
A Characterization of the Hurwitz Stability of Metzler Matrices

Kumpati S. Narendra1 and Robert Shorten2

Abstract— It is well known that a Hurwitz Metzler matrix
is also diagonally stable. We obtain a necessary and
sufficient condition for a matrix A to be diagonally
stable from the Kalman-Yacubovich-Popov lemma. This
condition is equivalent to requiring that a pair of LTI
systems, of lower dimension, have a common Lyapunov
function. This fact is made use of to derive very simple
conditions for the Hurwitz stability of a Metzler matrix.
These conditions are stated in terms of the signs of
the diagonal entries of a sequence of lower dimensional
matrices that are easily constructed.

I. INTRODUCTION

A matrix A ∈ Rn×n is called a Metzler matrix if its off
diagonal elements are non-negative. Metzler matrices
are important as they arise in a number of application
areas [1], [2], [3], [4], [5]. For example, continuous time
linear dynamic systems that are constrained to evolve
in the positive orthant, positive dynamic systems, are
characterised by Metzler matrices. More precisely, if A
is a Hurwitz Metzler matrix, then all solutions of the
differential equation

ΣA : ẋ = Ax (1)

that start from initial conditions in the positive orthant,
will satisfy xi(t) ≥ 0 for all t > 0, where i denotes
the i’th component of the vector x(t). In this paper
we present a simple characterization of the Hurwitz
stability of Metzler matrices.

It is well known that a stable dynamic system ΣA is
also diagonally stable if the matrix A is Metzler [2].
That is, any Metzler matrix that has eigenvalues in
the open left half of the complex plane also satisfies
ATD+DA < 0 for some positive diagonal matrix D.
In this case the quadratic function V (x) = xTDx is
a called a diagonal Lyapunov function for ΣA. There-
fore, for Metzler matrices, the conditions for Hurwitz
stability are equivalent to those for diagonal stability.
In this paper, necessary and sufficient conditions are
first derived for any matrix A to be diagonally stable.
These conditions, which are obtained as a consequence
of the Kalman-Yacubovich-Popov lemma, state that a
matrix A is diagonally stable, if an only if two lower
dimensional matrices matrices (A1, A2), derived from
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the entries of A, satisfy,

AT
1 D̃ + D̃A1 < 0,
AT

2 D̃ + D̃A2 < 0,

for some diagonal D̃ > 0. While this condition is
in general difficult to test, it becomes very simple in
the case of Metzler matrices. This is because it can
be shown that any diagonal Lyapunov function for
ΣA2 is also a diagonal Lyapunov function for ΣA1 .
Thus A is diagonally stable, if and only if a matrix of
lower dimension is diagonally stable. This result can
be applied repeatedly until a scalar is obtained. Since
a necessary condition for a matrix A to be diagonally
stable is that all its diagonal elements are negative, at
every stage the signs of the diagonal elements of the
reduced order matrices are checked. If at any stage the
condition is not satisfied, the matrix A is not diagonally
stable. The procedure for deriving a lower dimensional
matrix is simple, and merely involves the sum of two
matrices.

The paper is organized as follows. In section III, a
necessary and sufficient condition for a matrix A to
be diagonally stable is obtained using the Kalman-
Yakubovich-Popov lemma. This assures diagonal stabil-
ity in terms of a common diagonal Lyapunov function
for two lower order matrices. In section IV it is shown
that for a Metzler matrix, the diagonal stability of one
of the derived matrices implies the diagonal stability of
the second matrix (with the same diagonal Lyapunov
function). This observation leads to a very simple test
for the Hurwitz stability of Metzler matrices. In section
V the procedure is applied a number of examples.

II. NOTATION

Throughout this paper, the following notation is
adopted: R denotes the field of real numbers; Rn

denotes the n-dimensional real Euclidean space; Rn×n

denotes the space of n× n matrices with real entries.

