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Abstract— Motivated by the adaptive control problem for
systems with hysteresis, a two-time-scale averaging framework
is presented in this paper for systems involving operators, by
extending the work of Teel and co-workers. The developed
averaging theory is applied to the analysis of a model reference
adaptive inverse control scheme for a system consisting of linear
dynamics preceded by a Prandtl-Ishlinkskii (PI) hysteresis oper-
ator. The fast component of the closed-loop system involves the
coupling of an ordinary differential equation and a hysteresis
operator derived from the PI operator and its inverse, while the
slow component is the parameter update rule. The stability of
the boundary-layer system and that of the average system are
established under suitable conditions, which implies practical
regulation of the parameter error and tracking error under the
adaptive scheme.

I. INTRODUCTION

This paper deals with the analysis of two-time-scale sys-

tems where the fast dynamics involves the coupling of ordi-

nary differential equations (ODEs) and nonlinear operators

(e.g., hysteresis operators). The class of systems studied is

motivated by the adaptive control problem for systems with

hysteresis. Consider a dynamic hysteretic system consisting

of a rate-independent hysteresis operator [1] preceding a

linear plant. A fundamental approach to the control of such

systems is inverse compensation, where an approximate

inverse of the hysteresis operator is used to cancel the effect

of hysteresis, and a feedback controller is then designed to

ensure desired closed-loop behavior [2]. Adaptation can be

introduced when the parameters of the hysteresis operator

and/or the linear dynamics are unknown [2].

In our prior work [3], [4], slow adaptation has been

proposed as a potential mechanism to overcome over-

parametrization when uncertainties exist in both linear dy-

namics and the hysteresis operator. The closed-loop system

under slow adaptation demonstrates multi-time-scale dynam-

ics. The fast dynamics involves the states of the plant and

the filters, described by ODEs, and the state of a hysteresis

operator, coupled in a feedback manner. The slow dynamics

involves the parameters being updated. While averaging

seems to be a natural tool to analyze the system under

consideration, to our best knowledge, existing work does

not address the aforementioned class of systems. Classical

two-time-scale averaging assumes that the fast dynamics is

dominated by a linear term and uses the explicit expression

of the integral manifold to obtain the average system [5]. In
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our earlier work [4], linearization was adopted to remove

the hysteresis operator from the picture. While the latter

allowed the use of results from [5], it is limited to local

analysis. Teel et al. developed a general framework for

analyzing two-time-scale systems [6]; however, the latter still

cannot accommodate hysteresis operators in the dynamics.

Averaging of hysteretic systems has been considered by

Pokrovskii et al. [7], but the fast dynamics therein involves

the hysteresis operator only.

In this paper we first present an averaging framework that

is capable of handling fast dynamics involving both ODEs

and hysteresis operators, by extending the work in [6]. The

properties of the closed-loop system under model reference

adaptive inverse control are then analyzed, in order to verify

the major assumptions in the averaging theory. For this

purpose, the Prandtl-Ishlinkskii (PI) operator [1] is adopted

for the hysteresis model. We establish that, under suitable

conditions, adaptive inverse control with slow adaptation

can achieve ultimate boundedness for both the parameter

error and the tracking error, where the bound can be made

arbitrarily small by making the adaptation gain sufficiently

small.

II. AVERAGING OF TWO-TIME-SCALE SYSTEMS

INVOLVING OPERATORS

Consider the system

ẋ = ε f (x,ξ ,w,η)

ξ̇ = A(x)ξ + g(x,w,η)
α(t) = φ(x(t),ξ (t),η(t))
w(t) = W [α(·);w(0);x(t)](t)

(1)

where x ∈ R
n, ξ ∈ R

m1 , w ∈ R
m2 , and ε is a small positive

parameter. The functions f , g, and φ are locally Lipschitz

and η(t) is a bounded, measurable function of t for t ≥ 0. The

function w is the output of an operator W and is determined

by the initial condition w(0), the current state x(t) and the

past history of α , that is, α(τ) for τ ∈ [0, t]. Because of the

smallness of ε , x(t) is slowly varying relative to (ξ (t),w(t)).
We will refer to x as the slow state and z = (ξ ,w) ∈ R

m3 as

the fast state, where m3 = m1 +m2.1 The system is assumed

to have at least one solution, locally in time, for each

initial condition (x(0),z(0)) and each η(t). Furthermore, we

assume that f (x,0,w,η) = 0 and g(0,w,η)= 0 so that (x(t)≡
0, ξ (t)≡ 0) is a solution of (1), with the corresponding w(t)
determined by W driven by α(t)= φ(0,0,η(t)) and x(t) = 0.

