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Abstract— In this paper we apply dynamic feedback lin-
earization to the tracking problem for a turbocharged diesel
engine (TDE) equipped with exhaust gas recirculation (EGR)
valve and variable geometry turbocharger (VGT). The model
used here is the third-order mean-value model, a reduction of
the eighth-order mean-value one, see [13], for sake of simplicity.
Our goal is to track desired values of suitably chosen outputs.
In fact, we first plan to control the input manifold pressure
and the compressor mass flow rate instead of the air fuel ratio
(AFR) and the EGR fraction. Unfortunately, the former lead to
a non-minimum phase system while the latter are not accessible
for measurements in a vehicle, see [7]. We thus replace the
problem of tracking of desired values of the original output
y (input manifold pressure and compressor mass flow rate)
by that of tracking a suitably constructed modified output for
which the values to be tracked are specifically chosen: namely,
when the modified output ỹ approaches them, the original
output converges to the desired values. Simulation results are
presented.

I. INTRODUCTION

In order to comply with more constraining European

emission regulations, refer to [1] (Euro norms see [16] and

[17]), car manufacturers introduce in some diesel engines

two actuators: the exhaust gas recirculation (EGR) valve

and the variable geometry turbocharger (VGT). The former

permits recirculation of exhaust gas into the intake manifold

reducing by this way the formation of NOx while the latter

permits the improvement of the relatively low power diesel

engine density. But some drawbacks have to be underlined:

an important reduction of the amount of fresh air leads to an

increase in particulate emissions and possibly visible smoke

whereas a low amount of EGR fraction leads to an increase

in NOx emissions, see [7].

To render these two actuators more efficient during com-

bustion, several control design methods have been proposed:

polynomial control in [2], dynamic feedback linearization in

[12] and [13], optimal nonlinear control in [14], constructive

Lyapunov control in [7], indirect passivation in [9], passiva-

tion in [8], predictive control in [3], [4] and [11], etc.

The output y of to-be-controlled variables, which con-

sists of the input manifold pressure p1 and the compressor

mass flow rate Wc, leads to a non-minimum phase system.

Therefore we propose another choice of output (whose zero

dynamics are trivial) such that if that modified output ỹ

tracks a suitably chosen value, then the original output

y(t) converges asymptotically to its desired value. In [3]

we solved the tracking problem for the TDE model using
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nonlinear predictive control. In [13], Plianos et al. apply

dynamic feedback linearization based on the property of

flatness to a reduced-order TDE model. Pursuing their work,

this paper presents a more general result on the application

of the dynamic feedback linearization control design method

to the simplified TDE model. Indeed, we see, with notions of

geometric control that for each suitably chosen vector output,

the third-order nonlinear model remains dynamic feedback

linearizable with a trivial zero dynamics. To argue this, we

chose a different vector output from that of Plianos et al. in

[13] for this study.

The paper is organized as follows: in Section II a descrip-

tion of TDE is given and its simplified model is presented

with a brief remind on the eighth-order one. Vector output

is chosen. In Section III we examine the behavior of zero

dynamics and propose a modification of the output. A

construction of a dynamic extension of the simplified model

and a general result about the TDE outputs choice are given

in Section IV. Section V presents the control law derived

from feedback linearization theory while simulation results

are presented in Section VI. Conclusion and some future

research directions are briefly given in Section VII.

II. TURBOCHARGED DIESEL ENGINE: DESCRIPTION,

MODEL AND OUPUTS CHOICE

A. Description of TDE functioning

A schematic diagram (see Fig. 1) of TDE is presented be-

low. At the top of this diagram is the turbocharger composed

of the turbine and the compressor. During the functioning

of TDE, the turbine takes its energy from the exhaust gas.

As it is linked to the compressor via a common shaft, the

compressor starts rotating, bringing consequently fresh air

into the combustion chambers via the intercooler and the

intake manifold. A part of the exhaust gas is recirculated into

the combustion chambers to reduce NOx formation refer to

[7].