The matrix A is said to be Hurwitz if all its eigenvalues
lie in the open left half of the complex plane. A real
symmetric matrix P is said to be positive definite if all
its eigenvalues are positive. We use P > 0 to denote
that P is positive definite. Vectors (matrices) that are
entry-wise positive are denoted x � 0 (A � 0), and
vectors ( matrices) that are entry-wise nonnegative x �
0 (A � 0).
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Given m linear time-invariant (LTI) dynamic systems,
ẋ = Aix, i ∈ Ω = {1, ...,m}, the positive definite
matrix P is said to be a common Lyapunov solution
for Ai if AT

i P + PAi = −Qi < 0, i ∈ Ω. In this case
V (x) = xTPx defines a common quadratic Lyapunov
function (CQLF), for the m LTI systems ΣAi

. In the
case that P is a diagonal matrix, V (x) is a common
diagonal quadratic Lyapunov function (CDLF) for ΣAi

.

III. DIAGONAL STABILITY AND THE KYP LEMMA

The following well known result [6] plays an important
role in developing our result.

Lemma 3.1: Let A ∈ Rn×n be an invertible matrix that
is partitioned as

A =
[
An−1 bn−1

cTn−1 dn−1

]
(2)

where An−1 ∈ R(n−1)×(n−1), bn−1, cn−1 ∈ Rn−1,
dn−1 ∈ R; the subscript (n−1) denotes the dimensions
of the matrix An−1 and the vectors bn−1, cn−1 respec-
tively. Let dn−1 6= 0. Then, A−1 can be expressed in
partitioned form as

A−1 =
[
Bn−1 ln−1

mT
n−1 ηn−1

]
(3)

where Bn−1 ∈ R(n−1)×(n−1), ln−1,mn−1 ∈ Rn−1 and
ηn−1 ∈ R. Since AA−1 = In, where In denotes the
unit matrix in Rn×n, it follows that

An−1Bn−1 + bn−1m
T
n−1 = In−1 (4)

An−1ln−1 + ηn−1bn−1 = 0 (5)
cTn−1Bn−1 + dn−1m

T
n−1 = 0 (6)

cTn−1ln−1 + dn−1ηn−1 = 1 (7)

From equation (6), we have

mT
n−1 = −

cTn−1Bn−1

dn−1
(8)

and it follows from equation (4) that(
An−1 −

bn−1c
T
n−1

dn−1

)
Bn−1 = In−1

or equivalently that

Bn−1 =
(
An−1 −

bn−1c
T
n−1

dn−1

)−1

. (9)

The form of Bn−1 in Equation (9) will play an im-
portant role in the discussion of the following result
[7].

Theorem 3.1: Let An−1 and Bn−1 be defined as in the
previous lemma with dn−1 < 0. Then, A is diagonally
stable if and only if AT

n−1Dn−1 +Dn−1An−1 < 0 and(
B−1

n−1

)T
Dn−1 + Dn−1B

−1
n−1 < 0 for some positive

definite diagonal matrix Dn−1 ∈ Rn−1×n−1; i.e. if both
An−1 and B−1

n−1 have a common diagonal Lyapunov
function (CDLF).

Proof : (a) Necessity : Let A be a diagonally stable
matrix. Then so is A−1. Furthermore, if V (x) = xTDx
is a diagonal Lyapunov function for ΣA, it is is also a
diagonal Lyapunov function for ΣA−1 where we denote

D =
[
Dn−1 0

0 α

]
,

where Dn−1 is a positive diagonal square matrix of
dimension [n− 1] and α > 0. It therefore follows from
Sylvester’s criterion that AT

n−1Dn−1+Dn−1An−1 < 0,
and that BT

n−1Dn−1 + Dn−1Bn−1 < 0. But if Bn−1

is diagonally stable then so is B−1
n−1 with the same

Lyapunov function. Hence, a necessary condition for
the matrix A to be diagonally stable is that ΣAn−1 and
ΣB−1

n−1
have a common diagonal Lyapunov function.