1We write z = (ξ ,w) in place of z = [ξT ,wT ]T . Similar notation will be
used throughout the paper.
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In analyzing two-time-scale systems such as (1), it is usual

to define boundary layer and average systems that capture

the behavior of the fast and slow states, respectively. We

follow closely the definitions of [6], which presents a general

framework for analyzing two-time-scale systems. We note,

however, that the class of systems in [6] does not allow for

an operator of the form in (1). The boundary-layer system

is obtained by setting ε = 0 in (1), which freezes the slow

state x at its initial value and yields

ẋ = 0

ξ̇ = A(x)ξ + g(x,w,η)
α(t) = φ(x,ξ (t),η(t))
w(t) = W [α(·);w(0);x](t)

(2)

We denote the solution of (2) by xbl(t), ξbl(t) and wbl(t) and

set zbl = (ξbl,wbl). Let Br denote the closed ball {x : ‖x‖≤ r}
for some r > 0.

Assumption 1: There exist continuous functions h 1(t,x)
and h2(t,x), differentiable in t and bounded on compact sets

of x for all t ≥ 0, that satisfy

∂h1
∂ t

= A(x)h1 + g(x,h2(t,x),η(t))
αh(t,x) = φ(x,h1(t,x),η(t))
h2(t,x) = W [αh(·,x);h2(0,x);x](t)

(3)

for all t ≥ 0, x ∈ Bb, for some b > 0. Set h = (h1,h2).
Because g(0,w,η) = 0, Assumption 1 implies h1(t,0)≡ 0.

Given positive constants r and ρ , define the sets Σρ(t,x) and

Ωr×ρ(t) by

Σρ(t,x) = {z : ‖z−h(t,x)‖ ≤ ρ}

Ωr×ρ(t) = {(x,z) : ‖x‖ ≤ r and ‖z−h(t,x)‖ ≤ ρ}

The set Ωr×ρ(t) is compact for all t ≥ 0.

Assumption 2: There exists a class K L function βf such

that for each x ∈ Bb and for all initial conditions zbl(0) ∈
Σc(0,x), for some c > 0, the solutions of the boundary-layer

system (2) satisfy

‖zbl(t)−h(t,x)‖ ≤ βf(‖zbl(0)−h(0,x)‖,t), ∀ t ≥ 0 (4)

Assumption 1 states that the boundary-layer system (2) has

z = h(t,x) as an integral manifold. Assumption 2 confirms

asymptotic stability of the manifold.

Assumption 3: The limit

fav(x) = lim
T→∞

1

T

∫ t0+T

t0

f (x,h1(t,x),h2(t,x),η(t)) dt (5)

exists and the convergence to the limit is uniform with

respect to (x,t0) for all x ∈ Bb and t0 ≥ 0.

The average system is defined by

ẋ = ε fav(x) (6)

and we denote its solution by xav(t). We assume that

fav is locally Lipschitz. We note that fav(0) = 0 because

f (x,0,w,η) = 0 and h1(t,0) = 0.

Assumption 4: There exists a class K L function βs such

that for all initial conditions xav(0) ∈ Ba, the solutions of the

average system (6) satisfy

‖xav(t)‖ ≤ βs(‖xav(0)‖,εt), ∀ t ≥ 0 (7)

Assumption 5: There exists a positive constant σ such that

the constants a and b in Assumptions 1 to 4 satisfy b ≥
βs(a,0)+ σ .

Let d ≥ βf(c,0)+σ . Assumptions 2, 4, 5 and the definition

of d ensure that for each xav(0) ∈ Ba, the solution xav(t) of

the average system (6) will be in the interior of Bb, and

for each x ∈ Bb, and zbl(0) ∈ Σc(0,x), the solution of the

boundary-layer system (2) will be in the interior of Σ d(t,x).
In the absence of the operator W , the local Lipschitz

property of f and h ensures continuous dependence of

the solution of (1) on initial conditions and right-hand-

side functions. The following assumption requires the same

property in the presence of W . In particular, the assumption

requires the fast state z(t) to depend continuously on the

initial state z(0) and the slow state x(t), which is viewed as

input to the fast equations.