B. Reduced-order model

The following presented nonlinear model (1) is a simpli-

fied model from the eighth-order one briefly outlined in [13]:

ṗ1 = k1(Wc + Wegr − kep1) + Ṫ1

T1

p1

ṗ2 = k2(kep1 − Wegr − Wt + Wf ) + Ṫ2

T2

p2

Ṗc = 1
τ
(ηmPt − Pc)

, (1)

where the compressor (resp. the turbine) mass flow rate

is related to the compressor (resp. the turbine) power as

follows:

Wc = Pc

kc

p
µ
1 − 1

(2)
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Fig. 1. Turbocharged diesel engine (TDE)

(

resp. Pt = kt

(

1 − p
−µ
2

)

Wt

)

. (3)

Despite of the fact that the real inputs are the EGR valve

and VGT openings, the considered inputs, in this study, for

sake of simplicity, are u1 = Wegr and u2 = Wt, see [13].

In the sequel, Ṫ1 and Ṫ2 are assumed to vanish because

their corresponding measured signals T1 and T2 have very

slow variations, see [7]. The fuel mass flow rate Wf is

regarded as an external disturbance and will not be taken

into account for the synthesis of the controller. This yields

the following system:

ṗ1 = k1(Wc + u1 − kep1)
ṗ2 = k2(kep1 − u1 − u2)

Ṗc = 1
τ
(ηmPt − Pc)

. (4)

Replacing Wc and Pt by their expressions (2) and (3) and

denoting K0 = ηm

τ
kt yield the system:

ẋ = f(x) + g1(x)u1 + g2(x)u2, (5)

where

f(x) =













k1kc
Pc

p
µ
1
−1

− k1kep1

k2kep1

−Pc

τ













, (6)

g1(x) =





k1

−k2

0



 and g2(x) =





0
−k2

K0

(

1 − p
−µ
2

)



 (7)

and x = (p1, p2, Pc) belong to the set Ω, see [7], defined by

Ω = {(p1, p2, Pc) : 1 < p1 < pmax
1 ,

1 < p2 < pmax
2 , 0 < Pc < Pmax

c },
(8)

with the maximal values pmax
1 , pmax

2 , Pmax
c follow from

physical limits of TDE.

All the parameters of the model k1, k2, kc, ke, kt, τ and

ηm are identified from the eighth-order mean-value nonlinear

model at a constant speed of 1600 RPM and a fueling rate of

7.2 kg/h as said in a previous study, see [13]. The full-order

model consists of the equations of the change of pressures,

masses and fractions of burned gas in the intake and exhaust

manifolds. These six equations are completed by two more:

the turbocharger speed and the air mass flow rate in the pipe

connecting the compressor outlet and the intake manifold,

see [13]. For a detailed description of the full-order model

see [7] and [15]. The nomenclature of some TDE variables

is summarized in TABLE I, see [7] and [13].

TABLE I

NOMENCLATURE OF SOME DIESEL VARIABLES

Variable Description

EGR Exhaust gas recirculation

AFR Air fuel ratio

N Engine speed

F1 Intake manifold burned gas fraction

F2 Exhaust manifold burned gas fraction

m1 Mass of gas in the intake manifold

m2 Mass of gas in the exhaust manifold

p1 Gas pressure in the intake manifold

p2 Gas pressure in the exhaust manifold

Pc Compressor power

Pt Turbine power

We Total mass flow rate into the engine

Wc Compressor mass flow rate

Wt Turbine mass flow rate

Wf Fuel mass flow rate

Wegr EGR mass flow rate

V1 Intake manifold volume

V2 Exhaust manifold volume

T1 Intake manifold temperature

T2 Exhaust manifold temperature

Tc Compressor temperature

Te Temperature of the exhaust from the engine

Tegr EGR temperature

ωtc Turbocharger speed

Jtc Turbocharger moment of inertia

ηc Compressor isentropic efficiency

ηt Turbine isentropic efficiency

ηm Turbocharger mechanical efficiency

γ Specific heat ratio

R Specific gas constant

µ
γ−1

γ

C. Vector output choice

The output of to-be-controlled variables consists of the

input manifold pressure p1 and the compressor mass flow

rate Wc instead of the AFR and EGR fraction because the

latter are not accessible for measuraments in a vehicle, see

[7]. We thus consider the nonlinear system (4) (equivalently,

(5)-(7)) with the vector output:

y =

[

p1

Wc

]

(9)

and the goal is to track desired constant values p1d of p1 and

Wcd of Wc. In the sequel, we suppose that all the components

(p1, p2, Pc) of the state x measured or estimated.

