However, unlike dedi-

cated networks, wireless networks are typically resource-

constrained due to limited processing and computational

capabilities or due to limited power when the WSAN is

deployed in harsh environments where continuous power

supply is not feasible and the wireless devises have to rely

on battery power instead [12]. In this light, the design of a

quasi-decentralized control strategy that enforces the desired

closed-loop objectives with minimal cross communication

between the component subsystems is an appealing goal

since it helps conserve network resources and prolong the

service life of the network, which are key to enabling

the deployment of wireless sensing and control systems in

large-scale industrial plants.

In an effort to address the resource constraint problem,

we recently developed in [15] a quasi-decentralized model-

based networked control framework for multi-unit plants

modeled by linear systems of differential equations. A

key idea was to reduce the cross communication between
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the plant units by including within each control system

a set of linear models that approximate the dynamics of

the neighboring units when direct measurements are not

transmitted over the plant-wide network. By exploiting

the linear structure of the plant and the controllers, both

necessary and sufficient conditions for closed-loop stabil-

ity were obtained leading to an exact characterization of

the minimum allowable communication rate. When this

architecture is implemented on a nonlinear plant, however,

the update period predicted by linearization-based analysis

can guarantee stability only for sufficiently small initial

conditions. Stabilization from large initial conditions (if

at all feasible) requires increasing the frequency of mea-

surement communication (i.e., reducing the update period)

substantially which leads to additional network utilization.

Since many chemical processes are characterized by strong

nonlinear dynamics and need to operated over wide regions

of the operating space for economic reasons, it is important

to develop networked control approaches that account ex-

plicitly for the nonlinearities – both in the control law and

in the communication logic designs – and that provide an

explicit characterization of the minimum allowable cross-

communication frequency in the nonlinear plant.

Motivated by these considerations, we develop in this

work a quasi-decentralized nonlinear control structure for

multi-unit nonlinear plants whose constituent subsystems

communicate over a shared, resource-constrained communi-

cation network. The objective is to stabilize the plant while

keeping the communication requirements to a minimum

in order to reduce the unnecessary utilization of network

resources. The rest of the paper is organized as follows.

Following some preliminaries in Section II, the quasi-

decentralized control structure is presented in Section III.

The structure consists of a family of nonlinear feedback

controllers together with a stable model of the closed-loop

plant that is embedded in each unit to provide estimates

of the states of the neighboring units when communication

is suspended over the network. The state of the model is

then updated at discrete time instances when communi-

cation is re-established. The networked closed-loop plant

is then analyzed in Section IV and a sufficient condition

for closed-loop stability in terms of the update period is

obtained. Finally, the main results are illustrated through

an application to a chemical plant example in Section V

and concluding remarks are given in Section VI.

II. PRELIMINARIES AND PROBLEM FORMULATION

We consider a large-scale distributed plant composed of

n interconnected processing units, each of which is modeled

by a continuous-time nonlinear system, and represented by

the following state-space description:

ẋ1 = f1(x1, x2, · · · , xn) + g1(u1)
ẋ2 = f2(x1, x2, · · · , xn) + g2(u2)

...

ẋn = fn(x1, x2, · · · , xn) + gn(un)

(1)

where xi := [x
(1)
i x

(2)
i · · · x

(pi)
i ]T ∈ IRpi denotes the

vector of process state variables associated with the i-th

processing unit, ui := [u
(1)
i u

(2)
i · · · u

(qi)
i ]T ∈ IRqi denotes

the vector of manipulated inputs associated with the i-
th processing unit, xT denotes the transpose of a column

vector x, fi(·) and gi(·) are sufficiently smooth nonlinear

functions. Note from Eq.1 that each processing unit can

in general be connected to all the other units in the plant.

Note also that even though each subsystem is referred to

as a unit for simplicity, each subsystem can comprise a

collection of unit operations depending on how the plant is

decomposed. The overall objective is to design a distributed,

networked control strategy that stabilizes the individual

units (and the overall plant) at or near the origin, and

accounts simultaneously for the constrained resources of the

plant-wide communication network. To illustrate the main

ideas and simplify the presentation of our results, we will

focus in this work on the full state feedback problem where

the states of all the units are available as measurements.

