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Abstract— The sensor network localization problem with
distance information is to determine the positions of all sen-
sors in a network given the positions of some sensors and
the distances between some pairs of sensors. We present a
sequential algorithm for estimating sensor positions when only
inaccurate distance measurements are available, and evaluate
the performance of the algorithm on simulations of randomly
deployed networks of 100 sensors.

I. INTRODUCTION

In many situations where wireless sensor networks are

used, only the positions of some of the sensors are known,

and the positions of the remaining sensors must be inferred

from the known locations and available inter-sensor distance

measurements. More formally, consider n sensors in the

plane labelled 1 through n, where the positions of some

sensors are known, and the measured distances between

some pairs of sensors are known. The sensors with known

positions are called anchors. Since ranging devices are never

exact, we consider the following model for the type of dis-

tance measurements obtained. For each inter-sensor distance

measurement d̃, we assume that an accuracy guarantee,

denoted by ε > 0, of d̃ is given such that the actual inter-

sensor distance is within ε of the measured distance d̃.

In general, sensor positions are not uniquely determined

by inaccurate distance measurements, and there may not

even exist a set of positions in the plane whose induced

inter-sensor distances match the measured distances exactly.

In [1], [2], it is pointed out that it is more important to

obtain position estimates which reflect certain geometric

properties of the configuration of the actual sensor positions,

rather than simply position estimates whose induced inter-

sensor distances are within some desired tolerance of the

given distance measurements. In [2], a modified spring based

relaxation method is used to obtain sensor estimates, and

it is shown via experimental evaluations that the estimated

positions reflect the general layout of the actual sensor

positions. Our work is most closely related to [1] where

the aim was to compute position estimates for subnetworks

called “robust quadrilaterals” with correctness guarantees.

More specifically, a robust quadrilateral is defined as a

subnetwork of four sensors such that distance measurements

among all four sensors are obtained, and an algorithm is

given which assigns position estimates to the sensors in

a robust quadrilateral only if the position estimates can
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be guaranteed to be free of “flip ambiguities” with high

probability [1].

Roughly speaking, position estimates are desired so that

the configuration of the estimated positions are approxi-

mately congruent to that of the actual positions. We capture

this notion using the concept of “correctly oriented” position

estimates which we define as follows. For two points p and

q in R
2, let l(p,q) denote the line segment with endpoints

p and q. For m ≥ 4 sensors labelled 1 through m and

i ∈ {1, . . . ,m}, let pi and p̂i denote the actual position and

estimated position of sensor i respectively. The estimated

positions are said to be correctly oriented if for all distinct

i, j,k, l ∈ {1, . . . ,m}, the line segments l(pi, p j) and l(pk, pl)
intersect if and only if the line segments l(p̂i, p̂ j) and

l(p̂k, p̂l) intersect. In Section V, we will show that correctly

oriented position estimates can be used to deduce important

properties of the configuration of actual sensor positions. The

key difficulty lies in determining if a set of position estimates

are correctly oriented without knowing the corresponding

actual sensor positions.

In [3] a sequential localization algorithm for exact distance

measurements was proposed in which the sensors of the

network are processed one by one in a pre-determined order.

That work was extended in [4], [5], [6] to a sequential

localization algorithm called Sweeps again for the case

of exact distance measurements. In this work, we present

an algorithm based on Sweeps, which we call “modified

Sweeps,” for estimating sensor positions of a network when

only inaccurate distance measurements can be obtained.

Furthermore, for each position estimate p computed by

modified Sweeps, an error bound e(p) is also computed such

that the maximum distance between the position estimate p

and the actual position is at most e(p). The error bounds can

be used by the final application to determine which sensor

estimates are precise enough to be useful. More importantly,

we give a sufficient condition for determining if a set of

position estimates with error bounds are correctly oriented

without knowing the corresponding actual sensor positions.

