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Abstract— This paper defines a new class of hybrid systems
called piecewise polynomial (PWP) systems in strict form
and develops a backstepping controller synthesis methodology
for these systems. The main contribution of the paper is to
formulate controller design for a large class of PWP systems as
a convex feasibility problem. The controller synthesis problem
for PWP systems in strict feedback form is divided into two cases.
The first case consists of the construction of a sum of squares
(SOS) Lyapunov function for PWP systems with discontinuous
vector fields. The second case addresses the construction of
a piecewise polynomial Lyapunov function for PWP systems
with continuous vector fields. After constructing a (piecewise)
polynomial Lyapunov function, controller synthesis for a PWP
system can be formulated as an SOS program, which is a
convex optimization problem and can be solved efficiently
using available software. One major advantage of the proposed
method is the fact that it can handle systems with discontinuous
vector fields and sliding modes. The new synthesis method is
applied to a numerical example.

I. INTRODUCTION

PWP or spline approximation of curves and surfaces

has been widely used in many different scientific contexts

and engineering applications [1], [2]. However, the lack

of efficient methods to check the sign of polynomials has

prevented PWP systems to be commonly used in the field

of control systems. To the best of our knowledge, one of

the first attempts to design controllers for PWP systems was

made in [3]. Paul proposed in [3] to partition the state space

of an affine-in-the-input nonlinear system into cells and to

approximate the dynamics of the system in each cell by a

model that is polynomial in the state. A controller is designed

for each cell using feedback linearization. A global controller

is then formed by joining the individual cell controllers. The

proposed method was employed in [3] to design controllers

for a few nonlinear systems. However, there is no guarantee

that the closed loop system is stable because a switched

system consisting of stable subsystems can be unstable in

general [4].

For continuous time PWP systems, a stability analysis

method was proposed in [5] and [6] using piecewise poly-

nomial Lyapunov functions. The advantage of the proposed

method is that the analysis problem is formulated as a sum of

squares (SOS) programming, which is a convex optimization

problem. There exist numerical tools such as SOSTOOLS

[7] and Yalmip [8] to solve SOS programming problems

efficiently by converting them to semidefinite programs.
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However, systems with infinitely fast switching or sliding

modes are excluded from the discussion in [5] and [6].

The main contribution of this paper is to propose a back-

stepping technique to construct control Lyapunov functions

for a class of PWP systems. The proposed method formulates

the control synthesis problem for PWP systems in strict

feedback form as an SOS feasibility problem. The synthesis

of PWP controllers is formulated for two cases. The first case

addresses the construction of (SOS) Lyapunov functions for

PWP systems with discontinuous vector fields. The second

case deals with the construction of piecewise polynomial

Lyapunov functions for PWP systems with continuous vector

fields. After constructing a (piecewise) polynomial Lyapunov

function, controller synthesis for a PWP system can be

formulated as an SOS program. One major advantage of the

proposed method is the fact that it can handle systems with

discontinuous vector fields and sliding modes.

The paper is organized as follows. Mathematical prelimi-

naries are addressed in section II. Controller design for PWP

systems in strict feedback form is then described in section

III. Finally, a numerical example is presented in section IV

and conclusions are drawn in section V.

II. MATHEMATICAL PRELIMINARIES

A. SOS polynomials

An SOS polynomial is defined in the following.

Definition 1: [9] A multivariate polynomial

p(x1, . . . , xn) , p(x) is a sum of squares, if

there exist polynomials p1(x), . . . , pm(x) such that

p(x) =
∑m

i=1 p2
i (x).

SOS polynomials p(x) are globally nonnegative. Although

verifying nonnegativity of a polynomial is an NP-hard prob-

lem [10], the SOS condition can be formulated as a convex

problem in polynomial coefficients [11]. However, note that

not all nonnegative polynomials are SOS. For a tutorial about

recent system analysis techniques based on sum of squares

decomposition see [6].

B. PWP systems

The dynamics of a PWP system can be written as follows.

ẋ(t) = fi(x(t)), if x(t) ∈ Pi (1)

where x(t) ∈ R
n denotes the state vector and fi(x) ∈ R

n

are polynomial functions of x. The cells, Pi, i ∈ I =
{1, . . . ,M}, partition a subset of the state space X ⊂ R

n

such that ∪M
i=1Pi = X , Pi ∩ Pj = ∅, i 6= j, where Pi

denotes the closure of Pi. Each cell is described by

Pi = {x|Ei(x) ≻ 0} (2)
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where Ei(x) ∈ R
pi is a vector polynomial function of x and

“≻” represents an elementwise inequality.