III. ZERO DYNAMICS AND CHANGE OF THE OUTPUT

Consider the square-MIMO (m × m) nonlinear system

ẋ = f(x) +
∑m

j=1 gj(x)uj

y = (h1(x), . . . , hm(x))t,
(10)

where x ∈ Rn, u ∈ Rm and y ∈ Rm are the vectors state,

control, and output, respectively.

To simplify the exposition, the standard geometric notation

for Lie derivatives is used in this paper. For a real-valued
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function h on Rn and a vector field f on Rn, the Lie

derivative of h along f at x ∈ Rn is given by:

Lfh(x) =

n
∑

i=1

∂h

∂xi

(x)fi(x).

Inductively, we define

Lk
fh(x) = LfLk−1

f h(x) =
∂Lk−1

f h

∂x
(x)f(x),

with L0
fh(x) = h(x).

A. Vector relative degree

A system of the form (10) has a vector relative degree

(ρ1, · · · , ρm) if:

(i) for any x ∈ Rn

Lgj
Lk

fhi(x) = 0,

for all 1 ≤ i ≤ m, all 1 ≤ j ≤ m, and all 0 ≤ k < ρi − 1;

(ii) the m × m matrix (decoupling matrix)

A(x) =







Lg1
L

ρ1−1
f h1(x) · · · Lgm

L
ρ1−1
f h1(x)

...
...

Lg1
L

ρm−1
f hm(x) · · · Lgm

L
ρm−1
f hm(x)







(11)

is nonsingular for all x ∈ Rn (see, e.g., [6]).

For the third-order model (5)-(7) with the output (9), the

vector relative degree exists and (ρ1, ρ2) = (1, 1) for all

(p1, p2, Pc) ∈ Ω. The decoupling matrix is:

A(x) =

[

k1 0

−
µkck1Pcp

µ−1

1

(pµ
1
−1)2

−K0kc
p
−µ
2

−1

p
µ
1
−1

]

.

The sum of the vector relative degree components is equal

to 2 which is less than 3, the dimension of the state space

of system (5)-(7). Therefore one-dimensional zero dynamics

exist. An examination of their stability is necessary before

deriving the vector control law (assuring tracking the desired

output value).

B. Zero dynamics

Since the goal is to track a reference signal, which consists

of desired fixed values p1d and Wcd of the respective

components of the output y = (p1, Wc)
t, define the error

e =

[

p1 − p1d

Wc − Wcd

]

, (12)

between the to-be-controlled variables (p1, Wc) and their

desired values. The zero dynamics of the error are obtained

by applying the control annihilating identically the error e(t)
and thus are given by

ṗ2 = k2Wcd

[

1 −
(pµ

1d
−1)

ηmktkc(1−p
−µ
2

)

]

, (13)

which are unstable. Indeed, (13) has a single equilibrium

p2e =
[

1 −
p

µ

1d
−1

ηmktkc

]

−
1

µ ∼= 1.7 bar and the eigenvalue λ ∼= 25

of the linearization of (13) at p2e is positive, see Fig. 2

and Fig. 3. These numerical values are given for the values

p1d
∼= 1.6 bar and Wcd

∼= 0.07 kg/s that are, indeed,

natural for applications. It can be noticed, however, that the

instability of the zero dynamics (13) depends neither on the

choice of p1d nor of Wcd. The system is I-O decouplable
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Fig. 2. Unstable zero dynamics with initial condition of p20 = 1.6 bar
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Fig. 3. Unstable zero dynamics with initial condition of p20 = 1.8 bar

(via static feedback). So using I-O linearization we can

easily find a control law that steers the error e(t), given

by (12), asymptotically to zero (see, e.g., [6]). Unstable zero

dynamics will result, however, in an undesired property: the

internal variable p2 will not remain bounded, it will either

reach the limit value p2 = 1 in finite time (if p20 < p2e,

see Fig. 2) or will go to plus infinity with an asymptotically

constant velocity (if p20 > p2e, see Fig. 3). To avoid dealing

with unstable zero dynamics, we propose another choice of

vector output and a dynamic extension.