II. HIGH LEVEL DESCRIPTION OF MODIFIED SWEEPS

A candidate regions set of a sensor is a set consisting of

a finite number of regions in the plane with the property

that the actual position of the sensor is in one of the

regions. A candidate regions set is required to consist of

either all polygon regions or all disks, and we call each

disk or polygon in a candidate regions set of a sensor a

candidate region of the sensor. A candidate region of a

sensor is false if the region does not contain the sensor’s

position. Roughly speaking, modified Sweeps first computes
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a candidate regions set for each sensor by processing the

sensors one by one in some order, and then refines each

set by processing the sensors in a different ordering. More

specifically, to determine a candidate regions set for each

sensor, an ordering of the sensors is first determined so

that the anchors precede all other sensors in the ordering,

and each non-anchor sensor has at least one “predecessor”

in the ordering. A predecessor of a sensor is any other

sensor preceding it in the ordering such that the measured

distance between the two sensors is obtained. Assuming

such an ordering exists, the algorithm “sweeps” through the

network by processing the sensors sequentially according to

the ordering, beginning with the first non-anchor sensor in

the ordering. For each non-anchor sensor, a candidate regions

set is computed for the sensor using the measured distances

between the sensor and its predecessors, and the candidate

regions sets, or known positions, of its predecessors. Once

a candidate regions set has been computed for each sensor,

subsequent “refining” sweeps are performed to remove, if

possible, false candidate regions from each candidate regions

set. To perform a refining sweep, the sensors are again

processed sequentially according to a new ordering. In the

following, we will use singleton to refer to a set consisting

of exactly one element. For each non-anchor sensor v with a

non-singleton candidate regions set, the measured distances

between v and its predecessors, and the minimum and

maximum distances between sensor v’s candidate regions and

the candidate regions of its predecessors in the new ordering

are used for identifying false candidate regions of the sensor.

When two candidate regions are both disks or both polygons,

the minimum and maximum distances between them can be

efficiently computed, and it is for this reason that candidate

regions sets are constrained to consist of either all disks or

all polygons.

A sensor is localized if its candidate regions set consists

of a point, i.e. a disk or polygon with zero diameter. In

general, exact positions cannot be computed when distance

measurements are inaccurate, so the desired outcome for

each sensor is that after a finite number of sweeps through

the network, the candidate regions set of the sensor contains

just one candidate region with a “small” diameter. Whether

this will be the case will depend on the configuration of the

actual sensor positions and the accuracy guarantees of the

measured distances.

We now illustrate two key aspects of modified Sweeps,

namely generating and refining candidate regions sets, by

using modified Sweeps to estimate sensor positions of a

simple five node network. The network consists of five

sensors labelled a,b,c,u,v and positioned at points π(a),
π(b), π(c), π(u) and π(v) respectively, so that no three

of the sensor positions are collinear. Sensors labelled a, b

and c are anchors, and measurements d̃au, d̃bu, d̃av, d̃cv and

d̃uv are obtained with guaranteed accuracies εau, εbu, εav,

εcv and εuv, respectively. An ordering of the sensors is first

determined so that the anchors precede all other sensors,

and each non-anchor sensor has at least one predecessor.

One such ordering is a,b,c,u,v. The first “sweep” begins
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Fig. 1. (a) A five node network (b) Candidate regions of sensors u and v

(c) The region H(1) (d) The bounding quadrilateral of two circles (e) Four
circles satisfying Condition 1

by determining a candidate regions set for the first non-

anchor sensor, which in this case is u. Let Aa denote the

ring centered at π(a) with inner radius d̃au − εau and outer

radius d̃au + εau, and let Ab denote the ring centered at

π(b) with inner radius d̃bu − εbu and outer radius d̃bu + εbu.

Since dxu ∈ [d̃xu − εxu, d̃xu + εxu], x ∈ {a,b,v}, it follows

that π(u) ∈ Aa ∩ Ab. Suppose the two rings intersect in

two disjoint regions. A disk approximation of the ring

intersection is computed which consists of two disks whose

union is required to contain the regions of intersection. Let

Du and D
′
u denote the two disks in the approximation. See

Figure 1(a). Ideally, the disks in the approximation should be

as small as possible; however, we do not require this so. By

construction, the set {Du,D
′
u} is a candidate regions set for

sensor u. When distance measurements are exact, the two

rings will actually be circles and intersect in at most two

points, in which case the disk approximation should simply

be the set of intersection points. The candidate regions set

for sensor v is computed similarly using the positions of

anchors a and c, and the measured distances between sensor

v and those anchors. Suppose that the candidate regions set

computed for sensor v also consists of two disjoint disks

denoted Dv and D
′
v. In the actual modified Sweeps algorithm,

the candidate regions set of sensor u is also used in the

computation of the candidate regions set for sensor v since

u precedes v in the chosen ordering. However, we skip this

step in an effort to keep this example simple.