(b) Sufficiency : Let there exist a diagonal matrix
Dn−1 > 0 that simultaneously satisfies

AT
n−1Dn−1 +Dn−1An−1 < 0; (10)(
An−1 −

bn−1c
T
n−1

dn−1

)T

Dn−1 +

Dn−1

(
An−1 −

bn−1c
T
n−1

dn−1

)
< 0. (11)

To establish sufficiency we wish to show that there
exists a positive scalar α > 0 such that[

An−1 bn−1

cTn−1 dn−1

]T [
Dn−1 0

0 α

]
+

[
Dn−1 0

0 α

] [
An−1 bn−1

cTn−1 dn−1

]
< 0,

It follows from the Kalman-Yacubovich-Popov lemma,
that the above matrix inequality is satisfied if and only
if the matrix

−
(
AT

n−1Dn−1 +Dn−1An−1

)
+

Dn−1bn−1c
T
n−1

jω + dn−1
+
cn−1b

T
n−1Dn−1

−jω + dn−1
> 0, (12)

(is positive definite for all frequencies). Equations (10)
and (11) imply that the matrix defined in Equation (12)
has positive eigenvalues for ω = 0 and for ω = ±∞.
Let there exist ω = ωc such that Equation (12) ceases
to be positive definite. This means that at least one
eigenvalue of

−
(
AT

n−1Dn−1 +Dn−1An−1

)
+

Dn−1bn−1c
T
n−1

jωc + dn−1
+
cn−1b

T
n−1Dn−1

−jωc + dn−1
(13)

is non-positive. However, since the eigenvalues of a
Hermitian matrix are always real, it follows by continu-
ity that the matrix (13) will have a negative eigenvalue
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at ωc if and only if

det
[
−
(
AT

n−1Dn−1 +Dn−1An−1

)
+

Dn−1bn−1c
T
n−1

jω + dn−1
+
cn−1b

T
n−1Dn−1

−jω + dn−1

]
= 0 (14)

for some real ω = ω∗. Assuming that such an ω = ω∗

exists, it follows that

det
[
−
(
AT

n−1Dn−1 +Dn−1An−1

)
+

Dn−1bn−1c
T
n−1

jω∗ + dn−1
+
cn−1b

T
n−1Dn−1

−jω∗ + dn−1

]
= 0.

Then, det
[
M
]
×

det
[
I +

M−1Dn−1bn−1c
T
n−1

jω∗ + dn−1
+
M−1cn−1b

T
n−1Dn−1

−jω∗ + dn−1

]
= 0, (15)

where the matrix M = −
(
AT

n−1Dn−1 +Dn−1An−1

)
is invertible since it is positive definite (by assumption).
Consequently,
det
[
M
]

det
[
I +

[
M−1Dn−1bn−1,M

−1cn−1

]
×[

1
jω∗+dn−1

0
0 1

−jω∗+dn−1

] [
cTn−1

bTn−1Dn−1

] ]
= 0,

This latter equation implies det
[
M
]
×

det
[
I2×2 +

[
1

jω∗+dn−1
0

0 1
−jω∗+dn−1

]

×
[

cTn−1

bTn−1Dn−1

] [
M−1Dn−1bn−1,M

−1cn−1

] ]
= 0,

where the fact is used that det[In×n + UV ] =
det[Ip×p + V U ], with U ∈ Rn×p and V ∈
Rp×n. Finally, this latter equation can be written as
det
[
M
](
ω∗2 + d2

n−1

)−1×

det
[ z11 z12
z21 z22

]
= 0.

where

z11 = jω∗ + dn−1 + cTn−1M
−1Dn−1bn−1

z12 = cTn−1M
−1cn−1

z21 = bTn−1Dn−1M
−1Dn−1bn−1

z22 = −jω∗ + dn−1 + bTn−1Dn−1M
−1cn−1

Since both det[M ] 6= 0 (M is positive definite) and
ω2 +d2

n−1 > 0 (for all ω), the above equation can only
be satisfied only if the determinant of the matrix[ dn−1 + cTn−1M