Extensions to the output feedback case are possible and the

subject of other research work.

III. MODEL-BASED NETWORKED CONTROL STRUCTURE

A. Model-based controller synthesis

To realize the desired quasi-decentralized networked con-

trol structure, the first step is to synthesize for each unit

an appropriate nonlinear controller that enforces closed-

loop stability in the absence of communication limitations

(i.e., when the sensors of each unit transmit their data

continuously using ideal point-to-point connections to the

control systems of the other units). To this end, we will

consider that a (possibly uncertain) model of the following

form is available for each unit for controller synthesis:

˙̂xi = fi(x̂1, x̂2, · · · , x̂n) + gi(ûi)+wi(x̂1, x̂2, · · · , x̂n) (2)

where x̂i is the state of the model, and wi(·) is a sufficiently

smooth nonlinear function that represents the plant-model

mismatch. The plant model is then given by:

˙̂x = F (x̂) + G(û) + W (x̂) (3)

where x̂ = [x̂T
1 · · · x̂T

n ]T , û = [ûT
1 · · · ûT

n ]T ,

F (·) = [fT
1 (·) · · · fT

n (·)]T , G(·) = [gT
1 (·) · · · gT

n (·)]T

and W (·) = [wT
1 (·) · · · wT

n (·)]T . Depending on the

particular structure of the model, a number of nonlinear

controller synthesis techniques can be used to design the

desired controllers [16]. Examples include Lyapunov-based

control methods, geometric control approaches as well

as optimization-based control methods. In the interest of

generality, we will not limit the discussion to a particular

synthesis method. Instead, we will consider that an appro-

priate controller has already been designed for each unit.

This is formalized in the following assumption.

Assumption 1:For each i ∈ {1, 2, · · · , n}, there exists a

nonlinear feedback control law of the general form:

ûi = ki(x̂1, x̂2, · · · , x̂n) (4)
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such that the origin of the closed-loop plant model

˙̂x = F (x̂) + G(K(x̂)) + W (x̂), (5)

where K(·) = [kT
1 (·) kT

2 (·) · · · kT
n (·)]T , satisfies:

‖ x̂(t) ‖ ≤ α‖ x̂(t0) ‖e
−β(t−t0) (6)

for some α ≥ 1, β > 0, for all x̂(t0) ∈ Ω, for some compact

set Ω ⊂ IRm, m =
∑n

i=1 pi.

Remark 1: Note that in general the model uncertainty can

be non-vanishing in the sense that the plant and the model

may not share the same equilibrium point. In this case,

when the above model-based controller is implemented on

the actual plant, asymptotic convergence to the origin will

not be possible. Instead, practical stability can be achieved

where the controller can be designed to force the states of

the closed-loop plant to converge in finite-time to a small

neighborhood of the origin (terminal or residual set) whose

size can be made arbitrarily small by appropriate selection

of the controller.

Remark 2: The requirement that the closed-loop model of

the plant be exponentially stable will be used in Section

IV to facilitate the analysis of the networked closed-loop

system and allow the derivation of an explicit bound on

the cross communication frequency between the plant units

(see the proof of Theorem 1). However, this requirement is

not necessary per se and can be relaxed to allow the use

of feedback controllers that enforce asymptotic stability or

even bounded stability, as long as the controller synthesis

leads to an explicit time-varying bound on the evolution of

the closed-loop plant model state that can be used in lieu

of Eq.6.