Since neither the candidate regions sets of sensors u nor v

are singletons, a refining sweep will be performed to identify

false candidate regions. Without loss of generality, suppose

π(v) ∈ Dv and π(u) ∈ Du. The idea behind identifying false

candidate regions is based on the simple observation that if

π(v) ∈ D
∗, where D

∗ is a candidate region in the candidate

regions set of sensor v, then there must be at least one

candidate region D in the candidate regions set of sensor

u, namely the candidate region which contains π(u), such

that: [dmin(D
∗,D),dmax(D

∗,D)] ∩ [d̃uv − εuv, d̃uv + εuv] 6= /0.

Hence, if for some candidate region D
∗ of v, we have that

[dmin(D
∗,D),dmax(D

∗,D)]∩ [d̃uv − εuv, d̃uv + εuv] = /0 for all

disks D in the candidate regions set of u, then it cannot be

the case that π(v)∈D
∗. In this case D

∗ can be removed from

the candidate regions set of v to obtain a smaller candidate

regions set.

To refine the candidate regions set computed for sensor v,

we process the sensors in the ordering u,v,a,b,c. Suppose

the disks Du, D
′
u, Dv, and D

′
v are positioned in the plane as
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shown in Figure 1(b). If εuv is not too “large”, then [dmin(D
′
v,

Du),dmax(D
′
v,Du)] and [dmin(D

′
v, D

′
u),dmax(D

′
v,D

′
u)] are both

disjoint from the interval [d̃uv − εuv, d̃uv + εuv]. This implies

π(v) /∈ D
′
v and so D

′
v can be removed from the candidate

regions set of v to obtain the new candidate regions set {Dv}.

After the second refining sweep, {Du,D
′
u} and {Dv} are

the new candidate regions sets of u and v respectively. A

different ordering is now chosen so as to refine the candidate

regions set of sensor u by a similar procedure in a third

refining sweep. Whether false candidate regions of sensors

u and v can be identified depends on the configuration of

the actual sensor positions, and the guaranteed accuracies

of the distance measurements. Intuitively, and as have been

confirmed by experimental evaluations, the more accurate the

distance measurements are, i.e. as εi j → 0 for each measured

distance d̃i j, the more likely it is that the candidate regions

sets can be refined to be a singleton.

III. BACKGROUND

A multi-point p = {p1, . . . , pn} in d-dimensional space is

a set of n points in R
d labelled p1, . . . , pn. A multi-point is

generic if the elements of the set consisting of the coordinates

of its points do not satisfy a non-zero polynomial equation

with rational coefficients. Because we are only concerned

with networks in the plane, we will henceforth restrict our

attention to the case of d = 2. A graph with vertex set V and

edge set E is denoted by (V ,E ). A point formation in R
2 of

n points at a multi-point p = {p1, . . . , pn} consists of p and

a simple undirected graph G with vertex set V = {1, . . . ,n},

and is denoted by (G, p). If (i, j) is an edge in G, then

the length of edge (i, j) in the point formation (G, p) is the

distance between pi and p j. Two point formations with the

same graph have the same edge lengths if the length of each

edge in the graph is the same in both point formations. Two

point formations with the same graph are congruent if all

inter-vertex distances are the same. A point formation (G, p)
in R

2 is globally rigid in R
2 if each point formation in the

plane with the same graph and edge lengths is congruent to

(G, p). For any multi-point p = {p1, . . . , pn} in R
2 and ε > 0,

let Bp(ε) denote the set of all multi-points q = {q1, . . . ,qn}
in R

2 where ‖ pi −qi ‖< ε for all i ∈ {1, . . . ,n}. A graph G

is said to be globally rigid in R
2 if there exist multi-point p

in R
2 and ε > 0 such that (G,q) is globally rigid in R

2 for

all q ∈ Bp(ε). It is known that if a multi-point p in R
2 is

generic, then the point formation (G, p) is globally rigid in

R
2 if and only if G is globally rigid in R

2[7], [8].

A network with n sensors is modelled by a point formation

(G, p) where each sensor corresponds to exactly one vertex

of G, and vice versa, with (i, j) being an edge of G if the

sensors corresponding to i and j are both anchors or if i

and j are distinct and the distance measurement between

the corresponding sensors is obtained, and p = {p1, . . . , pn}
where pi is the position of the sensor corresponding to vertex

i. We say that G is the graph of the network, and p is

the multi-point of the network. Since almost all multi-points

are generic, we will restrict our attention to those networks

with generic multi-points. In particular, this implies no two

sensors occupy the same point and no three sensors are

collinear in the networks we consider.