Assumption 6: For each T > 0, there exist positive con-

stants K1 and K2 such that for all (x(0),z(0)) ∈ Ωa×c(0) and

(xbl(0),zbl(0)) ∈ Ωa×c(0), the solutions of (1) and (2) satisfy

the inequality

‖z(t)− zbl(t)‖ ≤ K1‖z(0)− zbl(0)‖+ K2 sup
τ∈[0,t]

‖x(τ)− xbl(0)‖

(8)

for all t ∈ [0,T ].
Proposition 2.1: Let Assumptions 1 to 6 hold and take

xav(0) = xbl(0) = x(0) and zbl(0) = z(0). Then there exists

T ∗ > 0 so that for each T ≥ T ∗ and δ > 0, there exists ε ∗ >
0 such that for each ε ∈ (0,ε ∗] and each initial condition

(x(0),z(0)) ∈ Ωa×c(0),

‖z(t)− zbl(t)‖ ≤ δ , ∀ t ∈ [0,T ] (9)

(x(t),z(t)) ∈ Ωb×c(t), ∀ t ∈ [T ∗,T ] (10)

‖x(t)− xav(t)‖ ≤ δ , ∀ t ∈ [0,T/ε] (11)

and

x(t) ∈ Ba, ∀ t ∈ [T ∗/ε,T/ε] (12)

Proposition 2.2: Under Assumptions 1 to 6, for each δ >
0 there exists ε∗ > 0 such that, for all ε ∈ (0,ε ∗] and all

(x(0),z(0)) ∈ Ωa×c(0), the solutions of (1) exist and satisfy

the following two inequalities for all t ≥ 0,

‖x(t)‖ ≤ βs(‖x(0)‖,t)+ δ (13)

‖z(t)−h(t,x(t))‖ ≤ βf(‖z(0)−h(0,x(0))‖, t)+ δ (14)

Inequality (13) shows that x(t) is ultimately bounded by

δ , which can be made arbitrarily small by choosing ε small

enough. Inequality (14) shows that the deviation of z from

the slow manifold h(t,x) is also ultimately bounded by δ .

Noting that h1(t,0) = 0, we see that ξ (t) is also ultimately

bounded by a constant that can be made arbitrarily small by

choosing ε small enough.
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With the help of Assumption 6, the proof of Proposi-

tions 2.1 and 2.2 follows closely the argument of [6] and

it will be omitted here due to space limitation.

III. PREISACH-LIKE HYSTERESIS OPERATORS AND

THEIR INVERSION

In this paper we consider Preisach-like operators for the

hysteresis model. Preisach-like operators are phenomenolog-

ical models that have proven effective in capturing complex,

hysteretic behaviors in physical systems, such as smart

materials [8]–[10], ferromagnetism, and superconductivity

[11]. A Preisach-like operator consists of weighted super-

position of many (and even a continuum of) basic hysteretic

elements, called hysterons. For example, the hysteron for a

classical Preisach operator is a relay with a pair of thresholds

(β ,α). On the other hand, the hysteron for Prandtl-Ishlinskii

(PI) operator, another Preisach-like operator, is a play (or

backlash) operator Pr, the width of which is characterized

by parameter r. Since the PI operator will be used in later

analysis, it is described in more detail here. For a monotone,

continuous input v on [0,T ], the corresponding output u r of

Pr can be written as, ∀t ∈ [0,T ],

ur(t) = Pr[v;ur(0)](t) = max{min{v(t)+ r,ur(0)},v(t)− r}
(15)

For a general, continuous input v on [0,T ], one can first

divide [0,T ] into subintervals such that v is monotone on

each interval and then apply (15) recursively to evaluate the

output u of Pr. Note that the output ur also represents the

state of the operator Pr, when the latter is considered as a

dynamical system.