B. Quasi-decentralized implementation over networks

The implementation of each control law in Eq.4 on the

nonlinear plant requires the availability of state measure-

ments from both the local subsystem being controlled and

the units that are connected to it. Unlike the local measure-

ments which are available continuously through a dedicated

network, the measurements from the neighboring units are

available only through the shared plant-wide network whose

resources are to be conserved. To reduce the transfer of

information between the local control systems as much as

possible without sacrificing stability, a dynamic model of

the plant is included in the local control system of each

unit to provide it with an estimate of the evolution of

the states of its neighboring units when measurements are

not sent over the network. The use of a model allows the

sensors of the neighboring units to send their data at discrete

time instants since the model can provide an approximation

of the plant’s dynamics. “Feedforward” from one unit to

another is performed by updating the state of each model

using the actual states of the corresponding unit provided

by its sensors at discrete time instances.

Under this architecture, the local control law for each

unit is implemented as follows:

ui(t) =ki(x̂1(t), · · · , x̂i−1(t), xi(t), x̂i+1(t), · · · , x̂n(t))
, i = 1, 2, · · · , n

˙̂xj(t) =fj(x̂1(t), x̂2(t), · · · , x̂n(t)) + gj(ûj(t))
+wj(x̂1(t), x̂2(t), · · · , x̂n(t))

ûj(t) =kj(x̂1(t), x̂2(t), · · · , x̂n(t)), t ∈ (tk, tk+1)
x̂j(tk)=xj(tk), j = 1, · · · , n, k = 0, 1, 2, · · · (7)

where x̂j is an estimate of xj . Note that the models

used by the i-th controller to recreate the behavior of the

neighboring units are the same as the models used for the

controller synthesis in those units. Note also that, unlike

the setup in the linear quasi-decentralized control structure

presented in [15], we embed in each control system a

dynamic model of the whole plant (instead of models of the

neighboring units only) and that in between two consecutive

transmission times the evolution of the model states is

independent of the plant states (notice, for example, that

the j-th model embedded in unit i uses x̂i instead of xi

to generate its forecasts). Decoupling the evolution of the

model states from the plant states ensures that in between

any two consecutive transmission times the closed-loop

plant always receives stable and convergent inputs (recall

from Assumption 1 that the controllers are designed to

ensure that the compensated plant model is stable).

IV. CLOSED-LOOP STABILITY ANALYSIS

A key parameter in the analysis of the control law of

Eq.7 is the update period h := tk+1− tk, which determines

the frequency at which a given unit receives measurements

from the other units through the network to update the

corresponding model estimates. To simplify the analysis,

we consider the case when the update periods are constant

and the same for all the units, i.e., we require that all

units communicate their measurements concurrently every

h seconds (extensions to the case of time-varying updates

are the subject of other work).

A. Formulation of the networked closed-loop plant

To formulate the networked closed-loop system, we de-

fine the following estimation errors ej = xj − x̂j , j =
1, 2, · · · , n, where ej represents the difference between the

state of the j-th unit and the state of its model embedded in

the local control systems of its neighbors (note that all units

share the same model). Introducing the augmented vectors

x := [xT
1 xT

2 · · · xT
n ]T , e := [eT

1 eT
2 · · · eT

n ]T , it can be

shown that the overall closed-loop plant of Eq.1 subject to

the control and update laws of Eq.7 can be formulated as a

switched system of the following form:

ẋ(t) = F(x(t), e(t))

ė(t) = F̃(x(t), e(t)), t ∈ (tk, tk+1)
e(tk) = 0, k = 0, 1, 2, · · · , h = tk+1 − tk

(8)

where the process states evolve continuously in time and

the model estimation errors are reset to zero at each

transmission instance since the state of each model in each

unit is updated every h seconds. Referring to Eq.8, F(·)
and F̃(·) are nonlinear functions that depend on the plant

dynamics, the models, and the control laws of the different
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units. The explicit forms of these matrices can be obtained

by substituting Eq.7 into Eq.1 and are omitted for brevity.