C. Lyapunov stability

Consider the following piecewise smooth (PWS) system

ẋ = fi(x), x ∈ Pi (3)

where x(t) ∈ R
n denotes the state vector and the functions

fi(x) : Pi → R
n for i = 1, . . . ,M are continuous in x and

locally bounded. The Filippov definition [12] of trajectories

is considered for the solution of (3).

The following theorem describes sufficient conditions for

stability of system (3) in the sense of Lyapunov based

on a continuous Lyapunov function that is not necessarily

differentiable everywhere.

Theorem 1 ( [13]): For the PWS system (3), if there

exists a continuous function V (x) such that

V (0) = 0

V (x) > 0 for all x 6= 0 in X

t1 ≤ t2 ⇒ V (x(t1)) ≥ V (x(t2))

then x = 0 is a stable equilibrium point. Moreover if there

exists a continuous function W (x) such that

W (0) = 0

W (x) > 0 for all x 6= 0 in X

t1 ≤ t2 ⇒ V (x(t1)) ≥ V (x(t2)) +

∫ t2

t1

W (x(τ))dτ

and

‖x‖ → ∞ ⇒ V (x) → ∞ (4)

then all trajectories in X asymptotically converge to x = 0. �

Two propositions are provided in the following to describe

the sufficient conditions for the system (3) to be stable in

two cases of discontinuous and continuous vector fields. The

importance of these propositions lies in the fact that to check

the stability of the system, it suffices to verify a condition

on the candidate Lyapunov function and the vector field of

the subsystem in each region separately. There is therefore

no need to examine the candidate Lyapunov function in one

region with the vector field of another region, which would

make the problem much more complicated.

Proposition 1: (Smooth Lyapunov functions) The PWS

system (3) is asymptotically stable if there exists a positive

definite C1 function V (x) and a positive definite continuous

function W (x) so that V (0) = 0, W (0) = 0 and for all

x ∈ Pi, i = 1, . . . ,M

∇V (x)Tfi(x) ≤ −W (x) (5)

Proposition 2: (PWS Lyapunov functions) The PWS sys-

tem (3) is asymptotically stable if its vector field is con-

tinuous in x, i.e. for any i, j ∈ {1, . . . ,M} such that

Pi

⋂
Pj 6= ∅,

fi(x) = fj(x), ∀x ∈ Pi

⋂

Pj (6)

and there exists positive definite functions V (x) and W (x)
so that V (0) = 0, W (0) = 0 and

• V (x) is a continuous function where

V (x) = Vi(x), x ∈ Pi (7)

where Vi : Pi → R is a C1 function,

• W (x) is a continuous function,

• for all x ∈ Pi, i = 1, . . . ,M

∇V (x)T
i fi(x) ≤ −W (x) (8)

The Propositions 1 and 2 are not proved here due to lack of

space, but they can be obtained using the results in [14].

III. RECURSIVE BACKSTEPPING CONTROLLER DESIGN

In this section, a recursive PWP controller synthesis

method is proposed for strict feedback PWP systems, which

consist of different polynomial vector fields in different

regions of operation. The dynamics of this new class of

systems can be written in the form






ẋ1 = f1i1(x1) + g1i1(x1)x2, for x1 ∈ P1i1

ẋ2 = f2i2(x1, x2) + g2i2(x1, x2)x3, for [ x1

x2
] ∈ P2i2

...

ẋk = fkik
(x) + gkik

(x)u, for x ∈ Pkik

(9)

where x is the state vector of the system (9) and is divided

into k subvectors:

x =





x1

x2

...
xk



 ∈ R
n, xj ∈ R

nj , (10)

We use a notation for the regions in which the first index

represents the variable whose differential equation we are

interested in and the second index represents the number of

the region where the differential equation is valid. Following

this notation, for each j ∈ {1, 2, . . . , k}, the regions Pjij
for

ij = 1, . . . ,Mj are disjoint sets defined as

Pjij
=

{[
x1

...
xj

]∣
∣
∣
∣
∣
Ejij

(x1, . . . , xj) ≻ 0

}

(11)

where Ejij
(x1, . . . , xj) ∈ R

pj is a vector polynomial func-

tion and ≻ denotes an elementwise inequality. For a given j,

the regions Pjij
for ij = 1, . . . ,Mj partition the projection

of the state space X ⊂ R
n onto the (x1, . . . , xj) space.