Consider a PI operator consisting of m+1 play operators,

characterized by threshold parameters 0 = r0 < r1 < · · · <
rm < ∞. Let W = (W0,W1, · · · ,Wm)T denote the vector of the

states of the play operators. For a continuous input v on

[0,T ], the output u of the PI operator Γ can be defined as,

∀t ∈ [0,T ],

u(t) = Γ[v,W (0)](t) =
m

∑
i=0

θHiPri
[v;Wi(0)](t) (16)

where θH = (θH0,θH1, · · · ,θHm)T ≥ 0 denotes the vector of

weights for the play operators. Later on, we will also

consider the associated vector hysteresis operator, P =
(

Pr0
, · · · ,Prm

)T
, i.e., P captures the evolution of W under

the input v:

W (t) = P[v;W (0)](t) (17)

The inversion of Preisach-like operators has been exten-

sively studied [8], [11]–[13]. For a wide class of Preisach-

like operators that are Lipschitz continuous and piecewise

monotone [14], a fixed-point iteration-type algorithm exists

such that the error between the desired output ud and the

actual output u satisfies |ud − u| ≤ ε , for a given tolerance

ε > 0.

For a PI operator Γ with a finite number of hysterons

with θH0 > 0, the inverse operator Γ−1 can be represented by

another PI operator Γ ′ and thus |ud −u|= 0 can be achieved.

The thresholds {r′i}, weights {θ ′
Hi}, and initial conditions

{W ′
i (0)} for Γ ′ can be obtained from those of Γ through a

continuous transformation [13].

Now suppose that the exact parameters θH for Γ are

unknown. Instead, one has to perform inversion based on

the parameter estimate θ̂H . Equivalently, an operator Γ̂ with

parameter θ̂H is inverted, with its output û = Γ̂[v,W (0)] =
θ̂ T

HW satisfying |û− ud | ≤ ε . Since Γ and Γ̂ have common

input v(·), they share W (·) and hence û− u = θ̃ T
HW , where

θ̃H

△
= θ̂H −θH . This implies that, in the presence of parameter

error,

ud(t)−u(t) = θ̃H(t)TW (t)+ d (18)

where d represents a small, bounded error.

IV. MODEL REFERENCE ADAPTIVE INVERSE CONTROL

SCHEME

A. The Error State Equation

Let G(s) = kp
Zp(s)
Pp(s) , where kp is the high-frequency gain,

Pp(s) and Zp(s) are monic polynomials of degree n and

m, respectively. The plant has state space representation

(Ap,Bp,Cp,0), so that

ẋp = Apxp(t)+ Bpu(t) (19)

y(t) = Cpxp(t)

The goal of the controller design is to make the output

of the plant, y, track the output of the model, y m. The

output of the model is given by ym(t) = Gm(s)[r](t), where

r is a bounded, piecewise continuous reference input and

Gm(s)[r](t) denotes the time-domain output of the transfer

function Gm(s) operating on r.

Assumption 7: The following assumptions are made about

the plant and the model:

– Zp(s) is a stable polynomial;
– The degrees n and m are known;
– kp > 0;
– Gm(s) = 1

Pm(s)
where Pm(s) is a stable polynomial of

degree n∗ = n−m.

Fig. 1 shows the classical model reference control

paradigm [2]. With exact hysteresis cancellation and knowl-

edge of the plant parameters, perfect model following can

be achieved with

u(t) = θ T
1 w1(t)+ θ T

2 w2(t)+ θ20y(t)+ θ3r(t)

where

w1(t)
△
=

a(s)

λ (s)
[u](t), w2(t)

△
=

a(s)

λ (s)
[y](t),

a(s) =
[

1, s, · · · , sn−2
]T

and λ (s) is a stable polynomial

of degree n−1. The parameters θ1 ∈ R
n−1, θ2 ∈R

n−1, θ20 ∈
R and θ3 ∈ R are determined by the matching equation:

θ T
1 a(s)Pp(s)+ [θ T

2 a(s)+ θ20λ (s)]kpZp(s) =

λ (s) [Pp(s)−θ3kpZp(s)Pm(s)]

Now define a controllable canonical pair (Λ,Bλ ) such that

(sI −Λ)−1Bλ =
a(s)

λ (s)
(20)
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Fig. 1. Model reference controller when G(s) is known and an exact inverse
Γ−1 exists.

