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Abstract—A systematic design procedure using state-feedback
Certainty Equivalence Adaptive Control (CEAC) technique is
developed for linear plants and a class of nonlinear plants with
unmatched uncertainty. It is shown that a reduced order observer
and adaptive laws with normalization in conjunction with the
CEAC law result in a stable overall system in the case of linear
plants of any relative degree, and a class of nonlinear plants
of relative degree two. In the case of higher relative degrees
a CEAC approach based on multiple observers is proposed.
The proposed schemes guarantee overall system stability and
asymptotic tracking.

I. Introduction

The problem of slow actuator dynamics arises in many control

applications. One particularly important case is that of fault-

tolerant flight control when the objective is to compensate for

flight-critical actuator failures or wing damage using collective

or differential engines. Engine dynamics is generally much

slower than that of the actuators moving flight control surfaces

and, in general, cannot be neglected during the control design.

If there is uncertainty in the aircraft dynamics due to faults or

failures, this type of systems falls into the category of plants

with unmatched uncertainty.

The control design for plants with unmatched uncertainty has

been addressed theoretically using the Adaptive Backstepping

technique [4]. This approach is of direct adaptive control type

[9] where controller parameters are adjusted directly based on

the response of the system.

Going back to the problem of fault-tolerant flight control, in

some cases there is a need to implement indirect adaptive

control schemes where plant parameters are estimated on-line

and used at every instant in the control law. This approach

is also referred to as the Certainty Equivalence Adaptive

Control (CEAC) since the control law for the case of known

parameters is used, and the true parameters are replaced with

their estimates at every instant. CEAC approach is useful in

the case of fault-tolerant control since it includes a parameter

estimation subsystem and can, therefore, be used to explicitly

estimate failure or damage related parameters, and to provide

information to the pilot regarding what exactly has happened

with the aircraft.

Another motivation for this paper comes from the attempts to
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and NNX08CA51P to SSCI

implement adaptive control using multiple models to control

the plants with unmatched uncertainty. In order to apply such

a control strategy, an indirect adaptive control approach is

required.

Indirect adaptive control designs are available in the case of

nonlinear multivariable relative degree one plants [1], [2], [3].

In the case of plants with unmatched uncertainty and higher

relative degrees, available designs are of direct adaptive control

type [5], [6], [7]. Literature search has revealed that a thorough

indirect adaptive control approach is not yet available for

nonlinear plants with unmatched uncertainty. Existing output

feedback techniques (see e.g. [8] and references therein) do

not appear easily adaptable to this case even in the linear case.

Indirect adaptive controllers for linear plants with unmatched

uncertainty result in complicated designs based on the so

called augmented error and large-order signal filtering [9].

The main contribution of this paper, that addresses the above

mentioned problems, is the development of a stable Certainty

Equivalence Adaptive Control (CEAC) design for plants with

unmatched uncertainty.

The CEAC strategy proposed in this paper is intuitively

straightforward and practically easy to implement. The pro-

posed design procedure consists of the following steps: (i)

Design an ideal control law assuming that the plant parameters

are known; (ii) Design a suitable observer and adaptive laws to

estimate the unknown parameters on-line; and (iii) Replace the

true parameters in the ideal control law with their estimates

at every instant. This approach has been shown to result in

a stable closed-loop system for linear plants [9]. However,

extensions of this approach to the nonlinear plants with

unmatched uncertainty are lacking in the existing literature.

In this paper, a systematic control design procedure for plants

with unmatched uncertainty using the CEAC approach is

proposed. Specific focus is on the plants where the uncertainty

is concentrated in the output equation, while the “actuator”

dynamics is assumed known. The analysis of the CEAC

designs for this class of plants has revealed the following:

• A reduced-order observer and “pure” CEAC suffice in
the case of linear plants of any relative degree and a class

of nonlinear plants of relative degree two. In this case an

adaptive algorithm with normalization can be used to bound
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the adaptive law thus avoiding its repeated differentiation; and

• A full-order observer and an “augmented” CEAC are needed
in the case of nonlinear plants of higher relative degrees. In

this case a proper coordinate transformation is needed in order

to assure the overall system stability.