It is assumed that for 1 ≤ j1 < j2, the projection of

each region Pj2ij2
for ij2 = 1, . . . ,Mj2 on the (x1, . . . , xj1)

space is a subset of only one of the regions Pj1ij1
for

ij1 = 1, . . . ,Mj1 . In other words, for each j1, j2 and ij2 ∈
{1, . . . ,Mj2}, where 1 < j2 ≤ k and j1 < j2, there exists a

unique number i(j1, j2, ij2) in {1, . . . ,Mj1} such that
[ x1

...
xj2

]

∈ Pj2ij2
⇒

[ x1

...
xj1

]

∈ Pj1i(j1,j2,ij2
) (12)

In addition, it is assumed that

fji⋆
j
(0, . . . , 0) = 0, ∀i⋆j ∈ Ij(0, . . . , 0) (13)

where

Ij(x1, . . . , xj) :=

{

ij

∣
∣
∣
∣
∣

[
x1

...
xj

]

∈ Pjij

}

(14)
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In what follows the stabilization problem for PWP systems in

strict feedback form is solved for two cases of PWP systems:

discontinuous and continuous vector fields.

A. PWP systems with discontinuous vector fields

To design a PWP controller for (9), we start from the

following subsystem

ẋ1 = f1i1(x1) + g1i1(x1)x2, for x1 ∈ P1i1 , (15)

with i1 = 1, . . . ,M1. It is assumed that there exist a poly-

nomial Lyapunov function V1(x1), a polynomial controller

x2 = γ1(x1) and a polynomial vector Γ1i1(x1) ∈ R
p1 such

that for i1 = 1, . . . ,M1







γ1(0) = 0
V1(0) = 0
V1(x1) − λ(x1) is SOS

−∇V1(x1)
T(f1i1(x1) + g1i1(x1)γ1(x1))

−Γ1i1(x1)
TE1i1(x1) − αV1(x1) is SOS

Γ1i1(x1) is SOS

(16)

where α > 0 is fixed and λ(x1) is a positive definite

polynomial. Note that we call a vector Γ1i1(x1) ∈ R
p1 SOS

if all the entries of the vector are SOS polynomials.

A polynomial controller can then be designed for the

following subsystem

{
ẋ1 = f1i1(x1) + g1i1(x1)x2, for x1 ∈ P1i1

ẋ2 = f2i2(x1, x2) + g2i2(x1, x2)x3, for [ x1

x2
] ∈ P2i2

(17)

Note that if f2i2(x1, x2) = 0 and g2i2(x1, x2) = 1, this

would be an integrator backstepping problem.

• Lyapunov function construction: We consider the fol-

lowing candidate Lyapunov function

V2(x1, x2) = V1(x1) +
1

2
(x2 − γ1(x1))

T(x2 − γ1(x1))

(18)

The synthesis problem can then be formulated as the

following SOS program.

• Controller synthesis:

Find x3 = γ2(x1, x2), Γ2i2(x1, x2)

such that

−∇x1
V2(x1, x2)

T(f1i(1,2,i2)(x1) + g1i(1,2,i2)(x1)x2)

−∇x2
V2(x1, x2)

T(f2i2(x1, x2) + g2i2(x1, x2)x3)

− Γ2i2(x1, x2)
TE2i2(x1, x2) − αV2(x1, x2) is SOS,

Γ2i2(x1, x2) is SOS

γ2(0, 0) = 0 (19)

where α > 0, i2 = 1, . . . ,M2 and γ2(x1, x2) is a

polynomial function of x1 and x2.

Note that if this SOS program is feasible then the pro-

cedure can be repeated for the next steps by adding the

dynamics of xi for i = 3, . . . , k. Assume that all SOS

programs in the backstepping procedure are feasible and at

the last step the following candidate Lyapunov function is

used:

Vk(x) = Vk−1(x1, . . . , xk−1)

+
1

2
(xk − γk−1(x1, . . . , xk−1))

T(xk − γk−1(x1, . . . , xk−1))

(20)

where γk−1(x1, . . . , xk−1) is a polynomial function. Since

the final controller u = γk(x) will not be used to construct

another SOS Lyapunov function, it does not have to be

continuously differentiable. Therefore, one can search for a

PWP control

u = γkik
(x), for x ∈ Pkik

(21)

for ik = 1, . . . ,Mk. This step can be formulated as the

following SOS program:

Find u = γkik
(x), Γkik

(x)

such that

−∇x1
V T

k (f1i(1,k,ik)(x1) + g1i(1,k,ik)(x1)x2)

−∇x2
V T

k (f2i(2,k,ik)(x1, x2) + g2i(2,k,ik)(x1, x2)x3)

− . . . −∇xk
V T

k (fkik
(x) + gkik

(x)u)

− Γkik
(x)TEkik

(x) − αVk is SOS,

Γkik
(x) is SOS (22)

for ik = 1, . . . ,Mk. The following theorem shows that if the

SOS program (22) is feasible then the PWP controller (21)

stabilizes the PWP system (9).

Theorem 2: Let there exist polynomial functions V1(x1)
and γ1(x1) satisfying (16). Let also Vj(x1, . . . , xj) for j =
2, . . . , k be defined as

Vj(x1, . . . , xj) = Vj−1(x1, . . . , xj−1)

+
1

2
(xj − γj−1(x1, . . . , xj−1))

T(xj − γj−1(x1, . . . , xj−1))

(23)

where

γj(

j arguments
︷ ︸︸ ︷

0, . . . , 0 ) = 0, j = 1, . . . , k − 1 (24)

and γ2(x1, x2) to γk−1(x1, . . . , xk−1) satisfy the corre-

sponding SOS conditions. Also assume that the PWP control

(21) satisfies the conditions of the SOS program (22). Then

the PWP control (21) makes the trajectories of the PWP

system (9) in X asymptotically converge to the origin.

Proof: It follows from (16) that V1(x1) ≥ λ(x1) and

since λ(x1) is positive definite,

V1(x1) > 0, if x1 6= 0 (25)

From (23) we have

Vk(x) = V1(x1) +

k∑

j=2

1

2
(xj − γj−1(x1, . . . , xj−1))

T

(xj − γj−1(x1, . . . , xj−1)) (26)
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Therefore, Vk(x) ≥ 0. Now assume for some x1, x2, . . . , xk

we have Vk(x) = 0. It follows from (26) that

V1(x1) = 0 (27)

and

xj = γj−1(x1, . . . , xj−1), j = 2, . . . , k (28)

From (24) and positive definiteness of V1(x1) it follows that

x1 = 0, x2 = 0, . . . , xk = 0. Therefore Vk(x) is a positive

definite function.

From (11) and (22), it follows that for ik = 1, . . . ,Mk

∇xVk(x)Tfik
(x) ≤ −αVk(x), for x ∈ Pkik

(29)

Now, from Proposition 1 it follows that the PWP system (9)

is asymptotically stable with the Lyapunov function Vk(x)
and W (x) = αVk(x).

B. PWP systems with continuous vector fields

In this section, it is assumed that the vector field of PWP

system (9) is continuous for x ∈ X . It is also assumed that

for the following subsystem

ẋ1 = f1i1(x1) + g1i1(x1)x2, for x1 ∈ P1i1 , (30)

with i1 = 1, . . . ,M1, there exist a continuous piecewise

polynomial Lyapunov function V1(x1) and a continuous

PWP controller x2 = γ1(x1) with







V1(x1) = V1i1(x1)

γ1(x1) = γ1i1(x1)
, for x1 ∈ Pi1 , (31)

such that γ1i1(x1) and V1i1(x1) are polynomials and that for

i1 = 1, . . . ,M1 we have






V1(0) = 0
γ1(0) = 0
V1i1(x1) − Λ1i1(x1)

TE1i1(x1) − λ(x1) is SOS

−∇V1i1(x1)
T(f1i1(x1) + g1i1(x1)γ1i1(x1))

−Γ1i1(x1)
TE1i1(x1) − αV1i1 is SOS

Λ1i1(x1) and Γ1i1(x1) are SOS

(32)

where α > 0 and λ(x1) is a positive definite polynomial.