C. Change of the vector output

We will overcome the problem of unstable zero dynamics

by changing the output (9) such that the modified system

has trivial zero dynamics, that is, consisting of a single

equilibrium point. This can be achieved by keeping the first

component as p1 and replacing the second output component

by a function h̃2(x), where x = (p1, p2, Pc), such that,

indeed, Lg2
h̃2 = 0. Resolving this equation gives

h̃2(x) = Pc +
K0

k2

(

p2 −
1

1 − µ
p
1−µ
2

)

,

and thus we consider the new output ỹ(t) of to-be-controlled

variables defined by

ỹ = h̃(x) =

[

p1

Pc + K0

k2

(

p2 −
1

1−µ
p
1−µ
2

)

]

. (14)

In the next subsection we will show that the system (5)-(7)

with the output (14) has, indeed, trivial zero dynamics.

3460



As we specified, our problem is to track desired constant

values p1d of p1 and Wcd of Wc. A natural question is thus

how to reformulate the problem in terms of the components

of the new output ỹ, given by (14), in order to achieve a

solution of the original tracking goal. Notice that Wc, Pc,

and p1 are linked via the relation Wc = Pc
kc

p
µ
1
−1

and hence

the desired tracking values p1d and Wcd determine uniquely

the desired value Pcd of Pc as

Pcd = Wcd

p
µ
1d − 1

kc

.

Notice that given any fixed p1d and Pcd, there exists a

unique point xe = (p1e, p2e, Pce), satisfying p1e = p1d and

Pce = Pcd, and unique control values ue = (u1e, u2e) such

that the right hand side of (5)-(7) has an equilibrium at xe

when the controls are evaluated at ue. To see this, recall that

the equilibrium set of (5) consists of the points at which

we can create an equilibrium by a suitable feedback and

thus E = {x : f(x) ∈ span{g1(x), g2(x)}}. Observe that

the zero dynamics manifold of the error e, given by (12),

is Z∗

d = {p1 = p1d, Wc = Wcd} and is thus transversal

to the equilibrium set E. More precisely, the intersection

{xe} = E ∩ Z∗

d consists of a single equilibrium point

xe = (p1d, p2e, Pcd), with uniquely defined p2e, and there

exist unique control values ue = (u1e, u2e)
t ∈ R

2 such that

f(xe) + u1eg1(xe) + u2eg2(xe) = 0.

We will define the desired tracking value h̃2d of h̃2, the

second component of the new output ỹ (given by (14)), as

h̃2d = h̃2(xe) = Pcd +
K0

k2

(

p2e −
1

1 − µ
p
1−µ
2e

)

.

Notice that the zero dynamics manifold Z̃∗

d of the error

ẽ =

[

p1 − p1d

h̃2(x) − h̃2d

]

(15)

passes through the equilibrium point xe. Now a crucial

observation is that when the new output ỹ(t) tracks asymp-

totically the constant value (p1d, h̃2d) and the overall system

approaches the equilibrium point xe, then the original output

y(t) tracks asymptotically the desired values (p1d, Wcd). It

follows that in order to solve the tracking problem, it is

enough to show that the zero dynamics corresponding to

the new error (15) are asymptotically stable (for instance,

trivial consisting of xe only). The main idea of changing the

output is illustrated in Fig. 4. The zero dynamics, evolving

on Z∗

d , of the error (between the original output y(t) and

its desired value) are unstable. We look for a new output ỹ

and for its desired value such that the zero dynamics of the

new error are asymptotically stable and their manifold Z̃∗

d

intersect Z∗

d at an equilibrium point xe. A solution can be

either asymptotically stable dynamics on Z̃∗

d (as illustrated

by Fig. 4) or trivial zero dynamics reduced to the equilibrium

xe (which will be the case of our TDE model).