A network in which all distance measurements are exact is

localizable if there corresponds exactly one position to each

non-anchor sensor so that the given inter-sensor distances are

satisfied. We consider the natural extension of this definition

to networks with inaccurate distance measurements where

computing exact sensor positions is (in general) impos-

sible. We say that a network of n sensors positioned at

π(1), . . . ,π(n) respectively is localizable with precision ρ
just in case for all points p1, . . . , pn ∈R

2 where pi = π(i) for

all anchors i and ‖ pi− p j ‖∈ (d̃i j−εi j, d̃i j +εi j) for each dis-

tance measurement d̃i j with guaranteed accuracy εi j, we have

that ‖ pi − π(i) ‖≤ ρ for all i ∈ {1, . . . ,n}. When distance

measurements are exact, a network is localizable if and only

if the network has three anchors and the graph of the network

is globally rigid in R
2[9]. When the distance measurements

in a network are inaccurate, it is straightforward to show

from the definitions that if the graph of a network is not

globally rigid in R
2, then there exists ρ > 0 such that the

network is not localizable with precision ρ .

IV. MODIFIED SWEEPS

In the following, let N be a network of n sensors labelled

1 through n where each sensor i is positioned at π(i). Let

G = (V ,E ) denote the graph of N where V = {1, . . . ,n},

and each vertex i corresponds to sensor i. For each vertex

v, let N (v) denote the set of vertices adjacent to v in G.

We assume there are at least three anchors and that G is

connected. For each (i, j) ∈ E where at least one of i or j is

a non-anchor sensor, let d̃i j denote the distance measurement

obtained between sensors i and j, and let di j denote the actual

distance between sensors i and j. For each measured distance

d̃i j, let εi j denote the guaranteed accuracy of the measured

distance. This implies that di j ∈ [d̃i j − εi j, d̃i j + εi j] for each

distance measurement d̃i j. To avoid degenerate cases, we

assume that εi j < d̃i j for all measured distances d̃i j.

A mapping α has as its domain a non-empty subset U

of V , and α(u), u ∈ U , are either all disks or all polygons

in the plane. Given any mapping α with domain U , α is

called a disk (polygon) mapping if α(u) is a disk (polygon)

for all u∈U . For mapping α , let ∆(α) denote the domain of

α . Two mappings α and β are said to be consistent, and we

write α ∼ β , if there does not exist u∈∆(α)∩∆(β ) such that

α and β do not map u to the same region in the plane. For

any positive integer k, consider a collection of k pairwise

consistent mappings α1, . . . ,αk which are either all disk

mappings or all polygon mappings. Let uk(α1, . . . ,αk) denote

the mapping with domain
⋃

i∈{1,...,k} ∆(αi) whose restriction

to ∆(αi) is equal to αi for each i ∈ {1, . . . ,k}. For a disk or

polygon P in the plane, let centroid(P) denote the centroid

of the convex hull of the points in P, and let radius(P)
denote the maximum distance between centroid(P) and the

boundary of P. For positive reals d and ε , let A(P,d,ε)
denote the ring centered at centroid(P) with outer radius

d + ε + radius(P), and inner radius d − ε − radius(P) if

d − ε − radius(P) > 0, and zero otherwise.
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Consider sensor v and suppose that the measured dis-

tances between v and sensors u1, . . . ,um are given. For

i ∈ {1, . . . ,m}, let di denote the measured distance be-

tween sensor v and sensor ui, and let εi denote the ac-

curacy guarantee of di. Suppose α1, . . . ,αm are m pair-

wise consistent mappings such that ui ∈ ∆(αi) for each

i ∈ {1, . . . ,m}, and v /∈
⋃

i∈{1,...,m} ∆(αi). The mappings

α1, . . . ,αm are also required to be either all disk mappings

or all polygon mappings. If
⋂

i∈{1,...,m}A(αi(ui),di,εi) 6= /0,

then any collection of disks or polygon regions in the

plane containing
⋂

i∈{1,...,m}A(αi(ui),di,εi) can be consid-

ered a candidate regions set of sensor v assuming αi(ui)
contains the position of ui for each i ∈ {1, . . . ,m}. We