The paper is organized as follows: The control problem for

linear plants of an arbitrary relative degree is addressed in

Section II. In section IV, the control design procedure for

linear plants is presented. Extensions of results to a class of

nonlinear plants is discussed in Section 4. In the same section,

a procedure for a class of nonlinear plants with general contin-

uously differentiable nonlinearities is given, while concluding

remarks are given in Section V.

II. Problem Statement

Let the plant dynamics be described by the following model:

ẋ1 = x2 + θf(x1)

ẋ2 = x3
... (1)

ẋn−1 = xn

ẋn = u,

where x1 is the plant output, θ is an unknown constant
parameter, x and u are measurable, f is a sufficiently smooth
known function with well defined n−1 partial derivatives with
respect to x1, and bounds on the plant parameter are known,

i.e. θ ∈ Sθ = {θ : θ ≤ θ ≤ θ}.
The above plant is referred to as the plant with unmatched

uncertainty since the uncertainty does not appear in the same

equation as the control input. In addition, of interest is to

define a relative degree of the plant n∗. Loosely speaking, the

relative degree is a number of integrators between the input

and the output. In this case n∗ = n, where n is the plant order.

The reference model is described by

ẋm1 = xm2

ẋm2 = xm3
...

ẋmn = −kT xm + k1r,

where xm = [xm1 xm2 ... xmn]T , k = [k1 k2 ... kn]T , its
elements ki are chosen such that the matrix:

Am =





0 | I

−kT





is Hurwitz, and r denotes a bounded piece-wise continuous
reference input.

The control objective is to design a control input u(t) such
that all the signals in the system are bounded and, in addition,

limt→∞[x1(t) − xm1(t)] = 0.

As shown in the existing literature [5], [6], [7], this is a difficult

problem due to the fact that the uncertainty appears in the

first equation, while the control input is separated from the

uncertainty by n − 1 integrators.

Due to the complexity of the problem, the analysis and

subsequent control design will be divided into two parts. In the

following section the case of linear plants will be considered,

followed by the analysis of the nonlinear plants of the form

(1).

III. CEAC Design for Linear Plants

In this case f(x1) = x1. The first step in CEAC design is the

design of an ideal controller, i.e. a controller that assumes that

θ is known. This is discussed next.

Ideal Controller: To design such a controller, the following

coordinate transformation is introduced first:

z∗1 = x1

z∗2 = x2 + θz∗1
...

z∗n = xn + θz∗n−1.

Taking the derivative of z∗ yields: ż∗i = z∗i+1, i = 1, 2, ..., n−
1, and ż∗n = u + θz∗n. Hence the control law that achieves the
tracking control objective is of the form:

u∗ = −θz∗n − kT z∗ + k1r,

since it results in ż∗ = Amz∗ + bmr, where bm =
[0 0 ... 0 1]T , and limt→∞[z∗(t) − xm(t)] = 0.

The CEAC law: In the case when θ is unknown, the following
CEAC law is suggested:

u = −θ̂zn − kT z + k1r, (2)

where variables zi are defined by the recursion:

z1 = x1

z2 = x2 + θ̂z1
... (3)

zn = xn + θ̂zn−1,

and where θ̂ denotes an estimate of θ. It is noted that zn can

be expressed as zn =
∑n

i=1 xiθ̂
n−i.

The main question now is as to how to generate the estimate

of θ to assure that the control objective is met.

To address this issue, the following observer and adaptive law

are proposed:

˙̂x1 = x2 + θ̂x̂1 − λe (4)

φ̇ =
˙̂
θ = Proj

θ̂∈Sθ
{ −γx1e

1 + ωT ω
}, (5)

where λ > 0 denotes the observer gain, e = x̂1−x1, φ = θ̂−θ,
γ > 0 denotes an adaptive gain, Proj(·){(·)} denotes a projec-
tion operator, and where ω = [x1, x2, ... xn]T . Properties of
the Projection Operator can be found e.g. in [10]. It is seen

that an adaptive law with normalization is used, resulting in a

bounded
˙̂
θ(t), which will be shown to be crucial in avoiding

differentiation of the adaptive laws to arrive at a stable closed-

loop system.

It will be shown in the subsequent analysis that if the observer

gain is sufficiently large, the adaptive law with normalization
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guarantees overall system stability within the CEAC frame-

work.

The following proposition is useful for proving the main result

of this section.