−1Dn−1bn−1 cTn−1M
−1cn−1

bTn−1Dn−1M
−1Dn−1bn−1 dn−1 + bTn−1Dn−1M

−1cn−1

]
is negative. But this determinant of the matrix defined
by (14) evaluated at ω = 0, (scaled by a strictly posi-
tive number), which by assumption is positive. Hence,

ω∗ does not exist and by contradiction sufficiency is
proven. �

Comment : Theorem 3.1 bears a strong resemblance
a theorem on diagonal stability given by Redheffer in
[8] and in fact this theorem can be derived as a direct
consequence of Theorem 3.1. Redheffer demonstrated
that if An−1 and Bn−1 share a CDLF, and if dn−1 < 0,
then A is diagonally stable. In Theorem 3.1, necessary
and sufficient conditions for Diagonal Stability are
given in terms of An−1 and B−1

n−1 (rather than Bn−1).
Recall from Lemma 3.1 that B−1

n−1 is a matrix that
differs from An−1 by a matrix of rank 1. Further,
this matrix is constructed directly from bn−1, cn−1 and
dn−1. Consequently, Theorem 3.1, provides insight as
to the nature of diagonal stability of A directly in terms
its elements.

IV. ON THE HURWITZ STABILITY OF METZLER
MATRICES

Theorem 3.1 (and the result of Redheffer [8]), both
replace the problem of determining a diagonal Lya-
punov function for a matrix A to the equivalent problem
of determining a common diagonal Lyapunov function
(CDLF) for two lower dimensional matrices. In general,
the latter problem is not simpler than the former.
However, in special cases, due to the structure of the
two matrices An−1 and B−1

n−1 described in Section 3,
the determination of a CDLF is substantially simplified.
One such class is the class of Metzler matrices.

We now note the following result concerning a pair of
Metzler matrices one of which is entry-wise bigger than
the other [9].

Lemma 4.1: Let A,A + bcT be a pair of Metzler
matrices, where b, c are non-negative vectors. Let

(
A+

bcT
)T
D +D

(
A+ bcT

)
< 0 for some diagonal matrix

D > 0. Then ATD +DA < 0.

Proof : The proof of the lemma follows immediately
from the fact that

(
A + bcT

)T
D + D

(
A + bcT

)
�

ATD+DA. Since both matrices are Metzler, and since(
A+ bcT

)T
D+D

(
A+ bcT

)
< 0, the assertion of the

lemma follows immediately from basic properties of
Metzler matrices. �

A consequence of Theorem 3.1 is the following.

Theorem 4.1: Let the matrix A ∈ Rn×n be a Metzler
matrix. Define the sequence of matrices {A[n], A[n −
1], ...., A[1]} as follows. A[n] = A. For k = 2, ..., n
partition

A[k] =
[
Ak−1 bk−1

ck−1 dk−1

]
(16)

where Ak−1 ∈ R(k−1)×(k−1), bk−1, ck−1 ∈ Rk−1. The
matrix A[k − 1] is defined to be A[k − 1] = Ak−1 −
bk−1cT

k−1
dk−1

. Then, a necessary and sufficient condition for
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the matrix A to be Hurwitz, is that the diagonal entries
of the matrices A[1], .., A[n] are all strictly negative.