aim to define the set M (α1, . . . ,αm,v,u1, . . . ,um) with

the goal of keeping track of the candidate regions of

sensor v assuming the position of each ui is contained

in the region αi(ui). If
⋂

i∈{1,...,m}A(αi(ui),di,εi) = /0,

then let M (α1, . . . ,αm,v,u1, . . . ,um) = /0. Now suppose
⋂

i∈{1,...,m}A(αi(ui),di,εi) consists of c > 0 pairwise disjoint

regions. Let Pv1, . . . ,Pvc be c regions whose union contains
⋂

i∈{1,...,m}A(αi(ui),di,εi). If α1, . . . ,αm are all disk (poly-

gon) mappings, then we require that Pv1, . . . ,Pvc all be disks

(polygons). Ideally, each Pv j, j ∈ {1, . . . ,c}, would be the

disk or polygon with the smallest diameter which contains

one of the contiguous region in
⋂

i∈{1,...,m}A(αi(ui),di,εi).
However, the modified Sweeps algorithm does not require

this to be so. 1 If
⋂

i∈{1,...,m}A(αi(ui),di,εi) consists of

a finite number of points, then Pv1, . . . ,Pvc should simply

be the set of intersection points. Let β1, . . . ,βc denote

mappings with domain {v} ∪
⋃

i∈{1,...,m} ∆(αi) defined as

follows. For each j ∈ {1, . . . ,c}, let β j(v) be Pv j, and

for i ∈ {1, . . . ,m} and each u ∈ ∆(αi), let β j(u) = αi(u).
Define M (α1, . . . ,αm,v,u1, . . . ,um) as {β1, . . . ,βc}. Modified

Sweeps will use M as the basis for computing candidate

regions sets of sensors.

Let P1 and P2 be either two disks or two polygons in the

plane. Let min(P1,P2) and max(P1,P2) denote the minimum

and maximum distance, respectively, between P1 and P2.

Let I(P1,P2) denote the real line interval with left endpoint

min(P1,P2) and right endpoint max(P1,P2).

A. Algorithm

For notational convenience, we will in the following only

consider polygon mappings, and any reference to mappings

will mean polygon mappings. Let [v] = v1,v2,v3, . . . ,vn be

an ordering of N’s sensors where v1,v2,v3 are anchors and

each vi where i > 3 is adjacent to at least one vertex v j where

j < i. For vi, i ∈ {1,2,3}, let αi be the mapping with domain

{vi} where αi(vi) is the given position of vi. For i ∈ {1,2,3},

let S (vi,1) = {αi}. The sets S (vi,1), i > 3, are computed

iteratively as follows. For vi, i > 3, let u1, . . . ,um denote

the vertices in N (vi)∩ {v1, . . . ,vi−1}. Define S (vi,1) as

the union of all M (α1,α2, . . . ,αm,vi,u1,u2, . . . ,um), where

1In the instance of the modified Sweeps algorithm we implemented, we
used a simple algorithm to determine a set of polygons whose union contains⋂

i∈{1,...,m} A(αi(ui),di,εi), which our experimental evaluations on randomly
deployed networks suggest is both computationally efficient and adequate.

α j ∈ S (u j,1) for each j ∈ {1, . . . ,m} and α j ∼ αk ∀ j,k ∈
{1, . . . ,m}. Each S (v,1) consists of a finite number of disk

mappings, and for each sensor v, the set {α(v) | α ∈S (v,1)}
is a candidate regions set for sensor v. We call {α(v) | α ∈
S (v,1)} the candidate regions set of sensor v obtained by

the first sweep.

Suppose for some k ≥ 1 that S (v,k), v ∈ V , have been

computed, and that for each sensor v, the set {α(v) | α ∈
S (v,k)} is a candidate regions set for sensor v. Let u1, . . . ,un

be any ordering of the vertices (not identical to the ordering

used to compute S (v,k), v ∈ V ) such that at least one

vertex ui is adjacent to some vertex u j where j < i, and all

vertices v where S (v,k) is a singleton precede all vertices

u where S (u,k) is not a singleton. For each vertex ui, let

P(ui) denote the set N (ui)∩{u1, . . . ,ui−1}. Let s denote

the number of vertices v for which S (v,k) is a singleton.