Proposition 1: Let ω = [x1, x2, ... xn]T . Then

‖ωT ω̇(θ̂, θ)‖ ≤ α1‖ω‖2 + α2‖ω‖, (6)

holds ∀ω ∈ IRn and ∀(θ̂, θ) ∈ Sθ , where αi > 0 are known
constants.

Proof: Based on the definitions of z and ω, it is first noted
that:

z = M(θ̂)ω,

where

M =













1 0 0 ... 0 0

θ̂ 1 0 ... 0 0

θ̂2 θ̂ 1 ... 0 0
...

...
θ̂n−1 θ̂n−2 θ̂n−3 . . . θ̂ 1













.

Further, based on the above relationship, zn is expressed as:

zn = vT (θ̂)ω,

where v(θ̂) = [θ̂n−1 θ̂n−2 ... θ̂ 1]T . Hence

u = −[θ̂vT (θ̂) + kT M(θ̂)]ω + k1r

It now follows that:

ω̇ = C(θ̂, θ)ω + dr,

where

C =









θ 1 0 . . . 0
0 0 1 . . . 0

...
...

Cn,1 Cn,2 Cn,3 . . . Cn,n









where Cn,1 = −θ̂n − ∑n

i=1 kiθ̂
i−1, Cn,2 = −θ̂n−1 −

∑n

i=2 kiθ̂
i−2, Cn,3 = θ̂n−2 −

∑n

i=3 kiθ̂
i−3, Cn,n = −θ̂− kn,

and d = [0 . . . 0 k1]
T . It is seen that elements of C(θ̂, θ) are

bounded since adaptive laws with projection are used. Hence:

‖ωT ω̇‖ = ‖ωT Cω + ωT dr‖
≤ α1‖ω‖2 + α2‖ω‖

where α2 = k1r̄, and |r| ≤ r̄. �

It can now be concluded that

‖ωT ω̇(θ̂, θ)‖
1 + ωT ω

≤ α0, (7)

holds ∀ω ∈ IRn and ∀(θ̂, θ) ∈ Sθ , where α0 = α1 + α2/2,
with αi, i = 1, 2, being known constants.

Now the following Theorem is considered:

Theorem 1: Let the plant (1), where f(x1) = x1, be

controlled by the control law (2) where the parameter estimate

is generated using the observer (4) and adaptive law (5). Then,

if the observer gain satisfies

λ > θ̄ + α0,

where α0 is given by (7), all the signals in the system are

bounded, and limt→∞[x1(t) − xm1(t)] = 0.

Proof: Upon subtracting the first equation of the plant (1) from

the observer dynamics (4), the error equation is obtained as:

ė = −(λ − θ̂)e + φx1, (8)

where e = x̂1 − x1 and φ = θ̂ − θ.

Let a coordinate transformation ζ be defined as:

ζ =
e√

1 + ωT ω
.

It follows that:

ζζ̇ = ζ(
∂ζ

∂e
ė +

∂ζ

∂ω
ω̇)

=
−e2ωT ω̇

(1 + ωT ω)2
+

−(λ − θ̂)e2 + φx̂1e

(1 + ωT ω)
.

Now the following tentative Lyapunov function is chosen:

V (ζ, φ) =
1

2
(ζ2 +

φ2

γ
),

where, as mentioned earlier, γ > 0 is the adaptive gain which
can be chosen at the designer’s discretion. The derivative of

V along the solutions of the system yields

V̇ (ζ, φ) = ζζ̇ + φφ̇/γ

=
−e2ωT ω̇

(1 + ωT ω)2
+

−(λ − θ̂)e2 + φx̂1e

(1 + ωT ω)
+

φφ̇

γ

≤ −e2

1 + ωT ω
(λ − θ̂ +

ωT ω̇

1 + ωT ω
).

The last inequality follows from applying the adaptive law

with projection (5).

Using the result of the Proposition 1 and expression (7), it

follows that:

V̇ (ζ, φ) ≤ −e2

1 + ωT ω
(λ − θ̄ − α0) ≤ 0, ∀(ζ, φ) 6= (0, 0).