Proof : The assertions of the Theorem follow from
Theorem 3.1, Lemma 4.1, and from the fact that a
Metzler matrix is Hurwitz if and only if it is diagonally
stable [9]. If A is diagonally stable, by the principal
theorem, the dynamic systems

ẋ = An−1x, and ẋ =
(
An−1 −

bn−1c
T
n−1

dn−1

)
x

must have a common diagonal Lyapunov function. But,
since A[n−1] is Metzler, and since bn−1, cn−1 are both
entrywise nonnegative, by Lemma 4.1 these dynamic
systems will have a common diagonal Lyapunov func-
tion if and only if A[n − 1] is Hurwitz stable. Thus,
A is Hurwitz if and only if A[n − 1] is diagonally
stable (or equivalently Hurwitz). But by the previous
argument A[n − 1] is Hurwitz stable if and only if
A[n − 2] is diagonally stable. Hence, it follows that
the diagonal entries of A[n− 2] must also be negative.
By repeating this argument for all A[i], i = n, ..., 2
one concludes that the diagonal entries of all of the
aforementioned matrices must be negative. Further, if
the scalar A[1] < 0, then this in turn implies that A[2]
is Hurwitz, and hence that all A[i] are Hurwitz . �

V. EXAMPLES

An attractive feature of the proof of the previous theo-
rem is that it provides a very simple procedure to check
whether a Metzler matrix is Hurwitz. Given a Metzler
matrix, we recursively construct its Schur complement.
At every stage we only verify whether or not the
diagonal elements of the matrix of lower dimension are
negative. The process is continued until only a single
element remains. A necessary and sufficient condition
for A to be diagonally stable is that all diagonal entries
of the lower dimensional matrices are negative. The
following examples illustrate the procedure discussed
in the paper.

Example 5.1: Let A be a Metzler matrix:

A =
[
−2 1
3 −3

]
.

This matrix is diagonally stable, since its diagonal
elements are negative, and its determinant is positive
[10]. Using the procedure outlined in the paper, the
lower dimensional matrix is the scalar -2 + 3

3= -1 which
assures that A is diagonally stable. Note that the latter
condition is identical to the condition on the (negative)
determinant.

Example 5.2: Let A be a Metzler matrix in R3×3:

A =

 −3 1 2
1 −6 1
3 2 −6

 .

Then

A2 =
[
−3 1
1 −6

]
, b2 =

[
2
1

]
, c2 =

[
3
2

]
and d2 = −6;

A[2] = A2 −
b2c

T
2

d2
=
[
−2 1.67
1.50 −5.67

]
.

To determine whether A[2] is diagonally stable we
repeat the operation to reduce it to a scalar A[1] =
−1.59 which is negative. This in turn ensures that A is
diagonally stable.

Example 5.3: Let A be a Metzler matrix in R6×6

A =


−14 2 3 4 5 6

1 −15 7 5 2 3
1 1 −14 1 1 1
2 3 4 −14 1 1
1 2 4 5 −9 7
1 1 0 9 1 −14

 .

Then

A[5] =


−13.57 2.43 3 7.86 5.43
1.21 −14.79 7 6.93 2.21
1.07 1.07 −14 1.64 1.07
2.07 3.07 4 −13.36 1.07
1.5 2.50 4 9.5 −8.5

 ;

A[4] =


−12.61 4.03 5.55 13.92

1.61 −14.13 8.04 9.40
1.26 1.39 −13.50 2.84
2.26 3.39 4.50 −12.16

 ;

A[3] =

 −10.02 7.90 10.71
3.35 −11.52 11.53
1.79 2.18 −12.44

 ;

A[2] =
[
−8.49 9.78
5.01 −9.50

]
;A[1] = −3.33.

The matrices A[5], A[4], A[3], A[2], and A[1] are con-
structed as in the previous examples. It follows from
the assertions of the main theorem that A is a Hurwitz
Metzler matrix.

VI. CONCLUSIONS

In this paper a very simple test is developed for
determining whether a given Metzler matrix is Hurwitz
stable. This test is derived by noting that any Metzler
matrix that is Hurwitz stable, is also diagonally sta-
ble, and by using the Kalman-Yacubovic-Popov (KYP)
lemma to obtain a characterization of diagonally stable
matrices. The interesting feature of the result is that
it reduces the stability of a given positive dynamic
systems to the stability of lower dimensional positive
system.
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