If i ∈ {1, . . . ,s} or P(ui) = /0, then define S (ui,k + 1) =
S (ui,k). For i ∈ {s + 1, . . . ,n} where P(ui) 6= /0, the idea

behind obtaining S (ui,k+1) from S (ui,k) and S (w,k+1),
w∈P(ui), is as follows. By assumption, the set {α(ui) | α ∈
S (ui,k)} is a candidate regions set of sensor ui. Let P be

any candidate region of sensor ui from the set. Suppose that

for all w ∈P(ui), {α(w) | α ∈S (w,k+1)}, is a candidate

regions set of w. This implies that for all w ∈ P(ui), there

is a region P∗
w in {α(w) | α ∈ S (w,k +1)} which contains

the position of w. Suppose that for some sensor w ∈ P(ui)
that I(P,P′) is disjoint from [d̃wui

− εwui
, d̃wui

+ εwui
] for all

P′ ∈ {α(w) | α ∈ S (w,k + 1)}. This implies P cannot

contain the position of sensor ui, for if P did contain the

position of sensor ui, then I(P,P∗
w) is not disjoint from

[d̃wui
− εwui

, d̃wui
+ εwui

]. In this case we say that P is an

identified false candidate region of sensor ui. To obtain the

set S (ui,k + 1), we remove all mappings β from S (ui,k)
where β (ui) is an identified false candidate region of sensor

ui. Since only mappings β where β (ui) is a false candidate

region of ui is removed from S (ui,k) to obtain S (ui,k+1),
it follows that {α(ui) | α ∈ S (ui,k + 1)} must still be a

candidate regions set for sensor ui. In the following, for

notational convenience, let w1, . . . ,wm be the elements of

P(ui), and define S (ui,k +1) as:

S (ui,k +1) = {um+1(α,α1, . . . ,αm) | α ∈ S (ui,k),

α j ∈ S (w j,k +1) ∀ j ∈ {1, . . . ,m},

β ∼ γ ∀ β ,γ ∈ {α,α1, . . . ,αm},

I(α(ui),α j(w j))∩ [d̃uiw j
− εuiw j

, d̃uiw j
+ εuiw j

] 6= /0

∀ j ∈ {1, . . . ,m}} (1)

It can be shown that for each v ∈ V , the set {α(v) | α ∈
S (v,k +1)} is a candidate regions set for sensor v, and we

call it the candidate regions set of sensor v obtained by the

(k+1)th sweep. For each sensor v, the candidate regions set

of sensor v obtained by the (k +1)th sweep is a subset, not

necessarily proper, of the candidate regions set of sensor v

obtained by the kth sweep.

Suppose that for sensor v and some k ≥ 1 that S (v,k) has

been computed, and either S (v,k) is a singleton, or for all

mappings α,β ∈ S (v,k), α and β both map v to the same
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region in the plane. Furthermore, suppose there is at least one

mapping α ∈S (v,k) for which there exist u,w∈∆(α) where

distance measurements d̃uv and d̃wv are obtained, i.e. u,w ∈
N (v), and A(α(u), d̃uv,εuv)∩A(α(w), d̃wv,εwv) consists of

two disjoint regions. When the previous hold, the position

estimate of sensor v is taken to be the centroid of α(v) and

the error bound is taken to be radius(α(v)), where α is any

mapping in S (v,k).

V. CORRECTLY ORIENTED POSITION ESTIMATES

Consider in the plane a set of four sensors labelled 1,2,3,4
such that no three sensors are collinear. For i ∈ {1,2,3,4},

let pi and p̂i denote the actual and estimated position of

sensor i respectively, and suppose the estimated positions

are correctly oriented and no three of the estimated positions

are collinear. Let H(1) denote the region of the plane which

does not contain p1 and is bounded by the line segment

l(p2, p3) and the two half-lines both with origin at p1, and

containing the points p2 and p3, respectively. The regions

H(2),H(3) are defined analogously. See Figure 1(c) for an

illustration of H(1) which is the region of the plane bounded

by the dotted lines. The point p4 lies in H(1) if and only

if the line segments l(p1, p4) and l(p2, p3) intersect. Since

the estimated positions are correctly oriented, it follows that

l(p1, p4) intersects l(p2, p3) if and only if l(p̂1, p̂4) intersects

l(p̂2, p̂3). Therefore, using the estimated positions, it can be

determined if the actual position of sensor 4 lies in H(1).
By similar reasoning, the estimated positions can be used to

determine if p4 lies in H(2) and H(3). If the actual position

of sensor 4 does not lie in any of the Hi, i ∈ {1,2,3},

then the actual position of one of the sensors must lie in

the convex hull determined by the actual positions of the

other three sensors. Hence, a set of correctly oriented sensor

position estimates can be used to deduce properties of the

configuration of actual sensor positions.