It is seen that V̇ ≤ 0 is obtained since λ > α0 + θ̄. It can
now be concluded that ζ ∈ L∞ ∩L2, φ ∈ L∞. It also follows

from (5) that φ̇ =
˙̂
θ ∈ L∞ ∩ L2.

To prove the overall stability, the following coordinate trans-

formation is chosen:

ẑ1 = x̂1

ẑ2 = x2 + θ̂ẑ1
...

ẑn = xn + θ̂ẑn−1.

It is seen that the relationship between z and ẑ is of the form:
ẑ = z + v(θ̂)e.

The above transformation is next differentiated to obtain:
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˙̂z1 = ẑ2 − λe

˙̂z2 = ẑ3 +
˙̂
θẑ1 − λθ̂e

...
˙̂zn = u + θ̂ẑn +

˙̂
θẑn−1 + θ̂

˙̂
θzn−2 + . . . + θ̂n−2 ˙̂

θz1 − λθ̂n−1e.

It is next noted that the control law (2) can be rewritten as:

u = −θ̂(ẑn − θ̂n−1e) − kT (ẑ − v(θ̂)e) + k1r.

Substituting this control law into the above equation yields

ż = [Am + N(t)]z + L(θ̂)e + br, (9)

where

N(t) =















0
1 0

θ̂(t) 1 0
... θ̂(t) 1 0

θ̂n−2(t) · · · θ̂(t) 1 0















· ˙̂
θ(t), b =















0
0
...

0
k1















,

and L(θ̂) = [−λ,−λθ̂,−λθ̂2, · · · ,−λθ̂n−1 + θ̂n + kT v(θ̂)]T .
Since Am is Hurwitz and ‖N(t)‖ ∈ L∞ ∩L2 (which follows

from the fact that θ̂ ∈ L∞ and
˙̂
θ ∈ L∞ ∩ L2), it can now

be concluded that, for e = 0 and r = 0, the above system
is exponentially stable, and, therefore, BIBO stable. Hence to

demonstrate signal boundedness, one needs to show that e is
bounded.

Since θ̂ is bounded and
˙̂
θ ∈ L∞ ∩ L2, it follows that (9) is a

linear time varying system with bounded parameters in which

the signals can grow at most exponentially. Hence analysis

based on the growth rates of signals (see [9], pp. 476-479) can

be used. Based on the fact that ζ = e/
√

1 + ωT ω ∈ L∞∩L2,

it follows that e = β(t)
√

1 + ωT ω, where β ∈ L2 [9].

It is now assumed that ω grows in an unbounded fashion. The
equation (8) is rewritten as:

ė = −(λ − θ̂)e + φ̄T ω,

where φ̄ = [0, 0, φ]T . Since λ > θ̄, the above first-order
system is exponentially stable for φ̄ = 0. This, along with the
fact that φ̄ is bounded, implies that e = O(supτ≤t‖ω(τ)‖).
This, along with (8), also implies that ė = O(supτ≤t‖ω(τ)‖).
From (9) it follows that ‖z‖ = O(supτ≤t|e(τ)|). Since
x̂1 = z1, x2 = z2 − θ̂x̂1, and x1 = x̂1 − e, it follows
that x̂1 = O(supτ≤t|e(τ)|), x2 = O(supτ≤t|e(τ)|), and
x1 = O(supτ≤t|e(τ)|). Thus, ‖ω‖ = O(supτ≤t|e(τ)|). It can
now be concluded that e and ‖ω‖ grow at the same rate, i.e.
supτ≤t|e(τ)| ∼ supτ≤t‖ω(τ)‖.
On the other hand, since e = β(t)

√
1 + ωT ω, where

β ∈ L2, and ė = O(supτ≤t‖ω(τ)‖), it follows that e =
o(supτ≤t‖ω(τ)‖) [9], i.e. e and ‖ω‖ grow at different rates,
which is a contradiction. Hence all the signals in the closed-

loop system are bounded. It can now be readily shown using

the standard arguments that limt→∞e(t) = 0. �

Comments:

• The key element in the proposed design is the use of the
normalization in the adaptive law (5). Since the normalization

bounds a product of
˙̂
θ and its regressor, this property is used

to avoid repeated differentiation of the adaptive law during the

control design.

• While the properties of adaptive laws with normalizations
in the case of static observers have been well established,

their use in the context of dynamic observers remains less

understood. In the paper the condition on the observer gain is

given to guarantee overall system stability with such adaptive

law.