B. Estimating the maximum allowable update periods

Substituting the controller of Eq.7 into the plant of Eq.1,

the closed-loop dynamics of the i-th unit are given by:

ẋi = fi(x1, · · · , xn) + mi(x̂1, · · · , x̂i−1, xi, x̂i+1, · · · , x̂n)

where mi := gi(ki(x̂1, · · · , x̂i−1, xi, x̂i+1, · · · , x̂n)) and x̂j

is given by:
˙̂xj = fj(x̂1, · · · , x̂n) + mj(x̂1, · · · , x̂n) + wj(x̂1, · · · , x̂n)

Since the functions fi(·), wi(·) and mi(·), i = 1, 2, · · · , n,

are sufficiently smooth, it follows from their local Lipschitz

properties that there exist positive real constants Lfi
, Lwi

and Lmi
such that the following estimates hold for all x, y ∈

Ω where Ω (introduced in Assumption 1) is a ball centered

around the origin:
‖ fi(x) − fi(y) ‖ ≤ Lfi

‖ x − y ‖
‖wi(x) − wi(y) ‖ ≤ Lwi

‖ x − y ‖
‖mi(x, s) − mi(y, s) ‖ ≤ Lmi

‖ x − y ‖

(9)

Note that if the plant model is accurate, the constants

Lwi
, i = 1, 2, · · · , n, will be small. The following theorem

provides a sufficient condition for stability of the networked

closed-loop plant in terms of the update period, the model

uncertainty and the controller design parameters.

Theorem 1: Consider the closed-loop plant of Eq.1 subject

to the control and update laws of Eq.7, and the compensated

plant model of Eq.5 for which Assumption 1 holds, with

x(t0) = x̂(t0) ∈ Ω. Then, if

F1(h) := 1 − α

(
e−βh + (eLeh − e−βh)

Lw

β + Le

)
> 0 (10)

the states of the networked closed-loop system are bounded

and satisfy

‖x(t−k+1) ‖ < ‖x(tk) ‖ for all ‖x(tk) ‖ > r(h) (11)

for k = 0, 1, 2, · · ·, where r(h) = F2(h)/F1(h),

F2(h) =
L0

Le

(eLeh − 1) (12)

and Le =
∑n

i=1(Lfi
+ Lmi

), Lw =
∑n

i=1 Lwi
, and

L0 =
∑n

i=1 ‖wi(0) ‖.

Proof: We begin by analyzing the behavior of the norm of

the closed-loop plant state in between consecutive model

updates. The stability of the closed-loop system can be

established if ‖x(t) ‖ decreases such that ‖x(tk) ‖ >
‖x(t−k+1) ‖, where tk and tk+1 are update times with

tk+1 − tk = h. From the triangular inequality, we have

that for any period of time [tk, tk+1):

‖x(t) ‖ ≤ ‖ x̂(t) ‖ + ‖ e(t) ‖ (13)

and therefore ‖x(t) ‖ will decrease over the period

[tk, tk+1) if ‖ x̂(t) ‖+ ‖ e(t) ‖ decreases. We now establish

a bound on the norm of the error as a function of the update

period h. To this end, we have from the definition of the

estimation error that:

ėi = ẋi− ˙̂xi = fi(x)−fi(x̂)−ωi(x̂)+mi(x̄i, xi)−mi(x̄i, x̂i)

where x̄i is a vector made up of all x̂j , j 6= i. Solving for

ei, we have that ∀t ∈ [tk, tk+1):

ei(t)= ei(tk) +

∫ t

tk

(fi(x(s)) − fi(x̂(s)) − wi(x̂(s))) ds

+

∫ t

tk

(mi(x̄i(s), xi(s)) − mi(x̄i(s), x̂i(s))) ds

Taking the norm of both sides and using the fact that

ei(tk) = 0 (since at tk the plant model state is updated

and the error is reset to zero), we have that ∀t ∈ [tk, tk+1):

‖ ei(t) ‖≤

∫ t

tk

‖ fi(x(s)) − fi(x̂(s)) ‖ds +

∫ t

tk

‖wi(x̂(s)) ‖ds

+

∫ t

tk

‖mi(x̄i(s), xi(s)) − mi(x̄i(s), x̂i(s)) ‖ds

(14)