In the following, we give a sufficient condition for deter-

mining if a set of position estimates (with error bounds) are

correctly oriented without knowing the corresponding actual

sensor positions. Let Ci and C j be two circles in the plane,

and let Q(Ci,C j) denote the smallest quadrilateral containing

both circles Ci and C j as shown in Figure 1(d). Consider

t > 3 sensors u1, . . . ,ut with estimated positions p̂1, . . . , p̂t

respectively. For i ∈ {1, . . . , t}, let ei denote the error bound

of p̂i, and let Di and Ci denote respectively the disk and

circle in the plane centered at p̂i with radius ei. Consider the

following condition on the geometry of C1, . . . ,Ct :

Condition 1: For all distinct i, j,k, l ∈ {1, . . . , t}, the

quadrilaterals Q(Ci,C j) and Q(Ck,Cl) are either disjoint,

or Q(Ci,C j) and Q(Ck,Cl) intersect in a quadrilateral Q

such that Q is disjoint from each of the circles Ci, C j, Ck,

Cl , and if e and e′ are opposite edges of Q, then both edges

are contained in Q(Ci,C j) or Q(Ck,Cl).

Figure 1(e) shows the relative positions of four circles in

the plane which satisfy Condition 1. Suppose Condition 1

holds for Ci, i ∈ {1, . . . , t}. Then for all distinct i, j,k, l ∈
{1, . . . , t}, and qi ∈ Di, q j ∈ D j, qk ∈ Dk, ql ∈ Dl , we have

that l(qi,q j) intersects l(qk,ql) if and only if l(p̂i, p̂ j) inter-

sects l(p̂k, p̂l). The previous implies p̂1, . . . , p̂t are correctly

oriented since the actual position of sensor ui is contained

in Di for each i ∈ {1, . . . , t}.

VI. EXPERIMENTAL EVALUATIONS

In our evaluations, we used Matlab to generate a random

network of 100 nodes using three input parameters R, m and

p, where R is the sensing range, m is the number of anchors,

and p is the noise factor. Sensor positions are randomly

generated from the distribution that is uniformly distributed

on the 1×1 two dimensional space, and m of those sensors

are randomly chosen to be anchors. For each pair of sensors

within sensing range R, a noisy distance measurement is

generated using the input parameter noise factor p. More

specifically, p is specified to be between zero and one, and

for each pair of sensors within sensing range, a distance

measurement d̃ is generated such that the actual inter-sensor

distance is within p · d̃ of the distance measurement. In other

words, the guaranteed accuracy of each generated distance

measurement is p ·100 percent of the distance measurement.

This corresponds to the notion that the distance measurement

between two sensors become less accurate as the inter-sensor

distance increases. For ease of implementation, we used

convex polygons to approximate ring intersection regions via

a simple algorithm using tangent lines and convex hulls.

We evaluated modified Sweeps on networks whose graphs

have “augmented bilateration” orderings. A graph is said to

have a bilateration ordering if its vertices can be ordered

so that v1,v2,v3 induce a complete subgraph, and each vi,

i > 3, is adjacent to at least two vertices v j where j < i.