• The resulting closed-loop system is linear in ˙̂
θ; this, along

with the property
˙̂
θ ∈ L∞ ∩ L2 that arises from the use of

adaptive laws with normalization, is the key in proving signal

boundedness and, eventually, asymptotic tracking.

IV. Nonlinear Plants

In this section, the case of plants (1) is considered.

A. Ideal Control Design

To design an ideal controller, in this case the following

coordinate transfromation is used:

z∗1 = x1

z∗2 = x2 + θf(x1)

z∗3 = x3 + θḟ(x1)
...

z∗n = xn + θ
dn−2

dtn−2
f(x1),

resulting in:

ż∗1 = z∗2

ż∗2 = z∗3...

ż∗n = u + θ
dn−1

dtn−1
f(x1).

For instance, for n∗ = 3, ż∗3 = u + θ(f ′′z∗22 + f ′z∗3), etc.

The ideal controller is now of the form:

u∗ = −θ
dn−1

dtn−1
f(x1) − kT z∗ + k1r,

resulting in limt→∞[z∗(t) − xm(t)] = 0.

B. Continuously differentiable f with bounded |f ′|
In this section it will be shown that an analysis similar to

that for the case of linear plants can be used in the case of

nonlinear plants where the nonlinearity has a bounded first

partial derivative. It will be also shown that this analysis holds

only for n∗ = 2, while for higher relative degrees a different
design is needed.

1) Case n∗ = 2: In this case the plant is described by

ẋ1 = x2 + θf(x1), ẋ2 = u, (10)

where |f ′(x1)| is bounded for all x1. The CEAC law is:

u = −θ̂f ′(x2 + θ̂f) − k1x̂1 − k2(x2 + θ̂f) + k1r. (11)

Following the design procedure for linear plants, the following

observer is used:
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˙̂x1 = x2 + θ̂f̂ − λe. (12)

The resulting error equation is then: ė = −λe+φf̂ + θ̂(f̂−f),
where f̂ = f(x̂1).

For continuously differentiable f , it follows that f(x̂1) −
f(x1) = f ′(x∗)e, for some x∗(x1, x̂1) ∈ R. Thus the error
equation can be rewritten as:

ė = −(λ − θ̂f ′)e + φf.

In this case the following normalization is proposed: ζ =
e/
√

1 + ωT ω, where ω = [x1, x2, f ]T . The tentative Lya-
punov function is chosen as:

V (ζ, φ) =
1

2
(ζ2 +

φ2

γ
).

Its derivative along the solutions of the system yields

V̇ (ζ, φ) ≤ −e2

1 + ωT ω
(λ − θ̂f ′ +

ωT ω̇

1 + ωT ω
).

The inequality follows from applying the adaptive law

φ̇ =
˙̂
θ = Proj

θ̂∈Sθ
{ −γfe

1 + ωT ω
}.

From (10) and (12), it follows that

ω̇ = [x2 + θf, u, f ′(x2 + θf)]T .

Using (11), it can now be readily verified that
∣

∣(ωT ω̇(θ, θ̂))/(1 + ωT ω)
∣

∣ ≤ α0, ∀(θ, θ̂) ∈ Sθ , where

α0 is known. Hence, by choosing λ > θ̄ + α0, it can now be

concluded that ζ ∈ L∞ ∩ L2, and φ ∈ L∞. It also follows

that φ̇ =
˙̂
θ ∈ L∞ ∩ L2.

By taking the following transformation z1 = x̂1, z2 = x2 +
θ̂f̂ , it follows that:

ż = Amz + L(t)e + Br,

where

Am =

[

0 1
−k1 −k2

]

, L(t)=

[ −λ

−λθ̂f̂ ′ + ϕ

]

, B=

[

0
k1

]

,

where ϕ = 0 if
˙̂
θ = 0, and ϕ = − γf2

1+ωT ω
elsewhere. Since

the elements of L(t) are uniformly bounded, signals in the
above system can grow at most exponentially [9]. Thus, the

signal growth rate argument for showing the overall signal

boundedness parallels that of the previous section.