Substituting the estimates of Eq.9 into Eq.14 and noting

that ‖wi(x) − wi(0) ‖ ≤ Lwi
‖ x ‖ =⇒ ‖wi(x) ‖ ≤

Lwi
‖ x ‖ + ‖wi(0) ‖, the following bound can be obtained

∀t ∈ [tk, tk+1):

‖ ei(t) ‖≤

∫ t

tk

(Lfi
‖ e(s) ‖ + Lwi

‖ x̂(s) ‖ + ‖wi(0) ‖) ds

+

∫ t

tk

Lmi
‖ ei(s) ‖ds

Using the fact that ‖ ei ‖ ≤ ‖ e ‖, i = 1, 2, · · · , n and

‖ e ‖ ≤
∑n

i=1 ‖ ei ‖, it can then be verified that ∀t ∈
[tk, tk+1):

‖ e(t) ‖≤Le

∫ t

tk

‖ e(s) ‖ds + Lw

∫ t

tk

‖ x̂(s) ‖ds + L0(t − tk)

where Le =
∑n

i=1(Lfi
+ Lmi

), Lw =
∑n

i=1 Lwi
, and

L0 =
∑n

i=1 ‖wi(0) ‖. Substituting the bound of Eq.6 for

‖ x̂(s) ‖ into the above equation and applying the Gronwall-

Bellman inequality [17] yield:

‖ e(t) ‖≤‖ x̂(tk) ‖
αLw

β + Le

(eLe(t−tk) − e−β(t−tk))

+
L0

Le

(eLe(t−tk) − 1), ∀t ∈ [tk, tk+1)

(15)

From Eq.15 we note that the error signal will be zero if the

update period h = tk+1 − tk is zero and also if the model

and the plant dynamics are the same (L0 = Lw = 0). With

this bound on the estimation error and the bound on the state

of the model given in Eq.6, we can proceed to calculate a

bound on the plant state using Eq.13, where it can be shown

after some algebraic manipulations that ∀ t ∈ [tk, tk+1):

‖x(t) ‖ ≤ ‖ x̂(tk) ‖(1 − F1(t − tk)) + F2(t − tk) (16)

where F1(·) and F2(·) are given by Eq.10 and Eq.12, re-

spectively. Using the above estimate to calculate ‖x(t−k+1)‖
and noting that ‖ x̂(tk) ‖ = ‖x(tk) ‖, we finally obtain:

‖x(t−k+1) ‖ − ‖x(tk) ‖ ≤ F2(h) − F1(h)‖x(tk) ‖

∀ t ∈ [tk, tk+1). Clearly, if F1(h) > 0 and ‖x(tk) ‖ >
F2(h)/F1(h), then ‖x(t−k+1) ‖ − ‖x(tk) ‖ < 0 and Eq.11

holds. This completes the proof of the theorem.

Remark 3: Theorem 1 establishes that if the update period

is chosen such that Eq.10 is satisfied, the norm of the net-

worked closed-loop plant state is guaranteed to decrease at

successive update times as long as the closed-loop trajectory

is outside some terminal neighborhood of the origin (the
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size of which is fixed by the choice of the update period).

This implies that the closed-loop state is guaranteed to

converge in finite-time to the terminal set where it remains

confined for all future times. Note from Eq.16 that in

between consecutive model updates the closed-loop plant

state always remains bounded and can grow only a certain

amount (since t − tk < h), and this growth is independent

of k.

Remark 4: The expressions in Eq.10 and Eq.12 capture

intuitively the dependence of the size of the terminal set on

the update period (h), the plant-model mismatch (L0, Lw)

and the controller design parameters (α, β). For example, as

h increases, the size of the terminal set increases. Similarly,

a larger plant-model mismatch results in a larger terminal

set. Note that in the special case when the model uncertainty

is vanishing (i.e., wi(0) = 0 and L0 = 0), we have F2(h) =
0 and the terminal set collapses to the origin. In this case,

and as long as h is chosen such that F1(h) > 0, the

origin of the networked closed-loop plant is guaranteed to

be asymptotically stable.