A graph has an augmented bilateration ordering if it has a

bilateration ordering v1, . . . ,vn where v1,v2,v3 are anchors,

and if vi, i > 3, is adjacent to only two vertices v j where

j < i, then vi must be also adjacent to vi+1 and vi+1 is

adjacent to two vertices v j where j < i, at least one of

which is not adjacent to vi. A graph has a trilateration

ordering if its vertices can be ordered so that v1,v2,v3 induce

a complete subgraph, and each vi, i > 3, is adjacent to at least

three vertices v j where j < i. If the graph of a network in

the plane with a generic multi-point and three anchors has

either an augmented bilateration ordering or a trilateration

ordering, then the network is localizable. A graph’s aug-

mented bilateration orderings are said to be untrilaterable

if no such ordering is also a trilateration ordering. 2 In

our evaluations, we consider both networks whose graphs

have augmented bilateration orderings, and untrilaterable

augmented bilateration orderings. The ordering chosen for

the first sweep is an augmented bilateration ordering of the

network. For evaluation purposes, we implemented a slightly

altered version of modified Sweeps which we have found

to be more computationally efficient. More specifically, if

S (v,1) is a singleton for some v ∈ V , and α is the mapping

in S (v,1), then before proceeding with the first sweep, each

2It can be shown by an edge counting argument that a graph can have
an augmented bilateration ordering without possessing any trilateration
orderings.
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S (u,1), u ∈ P(v,1) 3, is refined by removing all mappings

β from S (u,1) where β (u) 6= α(u). Each {γ(u) | γ ∈
S (u,1)}, u ∈ P(v,1), remains a candidate region set for

sensor u after the refinement step. Using this slightly altered

version of modified Sweeps, we sweep through the network

only once.

We now discuss two scenarios in detail. We first consider

networks of 100 sensors whose graphs have an augmented

bilateration ordering for which the input parameters are:

R = 0.2, m = 15, and p = 0.08. We averaged the results

of modified Sweeps over 100 randomly deployed instances

of such networks with the aforementioned parameters. We

found that on average 47 of the 85 non-anchor sensors are

assigned a position estimate, and the average error bound was

0.0303, which is less than 1
6

of the sensing range. Hence, on

average, the actual position of a sensor can be guaranteed to

be within 0.0303 of its estimated position. The average of the

distance between each position estimate and the actual sensor

position did not exceed 0.02, and was in general far less than

the average error bound. As expected, when the noise factor

is decreased to 0.05, more sensors on average are assigned

position estimates, and the corresponding error bounds are

also lower. We next considered networks generated by the

same input parameters as the previous scenario. However,

after the network is generated, the sensors which are adjacent

to more than two anchors are identified, and for each such

sensor, distance measurements are generated only between

the sensor and two of the anchors the sensor is adjacent

to. Any augmented bilateration ordering of the graph of the

resulting network can thus be guaranteed to be untrilaterable.

We average the results over 100 instances of randomly

deployed networks with the aforementioned properties. Less

sensors in total are assigned position estimates by Sweeps

as compared to the previous scenario. More specifically, 40

of the sensors, as opposed to the previous 47, are assigned

position estimates. The average error bound of the position

estimates was 0.0366, which is just slightly higher than the

previous scenario.

Generally speaking, we found that as the sensing range or

the number of anchors of the network increased, the number

of sensors for which a position estimate was computed

increased. To illustrate this trend, we considered networks

of 100 sensors whose graphs have an augmented bilateration

ordering for which the input parameters are: R = 0.2, and

p = 0.05. By varying the number of anchors, we see what

effect this has on the number of sensors for which a position

estimate was computed and on the average error bound of the

position estimates. We found the most meaningful results to

occur when 10-25 anchors were used. There is a significant

amount of variation in the case when there are less than 10

anchors, due to the fact that the sample size is too small,

and 25 anchors resulted in almost perfect localization, so it

is unnecessary to consider cases of more than 25 anchors.

Twenty simulations were run for each of the following cases:

3P(v,1) denotes the set of sensors adjacent to v and preceding v in the
ordering of the first sweep.

10 anchors, 15 anchors, 20 anchors and 25 anchors, and

averaged in the Monte Carlo method. In Figure 2 on the

left, we see an increase in the number of sensors for which

a position estimate is computed as the number of anchors

increases from 10 to 25. In Figure 2 on the right, we see

that the mean error decreases from 0.0054 to 0.004 as the

number of anchors increases from 10 to 25, which is what

we expect.
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VII. CONCLUSION

In this paper we presented a sequential algorithm called

modified Sweeps for estimating sensor positions, together

with error bounds, of a network when only inaccurate

distance measurements and some anchor positions are avail-

able. We defined the concept of correctly oriented position

estimates, and give a sufficient condition on the estimated

positions and the corresponding error bounds in order to

guarantee that the estimated positions are correctly oriented.

For future work, we will evaluate the algorithm using dif-

ferent techniques for determining orderings. We also aim

to extend the proposed algorithm to a decentralized setting

and carry out more extensive experimental evaluations using

actual sensor data.
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