Using (19) and (20), the state space form of the system with

perfect matching is

ẋm = Amxm + Bmr (21)

ym = Cmxm,

where xm
△
= [xpm,wm1,wm2],

Am
△
=





Ap + Bpθ20Cp Bpθ T
1 Bpθ T

2

Bλ θ20Cp Λ+ Bλ θ T
1 Bλ θ T

2

BλCp 0 Λ



 ,

Bm
△
=





Bpθ3

Bλ θ3

0



 , Cm
△
=

[

Cp 0 0
]

The true parameters are unknown, so

ud(t) = θ̂ T
1 w11 + θ̂ T

2 w2 + θ̂20y(t)+ θ̂3r(t) (22)

is the implemented control, where θ̂k is an estimate of θk

and

w11(t)
△
=

a(s)

λ (s)
[ud](t)

When the parameters of Γ are unknown, the estimated

parameters must be used in the hysteresis inversion. The

following assumption is made for ease of discussion:

Assumption 8: The inversion error ud − u satisfies (18)

with d = 0.

With the control signal ud in (22) and using (18), the

system has the state space representation

ė =

[

Am +
Bmθ̃ T

G Q

θ3

Bm(θ1+θ̃1)
T

θ3

0 Λ

]

e+

[

Bm(θ̃ T
G wm−θ̃ T

HW)
θ3

Bλ (θ̃ T
HW )

]

(23)

where

e =









e1

e2

e3

e4









△
=









xp − xpm

w1 −wm1

w2 −wm2

w11 −w1









, θ̃k = θ̂k −θk

θ̃G

△
=









θ̃3

θ̃20

θ̃1

θ̃2









, wm
△
=









r

Cpxpm

wm1

wm2









, Q
△
=









0 0 0

Cp 0 0

0 I 0

0 0 I









,

I is the identity matrix of suitable dimension, and the dimen-

sions of remaining entries in Q are defined appropriately.

Since wm is determined by r and the reference model Gm

only, it can be treated as an exogenous input.

B. State Evolution of the Preisach-like Operator

In (23), W (t) is the state of the Preisach-like operator Γ
determined by W (0) and the input v to the operator, as in

(17). The input v is in turn obtained through inversion of u d

based on Γ̂:

v(t) = Γ̂−1[ud ,W (0)](t) (24)

Expressing ud (22) in terms of the error state and the

exogenous input, we can write

ud = (θ̃G + θG)T (M1e+ M2wm) (25)

for appropriately defined constant matrices M1 and M2,

where θG = (θ3,θ20,θ1,θ2). Combining (17), (24), and (25),

we have

W (t) = W [ud;W (0); θ̃H(t)](t) (26)

where W
△
= P ◦ Γ̂−1, “◦” denotes the composition of op-

erators, and the explicit dependence of Γ̂−1 on the current

estimate θ̂H of hysteresis parameters is indicated in (26).

C. Adaptation Rule

A gradient algorithm was formally derived in [3]:

˙̂θ = −γGe0Gm

































r

y

w11

w2

γ ′
(

(

a(s)
λ (s) [W

T ]
)T

θ̂1 −W

)

































(27)

where γ ′ = γH

γG
. One can choose γ ′ << 1 to separate the slow

adaptation of the plant and hysteresis parameters into two

time scales. All of the signals required in (27) are available

online.

Eqs. (23), (25), (26), and (27) form a complete description

of the closed-loop system under adaptation, which fits the

class of systems (1), with θ̃ = (θ̃G, θ̃H), e, ud , W , wm, γG

corresponding to x, ξ , α , w, η , ε in (1), respectively.

V. STABILITY OF THE BOUNDARY LAYER SYSTEM

Under slow adaptation, i.e., when γG << 1 in (27), the

closed-loop system will demonstrate a two-time-scale behav-

ior, with the dynamics of (e,W ) at a faster scale than that of

θ̃ . When the slow variable θ̃ is frozen, i.e., γG = 0 in (27),

the boundary layer system is obtained from (23), (25), (26),

which is summarized below for convenience:

ė(t) = A0(θ̃G)e(t)+ B0(θ̃G)wm(t)+ B1θ̃ T
HW (t) (28)

ud(t) = (θ̃G + θG)T (M1e(t)+ M2wm(t)) (29)

W (t) = W [ud(·);W (0); θ̃H ](t) (30)

where

A0(θ̃G) =

[

Am +
Bmθ̃ T

G Q

θ3

Bm(θ1+θ̃1)T

θ3

0 Λ

]

B0(θ̃G) =

[

Bmθ̃ T
G

θ3

0

]

, B1 =

[

−Bm

θ3

Bλ

]

The following assumptions are made:
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Assumption 9: The reference signal r is T−periodic.