Fig. 4. Equilibrium set E and zero dynamics

IV. DYNAMIC EXTENSION OF THE SIMPLIFIED MODEL

AND GENERALIZATION ABOUT THE TDE OUTPUTS

CHOICE

In this section we will follow notions of geometric non-

linear control (see, e.g., [6] and [10]). The system (5)-(7)

with the output (14) has the decoupling matrix

Ã(x) =

[

k1 0

−
µkck1Pcp

µ−1

1

(pµ
1
−1)2

0

]

, (16)

which is not invertible, and thus the system has no a

vector relative degree. We can, however, construct a suitable

dynamic extension with a well defined relative degree. To

this end, put z = u1 = Wegr , ż = v1 and apply the new

vector control [v1, v2]
t, where v2 = u2 = Wt. This yields

the following extended nonlinear system

ṗ1 = k1(Wc + z − kep1)
ṗ2 = k2(kep1 − z − v2)

Ṗc = 1
τ
(ηmPt − Pc)

ż = v1,

(17)

which we can rewrite, denoting its extended state by xe =
(p1, p2, Pc, z)t ∈ Ω × [Wmin

egr ; Wmax
egr ] (where Wmin

egr and

Wmax
egr are the minimum and maximum values of the EGR

mass flow rate), as

ẋe = fe(xe) + ge
1(x

e)v1 + ge
2(x

e)v2, (18)

where

fe(xe) =









k1(kc
Pc

p
µ
1
−1

− kep1 + z)

k2(kep1 − z)

−Pc

τ

0









, (19)

ge
1(x

e) =









0
0
0
1









and ge
2(x

e) =









0
−k2

K0

(

1 − p
−µ
2

)

0









. (20)

The extended system (18)-(20) with the output (14) has the

vector relative degree (ρe
1, ρ

e
2) = (2, 2) and the invertible
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decoupling matrix

Ae(xe) =







k1 k1kcK0
1−p

−µ
2

p
µ
1
−1

K0(p
−1
2 − 1) µk2K0(z − kep1)p

−µ−1
2

+K0

τ
(p−µ

2 − 1)






.

(21)

The extended system is thus I-O decouplable and has trivial

zero dynamics (since the sum of the components of its vector

relative degree is ρe
1 + ρe

2 = 2 + 2 = 4, the dimension

of the state space of the extended system). Notice that the

original system (5)-(7), with the output (14), has trivial zero

dynamics too because the latter does not depend on invertible

endogenous feedback.

A natural question is whether a dynamic extension is

necessary. In other words, is it possible to choose another

output, say ȳ = h̄(x), such that the original system (5)-

(7), with the output ȳ, would have the vector relative degree

(ρ̄1, ρ̄2) = (2, 1). In this case, the original system would be

static feedback I-O decouplable with trivial zero dynamics

(with respect to the output ȳ) and no extension would be

needed. The answer is: this is impossible, independently of

the choice of the output ȳ = h̄(x). Indeed, if such an R
2-

valued function h̄ exists, then the original system (5)-(7)

would be static feedback linearizable. This is not the case,

however, because the distribution D = span {g1, g2} is not

involutive since the Lie bracket

[

g1, g2

]

=





0
0

−µk2K0p
−µ−1
2



 (22)

is independent of g1 and g2.

Another way of looking at the extension procedure that

we propose is to observe that although the system (5)-(7) is

not static feedback linearizable it is, however, flat, refer to

[5] and [13] (that is, dynamic feedback linearizable) since

any 3-dimensional system with noninvolutive distribution

D = span {g1, g2} is so and the components p1 and h̃2,

given by (14), or any other suitably chosen outputs, see

[13], of the new output ỹ are actually flat outputs (linearizing

outputs) of the system (5)-(7). Indeed, we can express the

state components p1, p2, Pc as well as the controls u1 and

u2 of the system using p1 and h̃2 and their time derivatives;

when calculating u2 we will have to differentiate u1 which

confirms that the system is dynamically (but not statically)

linearizable.

V. CONTROL LAW

In [3] we solved the tracking problem for the simplified

TDE model using nonlinear predictive control. In this section

we will linearize the extended system which will allow us

to calculate the control law that assures tracking desired

values of the modified output (14) which, in turn, guarantees

tracking the desired values of the original output (9) (as we

explained in Section III). The extension (18)-(20) of the TDE

model, together with the output (14), is I-O decouplable and

has trivial zero dynamics so the linearizing coordinates and

the linearizing feedback can be calculated as follows, see,

e.g., [6] and [10]. Introduce new coordinates

ϕ1
1 = h̃1(x

e) = p1

ϕ1
2 = Lfe h̃1(x

e) = k1

(

z − kep1 + kc

p
µ
1
−1

Pc

)

ϕ2
1 = h̃2(x

e)