Comments:

• If an additional condition f(0) = 0 is imposed to the

nonlinearity f , then
˙̂
θf̂ =

˙̂
θf̂ ′(x̂∗)x̂1 for some x̂∗(x̂1) ∈ R.

By using the pure CEAC control law u = −θ̂f̂ ′(x2 + θ̂f̂) −
k1x̂1 − k2(x2 + θ̂f̂) + k1r instead of the augmented CEAC
control law (11), overall stability and asymptotic tracking can

be readily demonstrated.

• Results from this section can be readily extended to
piecewise differentiable function f with f(x̂1) − f(x1) =
g(x∗)(x̂1 − x1), where |g(x∗)| is bounded for all x∗ ∈ R.

2) Case n∗ = 3: Previous results are based on the key fact
that use of normalization in the Lyapunov function results in

a term ωT ω̇(θ, θ̂)/(1 + ωT ω) that is bounded for all ω and
all (θ, θ̂) ∈ Sθ . However, in the case of n∗ = 3 and higher,
terms such as x3x

2
2/(1 + ωT ω) that cannot be shown to be

bounded for all ω will appear in ωT ω̇. Therefore, in the case of
n∗ ≥ 3, there is a structural obstacle preventing the use of the
normalization in the adaptive law. This leads to the full-order

observer approach discussed in the following section.

C. General Continuously Differentiable f

For simplicity, the attention is focused on the case of relative

degree n∗ = 3. The plant of relative degree 3 is described by

ẋ1 = x2 + θf(x1)

ẋ2 = x3

ẋ3 = u.

The objective is to design a control input u(t) such that x ∈
L∞ and limt→∞[x1(t) − xm1(t)] = 0, where xm1(t) is an
output of the reference model

ẋm1 = xm2

ẋm2 = xm3 (13)

ẋm3 = −k1xm1 − k2xm2 − k3xm3 + k1r,

where k1, k2, k3 satisfy the Hurwitz condition k2k3 > k1.

In this case the design of the ideal control law is based on the

following coordinate transformation:

z∗1 = x1

z∗2 = x2 + θf

z∗3 = x3 + θf ′z∗2 .

It follows that

ż∗1 = z∗2

ż∗2 = z∗3

ż∗3 = u + θf ′′z∗22 + θf ′z∗3 .

Thus the ideal control law is chosen as:

u = −k1z
∗
1 − k2z

∗
2 − k3z

∗
3 + k1r − θf ′′z∗22 − θf ′z∗3 .

The main idea behind the proposed approach is to build

three observers to generate three parameter estimates to avoid

repeated differentiation of the adaptive law. This approach is

described by the following 3 steps:

Step 1: Let z1 = x1. The first observer is chosen as

˙̂z1 = x2 + θ̂f − λ1e1,

where e1 = ẑ1− z1. The resulting error equation and adaptive

law are of the form:

ė1 = −λ1e1 + θ̃f,
˙̃
θ =

˙̂
θ = −γ1fe1,

where θ̃ = θ̂− θ. A tentative Lyapunov function is chosen as:

V1(e1, θ̃) = 1
2 (e2

1 + θ̃2

γ1

). Its derivative yields:
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V̇1(e1, θ̃) = −λ1e
2
1 ≤ 0, ∀(e1, θ̃) 6= (0, 0).

Hence e1 ∈ L∞, θ̃ ∈ L∞, and also e1 ∈ L2.

Step 2: Let z2 = x2 + θ̂f . It follows that

ż2 = x3 +
˙̂
θf + θ̂f ′(x2 + θf).

The second observer is then designed as

˙̂z2 = x3 − γ1e1f
2 + θ̂f ′(x2 + ϕ̂f) − λ2e2,

where e2 = ẑ2 − z2, and a new estimate of θ is denoted by ϕ̂.
The resulting error equation and adaptive law are of the form:

ė2 = −λ2e2 + ϕ̃θ̂f ′f

˙̃ϕ = ˙̂ϕ = −γ2θ̂f
′fe2,

where ϕ̃ = ϕ̂−θ. A tentative Lyapunov function is now chosen

as: V2(e2, ϕ̃) = 1
2 (e2

2 + ϕ̃2

γ2

). Its derivative results in

V̇2(e2, ϕ̃) = −λ2e
2
2 ≤ 0, ∀(e2, ϕ̃) 6= (0, 0).