Remark 5.1: The results of this paper can be extended to

the case where r is almost periodic.

Assumption 10: The vector hysteresis operator W is as-

sociated with a PI operator, as described in Section III.

Assumption 11: A0(θ̃G) is Hurwitz for every fixed θ̃G in

the domain of interest.

Remark 5.2: Since Am is Hurwitz, Assumption 11 will be

satisfied if ‖θ̃G‖ is sufficiently small.

The goal is to show that for a given θ̃ , for any ini-

tial condition (e(0),W (0)), the solution (e(t),W (t)) of the

system (28) - (30) converges asymptotically to a unique

pair (h1(t, θ̃),h2(t, θ̃ )), where h1 and h2 are periodic in

t. Before we do this, however, we need to show that,

given (e(0),W (0)), there exists a unique solution to (28)

- (30), furthermore, the solution depends continuously on

(e(0),W (0)). The latter can be proven by first establishing

the Lipschitz continuity of the operator W in (30), and

applying the standard contraction argument. The details are

omitted due to the space limitation.

While the continuous dependence of solution to (28) - (30)

on the initial condition is not equivalent to Assumption 6,

one can see that Assumption 6 is reasonable to expect,

considering further the continuous dependence of (28) - (30)

on θ̃ . For convenience of later reference, we rephrase this

assumption:

Assumption 12: Assumption 6 is satisfied when special-

ized to the system (23), (25), (26), and (27).

In order to analyze the stability of periodic solutions to the

system (28) - (30), we view this system as perturbed from

ė = A0e+ B0wm (31)

Because of Assumption 9, wm is a T -periodic exogenous

signal (possibly with exponentially decaying transient due to

the effect of initial condition in (21)). Assumption 11 implies

that the solution to (31), starting from any initial condition

e(0), converge exponentially to a T−periodic function e T .

Since eT is an exponentially stable solution, (31) is globally

T−convergent near eT (·) [15]. The latter property essentially

means that the solution to (31) with small perturbation ξ (t)

ė = A0e+ B0wm + ξ (t)

will be well behaved and stay close to eT .

We will treat (28) as perturbed from (31) by B1θ̃ T
HW (t).

To facilitate the formulation, we express θ̃H as

θ̃H = εθ̃ 0
H

where θ̃ 0
H is the unit vector in the direction of θ̃H , and rewrite

(28) as

ė(t) = A0e(t)+ B0wm(t)+ εθ̃ 0T
H W (t) (32)

The stability analysis for (28) - (30) will be based on

a special contraction property for the operator W . This

property stems from the following characteristic of a play

operator:

Lemma 5.1: Consider a play operator Pr with threshold r.

Let ζ a
0 , ζ b

0 be two arbitrary initial conditions for Pr. Then,

for any continuous input v,

|Pr[v;ζ a
0 ](t)−Pr[v;ζ b

0 ](t)| ≤ |ζ a
0 − ζ b

0 |, ∀t ≥ 0 (33)

Furthermore, for any t > 0,

|Pr[v;ζ a
0 ](t)−Pr[v;ζ b

0 ](t)| = 0, if osc[0, t][v] ≥ 2r (34)

where the oscillation function osc is defined as

osc[t1,t2][v] = sup
t1≤τ,σ≤t2

|v(τ)− v(σ)|

From Lemma 5.1, under a same input v, the distance

between the state trajectories of a play operator Pr starting

from different initial conditions is non-increasing over time,

and it drops to zero once the variation of v exceeds 2r.

Lemma 5.1 can be proved through elementary analysis of Pr.

We will not provide the proof here due to space limitation.