Then, a PWP controller can be designed for the following

subsystem

{
ẋ1 = f1i1(x1) + g1i1(x1)x2, for x1 ∈ P1i1

ẋ2 = f2i2(x1, x2) + g2i2(x1, x2)x3, for [ x1

x2
] ∈ P2i2

(33)

Considering the following PWP candidate Lyapunov function

V2(x1, x2) = V2i2(x1, x2), [
x1

x2
] ∈ P2i2 (34)

where

V2i2(x1, x2) = V1i(1,2,i2)(x1)

+
1

2
(x2 − γ1i(1,2,i2)(x1))

T(x2 − γ1i(1,2,i2)(x1)) (35)

the synthesis problem can be formulated as the following

SOS program:

Find x3 = γ2i2(x1, x2),Γ2i2(x1, x2), ci21i22(x1, x2)

such that

−∇x1
V2i2(x1, x2)

T(f1i(1,2,i2)(x1) + g1i(1,2,i2)(x1)x2)

−∇x2
V2i2(x1, x2)

T(f2i2(x1, x2) + g2i2(x1, x2)x3)

−Γ2i2(x1, x2)
TE2i2(x1, x2) − αV2i2(x1, x2) is SOS,

Γ2i2(x1, x2) is SOS

γ2i21(x1, x2) − γ2i22(x1, x2) =

ci21i22(x1, x2)E2i21i22(x1, x2)

γ2(0, 0) = 0 (36)

for i2 = 1, . . . ,M2 and all i21 and i22 in {1, . . . ,M2}
such that P2i21 and P2i22 are neighboring cells and

E2i21i22(x1, x2) = 0 contains their boundary, i.e.,

P2i21 ∩ P2i22 ⊂ { [ x1

x2
]|E2i21i22(x1, x2) = 0} (37)

In addition, γ2i2(x1, x2) and ci21i22(x1, x2) are polynomial

functions.

If this SOS program is feasible then the procedure can be

repeated for the next steps by adding the dynamics of x3

and so on until xk. If all SOS programs in the backstepping

procedure are feasible, a continuous PWP controller

u = γkik
(x), for x ∈ Pkik

(38)

can be designed using the following SOS program:

Find u = γkik
(x), Γkik

(x), cik1ik2

s.t. −∇x1
V T

kik
(f1i(1,k,ik)(x1) + g1i(1,k,ik)(x1)x2)

−∇x2
V T

kik
(f2i(2,k,ik)(x1, x2)

+g2i(2,k,ik)(x1, x2)x3) − . . . −

∇xk
V T

kik
(fkik

(x) + gkik
(x)u)

−Γkik
(x)TEkik

(x) − αVkik
is SOS,

Γkik
(x) is SOS,

fkik1
(x) + gkik1

(x)γkik1

−fkik2
(x) + gkik2

(x)γkik2

= cik1ik2
(x)Ekik1ik2

(x) (39)

for ik = 1, . . . ,Mk and all ik1 and ik2 in {1, . . . ,Mk} such

that Pkik1
and Pkik2

are neighboring cells. Note that γkik
(x)

and cik1ik2
(x) are polynomial functions.

Theorem 3: Let there exist a PWP function V1(x1) sat-

isfying (32). Let also Vj(x1, . . . , xj) for j = 2, . . . , k be

defined as

Vj(x1, . . . , xj) = Vj−1(x1, . . . , xj−1)

+
1

2
(xj − γj−1(x1, . . . , xj−1))

T(xj − γj−1(x1, . . . , xj−1))

(40)

where

γj(

j arguments
︷ ︸︸ ︷

0, . . . , 0 ) = 0, j = 1, . . . , k − 1 (41)
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Fig. 1. Single-link flexible-joint robot

and γ2(x1, x2) to γk−1(x1, . . . , xk−1) satisfy the corre-

sponding SOS conditions. Also assume that the PWP control

(38) satisfies the conditions of the SOS program (39). Then

the PWP control (38) makes the trajectories of the PWP

system (9) in X asymptotically converge to the origin.

Proof: The proof follows a similar reasoning to that of

the proof of Theorem 2 using Proposition 2.

IV. NUMERICAL EXAMPLE

Example 1: Consider the single-link flexible-joint robot in

Fig. 1. The dynamic equations of the robot are given by [15]

ẋ1 = x2 (42)

ẋ2 = −
MgL

I
sin(x1) −

K

I
(x1 − x3) (43)

ẋ3 = x4 (44)

ẋ4 = −
Tf

J
+

K

J
(x1 − x3) +

1

J
u (45)

where x1 = θ1, x2 = θ̇1, x3 = θ2 and x4 = θ̇2, u is the

motor torque and Tf = f2(x4) denotes the motor friction

which is described by [16]

Tf = bmx4 + sgn(x4)

(

Fcm + (Fsm − Fcm) exp(−
x2

4

c2
m

)

)

(46)