ϕ2
2 = Lfe h̃2(x

e) = −Pc

τ
+ K0(kep1 − z)(1 − p

−µ
2 )

(23)

followed by the feedback

v(x) = Ae(xe)−1[−b(xe) + w] (24)

where Ae(xe) is the decoupling matrix (21), and b(xe) is

given by:

b(xe) =

















k2
1

(

ke +
µkcPcp

µ−1

1

(pµ
1
−1)2

)(

kc
Pc

p
µ
1
−1

+ z − kep1

)

+k1kc

τ
Pc

p
µ
1
−1

−Pc

τ2 − k1keK0(1 − p
−µ
2 )

(

kc
Pc

p
µ
1
−1

+ z − kep1

)

−µk2K0p
−µ−1
2 (kep1 − z)2

















.

This yields the following decoupled system:

ϕ̇1
1 = ϕ1

2

ϕ̇1
2 = w1

ϕ̇2
1 = ϕ2

2

ϕ̇2
2 = w2

with the output
ỹ1 = ϕ1

1

ỹ2 = ϕ2
1.

(25)

The desired tracking value p1d of ϕ1
1 is given while desired

tracking value h̃d of ϕ2
1 is deduced from Wcd and from the

requirement that xe
e = (p1d, p2e, Pcd, zd) is an equilibrium

point (see Section III). This yields

zd = u1d = kep1d − Wcd

p2e =
(

1 − Pcd

τK0Wcd

)(− 1

µ
)

hd = Pcd + K0

k2

(

p2e −
1

1−µ
p
1−µ
2e

)

.

(26)

The tracking control law is now calculated as

w =

[

K1
1 (ϕ1

1 − p1d) + K1
2ϕ1

2

K2
1 (ϕ2

1 − h̃2d) + K2
2ϕ2

2

]

=

[

K1
1ϕ1

1 + K1
2ϕ1

2

K2
1ϕ2

1 + K2
2ϕ2

2

]

−

[

K1
1p1d

K2
1 h̃2d

]

,

(27)

where Ki
j ∈ R are chosen so that, for i = 1, 2, the

polynomials λ2 − Ki
2λ − Ki

1 are Hurwitz. This control law

guarantees that output ỹ(t) tracks asymptotically the constant

values (p1d, h̃d) and therefore the original output y(t) tracks

asymptotically the desired values (p1d, Wcd).

VI. SIMULATION RESULTS

We chose as the output y(t) to be tracked a concatenation

of constant desired values p1d of p1 and Wcd of Wc,

corresponding to specific rate of emission of the engine,

in the neighborhood of that chosen by Plianos et al., see

[13]. The eigenvalues of the closed loop system are picked

up as -3 and -4 for the first subsystem and -2 and -1 for
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the second. The simulations have been done under Matlab

Simulink V 7.0, with the following characteristics: all ”step

sizes” and ”tolerances” are under the position ”auto” and

the used solver is ”Ode 23s (stiff/Mod. Rosenbrock). The

time of simulation is 40 s. We show in Figures 5, 6, 7

(zoom of Fig. 6) and 8 the behavior of the to-be-controlled

output y(t) = (p1(t), Wc(t)) as well as that of the second

component h̃2(x(t)) of the modified output ỹ(t).
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Fig. 7. Extended model (4th order): Zoom in on output h̃2 (denoted by

H) and its reference signal h̃2d (denoted by Hd)
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VII. CONCLUSIONS AND FUTURE WORKS

A. Conclusions

In this paper, a 3-dimensional nonlinear TDE model is

considered. In order to avoid dealing with unstable zero

dynamics we propose a solution of the tracking problem

based on two basic ingredients: change of the output (which

yields a system with a trivial zero dynamics) and dynamic

extension (which allows a simple calculation of a tracking

controller).

B. Future Works

In our study we suppose that all states are accessible for

measurements which may not always be the case in practice

(for instance, the gas pressure in the exhaust manifold is

not accessible for measurements). Therefore in our future

works we are planning to use a (nonlinear) observer for

that state of the turbocharged diesel engine TDE and to do

a comparative study between our controller based dynamic

feedback linearization and that of Plianos et al., see [13].

We are planning also to study robustness of the control law

with respect to the fuel mass flow rate Wf considered as an

external perturbation in this study.
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