This implies that e2 ∈ L∞, ϕ̃ ∈ L∞, and also e2 ∈ L2.

Step 3: Let z3 = x3 − γ1e1f
2 + θ̂f ′(x2 + ϕ̂f). Hence

ż3 = − γ1(−λ1e1 + (θ̂ − θ)f)f2 − 2γ1e1ff ′(x2 + θf)

− γ1fe1f
′(x2 + ϕ̂f) + θ̂f ′′(x2 + θf)(x2 + ϕ̂f)

+ θ̂f ′(x3 − γ2θ̂f ′f2e2 + ϕ̂f ′(x2 + θf)) + u.

The third observer is then designed as
˙̂z3 = − γ1(−λ1e1 + (θ̂ − ρ̂)f)f2 − 2γ1e1ff ′(x2 + ρ̂f)

− γ1fe1f
′(x2 + ϕ̂f) + θ̂f ′′(x2 + ρ̂f)(x2 + ϕ̂f)

+ θ̂f ′(x3 − γ2θ̂f
′f2e2 + ϕ̂f ′(x2 + ρ̂f)) + u − λ3e3,

where e3 = ẑ3 − z3 and ρ̂ is a new estimate of θ. The error
equation and the adaptive law are now given as:

ė3 = ρ̃(γ1f
3 − 2γ1e1f

2f ′ + θ̂ff ′′(x2 + ϕ̂f) + θ̂ϕ̂ff ′2) − λ3e3

˙̂ρ = −γ3(γ1f
3−2γ1e1f

2f ′+θ̂ff ′′(x2+ϕ̂f)+θ̂ϕ̂ff ′2)e3,

where ρ̃ = ρ̂− θ. A tentative Lyapunov function is chosen as:

V3(e3, ρ̃) = 1
2 (e2

3 + ρ̃2

γ3

). Its derivative yields

V̇3(e3, ρ̃) = −λ3e
2
3 ≤ 0, ∀(e3, ρ̃) 6= (0, 0).

It follows that e3 ∈ L∞, ρ̃ ∈ L∞, and e3 ∈ L2.

By applying the following general CEAC control law

u = γ1(−λ1e1 + (θ̂ − ρ̂)f)f2 + 2γ1e1ff ′(x2 + ρ̂f)

+ γ1fe1f
′(x2 + ϕ̂f) − θ̂f ′′(x2 + ρ̂f)(x2 + ϕ̂f)

− θ̂f ′(x3 − γ2θ̂f
′f2e2 + ϕ̂f ′(x2 + ρ̂f))

− k1ẑ1 − k2ẑ2 − k3ẑ3 + k1r,

it follows that

˙̂z = Amẑ − Λe + Br,

where Λ = diag[λ1 λ2 λ3]. Since e is bounded, so is z. It
can now be readily shown using standard arguments that all

the signals in the system are bounded and limt→∞(x1(t) −
xm1(t)) = 0.

Comment: Results from this section can be readily extended

to systems in the following pure-feedback form:

ẋ1 = x2 + θT
1 f1(x1)

ẋ2 = x3 + θT
2 f2(x1, x2)

...

ẋn = u + θT
n fn(x1, x2, . . . , xn).

V. Concluding Remarks

In this paper a Certainty Equivalence Adaptive Control

(CEAC) strategy for plants with unmatched uncertainty was

proposed. It was shown that, in the case of linear plants of any

relative degree and a class of nonlinear plants of relative degree

two, a CEAC control strategy, in conjunction with a reduced-

order observer and an adaptive law with normalization, results

in a stable overall system in which the tracking control

objective is achieved asymptotically.

In the case of nonlinear plants with a general continuously

differentiable nonlinearity, a CEAC-based control law is used

along with multiple observers and adaptive laws to assure

system stability. In this case the overall design is relatively

complicated which is primarily due to the comlexity of the

problem arising from nonlinearity, high relative degree and

unmatched uncertainty. Despite the complex design, results

from the paper appear to be the first ones developing a stable

indirect adaptive control scheme for nonlinear plants with

unmatched uncertainty in the case of state feedback.

Future work will be focused on the transient properties of

the overall adaptive control systems, as well as on a study of

propagation of parameter estimates through multiple adaptive

observers.
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