Lemma 5.2: Let W a
0 , W b

0 be two arbitrary initial condi-

tions for the operator W . Then, for any continuous input u d ,

∀t > 0,

|W [ud ;W a
0 ; θ̃H ](t)−W [ud;W b

0 ; θ̃H ](t)| ≤ |W a
0 −Wb

0 | (35)

where | · | denotes any norm in R
m+1. Furthermore, denote

va = Γ̂ ′[ud ;W a
0 ] and vb = Γ̂ ′[ud ;W b

0 ], where Γ̂ ′ represents the

inverse of Γ̂ that is expressed in terms of another PI operator.

Let {ri}
m
i=0 and {r′i}

m
i=0 represent the thresholds for Γ̂ (and

thus Γ) and those for Γ̂ ′, respectively. Suppose ud is such

that, for 0 < t1 < t2,

osc[0,t1][ud ] ≥ 2r′m (36)

osc[t1,t2][va] ≥ 2rm (37)

then

|W [ud;W a
0 ; θ̃H ](t)−W [ud ;W b

0 ; θ̃H ](t)| = 0, ∀t ≥ t2 (38)

Sketch of proof. Recall W = P ◦ Γ̂ ′. Claim (35) follows

directly from (33). Following (36) and Lemma 5.1, the state

of Γ̂ ′ satisfies W ′
a(t)≡W ′

b(t), ∀t ≥ t1, implying va ≡ vb, ∀t ≥
t1. Claim (38) then follows by applying (37) and Lemma 5.1

to P associated with Γ. �

We can now state the main result of this section.

Theorem 5.1: Let Assumptions 7 - 11 hold. Define

u∗d = θ̂G(M1eT + M2wm)

where eT is the periodic solution of (31). For some arbitrary

initial condition W c
0 , define vc = Γ̂ ′[u∗d;W c

0 ]. If

osc[0,T ][u
∗
d] > 2r′m (39)

osc[T,2T ][vc] > 2rm (40)

then there exists ε∗ > 0, such that, ∀ε ∈ (0,ε∗], for an arbi-

trary initial condition (e(0),W (0)), the solution (e(t),W (t))
of the system (32), (29), and (30) converges asymptotically

to a unique periodic solution (h1(t, θ̃ ),h2(t, θ̃)). In particular,

there exists a class K L function βf, such that
∥

∥

∥

∥

e(t)−h1(t, θ̃ )
W (t)−h2(t, θ̃ )

∥

∥

∥

∥

≤ βf

(∥

∥

∥

∥

e(0)−h1(0, θ̃)
W (0)−h2(0, θ̃ )

∥

∥

∥

∥

,t

)

(41)
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Sketch of the proof. For ε > 0, define the shift operator S ε

via

Sε [e(0),W (0)] = (e(2T ),W (2T ))

Using Lemma 5.2, one can show that S ε becomes a con-

traction mapping on an appropriately defined set, following

similar arguments as for Theorem 2.1 in [15]. This implies

that the system under consideration has an asymptotically

stable, 2T−periodic solution. Further analysis can show that

this solution is also T−periodic. �

The following assumption is made for later analysis:

Assumption 13: h1(t, θ̃ ) and h2(t, θ̃ ) are continuously dif-

ferentiable with respect to θ̃ .

VI. STABILITY OF THE AVERAGE AND FULL SYSTEMS

It can be shown that the averaged system is given by

˙̃θav = −γAVG (K(·)KT (·)) θ̃av − γAVG(R(·, θ̃av)) (42)

for some R(t, θ̃ ) of order O(|θ̃ |2). For ease of presentation,

we have let γG = γH = γ . The averaging operator AVG is

defined as, for a T−periodic f ,

AVG( f (·)) =
1

T

∫ T

0
f (τ)dτ, and K(t) =

∂e0

∂ θ̃

∣

∣

∣

∣

0

Note that K(t) can be explicitly evaluated as

K(t) =
Gm(s)

θ3

[

wm
(

a(s)
λ (s)

[W T
∗ ]

)T

θ1 −W∗

]

(43)

where W∗(t) is the periodic solution obtained by feeding the

signal θ T
G M2wm to the operator W characterized by parameter

θH . Note that the periodic solution is unique if

osc[0,T ][θ
T
G M2wm] > 2rm

Assumption 14: Q
△
= AVG(K(·)K(·)T ) is positive definite.