V. SIMULATION STUDY: APPLICATION TO CHEMICAL

REACTORS WITH RECYCLE

We consider a plant composed of two cascaded non-

isothermal continuous stirred-tank reactors (CSTRs) with

recycle. The output of CSTR 2 is passed through a separator

that removes the products and recycles the unreacted mate-

rial to CSTR 1. The reactant species A is consumed in each

reactor by three parallel irreversible exothermic reactions;

and a jacket is used to remove/provide heat to each reactor.

Under standard modeling assumptions, a plant model of the

following form can be derived:

Ṫ1 =
F0

V1

(T0 − T1) +
Fr

V1

(T2 − T1) +

3∑

i=1

Gi(T1)CA1 +
Q1

ρcpV1

ĊA1 =
F0

V1

(CA0 − CA1) +
Fr

V1

(CA2 − CA1) −

3∑

i=1

Ri(T1)CA1

Ṫ2 =
F1

V2

(T1 − T2) +
F3

V2

(T03 − T2) +

3∑

i=1

Gi(T2)CA2 +
Q2

ρcpV2

ĊA2 =
F1

V2

(CA1 − CA2) +
F3

V2

(CA03 − CA2) −

3∑

i=1

Ri(T2)CA2

where Ri(Tj) = ki0 exp
(

−Ei

RTj

)
, Gi(Tj) = (−∆Hi)

ρcp
Ri(Tj),

for j = 1, 2. Tj , CAj , Qj , Fj , and Vj denote the tempera-

ture, reactant concentration, rate of heat input, outlet flow

rate and volume of the j-th reactor, respectively. F0 and F3

denote the flow rates of fresh feed streams to CSTR 1 and 2,

respectively, CA0 and CA03 are the molar concentrations of

A in the fresh feed streams, T0 and T03 are the temperatures

of those streams, and Fr is the flow rate of the recycle

stream. ∆Hi, ki, Ei, i = 1, 2, 3, denote the enthalpies,

pre–exponential constants and activation energies of the

three reactions, respectively, cp and ρ denote the heat

capacity and density of fluid in the reactor. Using typical

values for the process parameters (see [15]), the plant with

Q1 = Q2 = 0, CA0 = Cs
A0, CA03 = Cs

A03 and recycle

rate r = 0.5, has three steady states: two locally asymp-

totically stable and one unstable at (T s
1 , Cs

A1, T
s
2 , Cs

A2) =
(457.9 K, 1.77 kmol/m3, 415.5 K, 1.75 kmol/m3). The

control objective is to stabilize the plant at the (open-loop)

unstable steady-state. Operation at this point is typically

sought to avoid high temperatures, while simultaneously

achieving reasonable conversion. The manipulated variables

for the first reactor are chosen to be Q1 and CA0, while

Q2 and CA03 are used as manipulated variables for the

second reactor. The control objective is to be achieved with

minimal data exchange between the local control systems

of the reactors over the communication network.

Following the methodology proposed in Section III, the

plant is initially cast in the following form:

ẋi = fi(x1, x2) + Giui, i = 1, 2

where xi and ui are the (dimensionless) state and manip-

ulated input vectors for the i-th unit, respectively, fi(·) is

a sufficiently smooth nonlinear vector function and Gi is

a constant matrix. To synthesize an appropriate feedback

controller for each unit, we consider the following uncertain

model of the plant:

˙̂xi = fi(x̂1, x̂2) + Giûi + ωi(x̂1, x̂2)δ1

where δ1 represents parametric uncertainty in the enthalpy

of the first reaction (δ1 = (∆Hm
1 − ∆H1)/∆H1, where

∆Hm
1 is a nominal value used in the models). It can be

verified that ωi(0, 0) 6= 0 and therefore the uncertainty is

non-vanishing. As an example of controllers that exponen-

tially stabilize the above plant model, we consider:

ûi=−Gi
−1(fi(x̂1, x̂2) + λix̂i + ωi(x̂1, x̂2)δ1), i = 1, 2 (17)

where λi > 0 is a controller design parameter that places the

closed-loop eigenvalue of the i-th model at −λi. Note that

the above control law is applied only to the plant model. The

quasi-decentralized controllers implemented on the actual

plant take the form:

ui = −Gi
−1 (fi(xi, x̂j) + λixi + ωi(xi, x̂j)δ1), j 6= i (18)

where x̂j is an estimate of xj provided by the model of

Eqs.17-18 which is embedded in both control systems. The

model estimate is used by the local controller so long

as no measurements are transmitted from the neighboring

unit, but is updated using the true measurement whenever

it becomes available from the network. Our objective is

to determine appropriate update periods that stabilize the

networked closed-loop plant near the desired steady-state.

To apply the result of Theorem 1, the following Lipschitz

constants for the plant were calculated, Lf1
= 289.4 and

Lf2
= 94.3 (other parameters, such as Lmi

, Lw, L0,

α and β, can also be calculated once the plant model

and controllers are fixed). Then F1(h) and F2(h) can be

calculated to characterize the admissible update periods h
as well as the achievable terminal set.

Figs.1(a)-(b) are contour plots that depict the dependence

of F1(h) and r(h) on both the size of the uncertainty δ1 and

the update period. In plot (a), the area enclosed by the zero

contour lines represents an estimate of the region within
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Fig. 1. Dependence of F1(h) (left) and r(h) := F2(h)/F1(h) (right)
on the plant-model mismatch for various update periods.

which the closed-loop nonlinear plant can be stabilized,

while in plot (b) the value of each contour line represents an

upper bound on the size of the terminal set that the closed-

loop plant state will converge to when the values for δ1 and

h are chosen within the zone enclosed by that contour line.

In obtaining this plot, λ1 and λ2 were selected by placing

the eigenvalues of the closed-loop models of both reactors

at −10. As expected, for a given terminal set, the range of

feasible update periods shrinks as the plant-model mismatch

increases. Also, for a given plant-model mismatch, the size

of the terminal sets grows as the update period is increased.

These trends are also depicted in Figs.1(c)-(d). For example,

when δ1 = 0.01 (solid line), a sufficient condition for

stability is to choose h = 0.002 hr (F1(0.002) > 0); and in

this case the plant state will converge to a terminal set with

radius less than F2(0.002)/F1(0.002) = 0.0424. This is

further confirmed by the closed-loop state and manipulated

profiles in Fig.2 (solid), where the closed-loop plant is stable

and converges near the desired steady-state for h = 0.002
hr and limt→∞ ‖x(t) ‖ = 0.0049 < 0.0424 (for brevity,

only the temperature and rate of heat input profiles for

CSTR 1 are shown). Note that since the stability conditions

of Theorem 1 are only sufficient, it is possible to achieve

the same steady-state offset with larger update periods. The

dashed profiles in Fig.2 show that the steady-state offset

and closed-loop performance deteriorate substantially as the

update period is increased to h = 0.23.

VI. CONCLUDING REMARKS

In this work, we presented a methodology for the design

of a quasi-decentralized networked control system for plants

with interconnected nonlinear subsystems that communicate

with one another through a resource-constrained (possibly

wireless) communication network. To achieve closed-loop

stability with minimal cross-communication between the

units, a model of the plant was embedded in each control

system to recreate the states of the neighboring units when
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Fig. 2. Closed-loop state and manipulated input profiles for CSTR 1
under the model-based nonlinear quasi-decentralized control strategy with
model uncertainty of δ1 = 0.01 and different update periods.

measurements are not available. The model was updated at

discrete time instances to compensate for modeling errors.

A sufficient condition for closed-loop stability was obtained

leading to an estimate of the maximum allowable update

period in terms of model uncertainty and controller design

parameters. The results were illustrated using a chemical

plant example.
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