Theorem 6.1: Let Assumptions 7 - 14 hold. There exists

C > 0, such that, if |θ̃av| < C, the average system (42) is

asymptotically stable. In particular,

|θ̃av(t)| ≤ βs(|θ̃av(0)|,γ t) (44)

for some class K L function βs. Furthermore, for any δ >
0, there exists γ∗ > 0 such that, ∀γ ∈ (0,γ ∗], ∀θ̃ satisfying

|θ̃ | < C, ∀(e(0),W (0)), the following holds:

|θ̃(t)| ≤ βs(|θ̃ (0)|,γt)+ δ

∥

∥

∥

∥

e(t)−h1(t, θ̃ (t))
W (t)−h2(t, θ̃ (t))

∣

∣

∣

∣

≤

βf

(∥

∥

∥

∥

e(0)−h1(0, θ̃ (0))
W (0)−h2(0, θ̃ (0))

∥

∥

∥

∥

,t

)

+ δ

Sketch of proof. The local, asymptotic stability of θ̃av =
0 for (42) and thus (44) can be established by using a

Lyapunov function V (θ̃av) = 1
2
|θ̃av|

2 and noting that the term

AVG[R(·, θ̃)] is of order O(|θ̃av|
2). One can verify that all

assumptions required for Proposition 2.2 are satisfied. The

rest of the claims then follows from Proposition 2.2. �

VII. CONCLUSION

We presented a framework for two-time-scale averaging

for systems involving operators such as Preisach-like hys-

teresis operators. As a motivating example, we analyzed in

detail the slow adaptation scheme for systems with hysteresis

and verified the major assumptions required in the proposed

averaging framework. The latter allowed us to establish the

practical regulation of parameter error and tracking error,

under suitable persistent excitation conditions.

Future work will be pursued in several directions, focusing

on the application of the presented averaging framework

in adaptive control of hysteretic systems. We will explore

other adaptation rules (than the formal gradient rule) that

can potentially provide larger regions of attraction. We will

also investigate the behavior of the closed-loop system when

the persistent excitation condition is not met. Finally, the

study will be extended to the case of nonlinear plants.
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to-state stability in systems with two time scales,” IEEE Transactions

on Automatic Control, vol. 48, no. 9, pp. 1526–1544, 2003.
[7] M. Brokate, A. Pokrovskii, D. Rachinskii, and O. Rasskazov, “Differ-

ential equations with hysteresis via a canonical example,” in Science

of Hysteresis, G. Bertotti and I. Mayergoyz, Eds. Academic Press,
2005, pp. 125–292.

[8] X. Tan and J. S. Baras, “Modeling and control of hysteresis in
magnetostrictive actuators,” Automatica, vol. 40, no. 9, pp. 1469–1480,
2004.

[9] R. Smith, Smart Material Systems: Model Development. Philadelphia,
PA: SIAM, 2005.

[10] M. A. Janaideh, C. Su, and S. Rakheja, “Development of the rate-
dependent Prandtl-Ishlinskii model for smart actuators,” Smart Mate-

rials and Structures, vol. 17, p. 035026, 2008.
[11] I. D. Mayergoyz, Mathematical Models of Hysteresis and Their

Applications. New York, NY: Elsevier, 2003.
[12] R. V. Iyer, X. Tan, and P. S. Krishnaprasad, “Approximate inversion

of the Preisach hysteresis operator with application to control of smart
actuators,” IEEE Transactions on Automatic Control, vol. 50, no. 6,
pp. 798–810, 2005.

[13] K. Kuhnen, “Modeling, identification and compensation of complex
hysteretic nonlinearities - a modified prandtl-ishlinskii approach,”
European Journal of Control, vol. 9, no. 4, pp. 407–418, 2003.

[14] R. Iyer and X. Tan, “Control of hysteretic systems through inverse
compensation: Inversion algorithms, adaptation, and embedded imple-
mentation,” IEEE Control Systems Magazine, vol. 29, no. 1, pp. 83–99,
2009.

[15] M. Brokate and A. V. Pokrovskii, “Asymptotically stable oscillations
in systems with hysteresis nonlinearities,” Journal of Differential

Equations, vol. 150, pp. 98–123, 1998.

4481