The numerical values of the parameters are given as follows

M = 0.25kg, L = 1m, I = 0.0833kgm2

K = 7.47Nm/rad, J = 0.216kgm2, g = 9.8m/s2

cm = 1.2rad/sec, Fcm = 1.2Nm, Fsm = 1.75Nm

bm = 0.17Nm/(rad/sec)

In this example, the objective is to stabilize the nonlinear

model at the origin. To build a PWP model, there are two

nonlinear functions that should be approximated by PWP

curves. The function f1(x1) = sin(x1) is approximated by

the following function for x1 ∈ [−π, π]

f̂1(x1) = (47)






0.4031x2
1 + 1.2464x1 − 0.0211 −π ≤ x1 ≤ − 2π

7
0.908x1 − 2π

7 ≤ x1 ≤ 2π
7

−0.4031x2
1 + 1.2464x1 + 0.0211 2π

7 ≤ x1 ≤ π

(48)

The nonlinear function Tf = f2(x4) in (46) is approximated

by the following PWP function for x4 ∈ [−8, 8]

f̂2(x4) = (49)
{

−0.0057x3
4 + 0.0873x2

4 − 0.2472x4 + 1.8056 x4 > 0
−0.0057x3

4 − 0.0873x2
4 − 0.2472x4 − 1.8056 x4 < 0

(50)

Next, the PWP approximation of the nonlinear model (42)-

(45) can be written in the strict feedback form (9). To start

the controller synthesis procedure from subsection III-B, we

first consider the following system

ẋ1 = x2 (51)

with

P11 = {x1|x1 ∈ R} (52)

The linear controller x2 = −2x1 is considered in this step

to make the quadratic Lyapunov function V1(x1) = 1
2x2

1

decreasing with time.

In the second step, the following PWP system is consid-

ered

ẋ1 = x2

ẋ2 = −
MgL

I
f̂1(x1) −

K

I
(x1 − x3) (53)

with the regions defined as

P21 =

{

[ x1

x2
]

∣
∣
∣
∣
−π < x1 < −

2π

7
, x2 ∈ R

}

(54)

P22 =

{

[ x1

x2
]

∣
∣
∣
∣
−

2π

7
< x1 <

2π

7
, x2 ∈ R

}

(55)

P23 =

{

[ x1

x2
]

∣
∣
∣
∣

2π

7
< x1 < π, x2 ∈ R

}

(56)

Considering the Lyapunov function V2(x1, x2) = 1
2x2

1 +
1
2 (x2 + 2x1)

2 and solving the SOS feasibility problem

(36) for the PWP system (53), the following controller is

computed

x3 = γ2(x1, x2) =






0.26137 + 0.85161x1 − 0.1x2 [ x1

x2
] ∈ P21

0.56043x1 − 0.1x2 [ x1

x2
] ∈ P22

−0.26137 + 0.85161x1 − 0.1x2 [ x1

x2
] ∈ P23

(57)

For the next step, the following PWP system is considered

ẋ1 = x2

ẋ2 = −
MgL

I
f̂1(x1) −

K

I
(x1 − x3) (58)

ẋ3 = x4

with the following regions

P31 =

{[
x1

x2

x3

]∣
∣
∣ − π < x1 < −

2π

7
, x2 ∈ R, x3 ∈ R

}

(59)

P32 =

{[
x1

x2

x3

]∣
∣
∣ −

2π

7
< x1 <

2π

7
, x2 ∈ R, x3 ∈ R

}

(60)

P33 =

{[
x1

x2

x3

]∣
∣
∣
2π

7
< x1 < π, x2 ∈ R, x3 ∈ R

}

(61)
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Considering the Lyapunov function V3(x1, x2, x3) = 1
2x2

1 +
1
2 (x2 + 2x1)

2 + 1
2 (x3 − γ2(x1, x2))

2 and solving the corre-

sponding SOS feasibility problem for the PWP system (58),

the following controller is computed

x4 = γ3(x1, x2, x3) =






2.1731 − 77.5789x1 − 75.8241x2 − 80x3 for P31

−80x1 − 75.8241x2 − 80x3 for P32

−2.1731 − 77.5789x1 − 75.8241x2 − 80x3 for P33

(62)

For the next step, the following PWP system is considered

ẋ1 = x2

ẋ2 = −
MgL

I
f̂1(x1) −

K

I
(x1 − x3)

ẋ3 = x4

ẋ4 = −
f̂2(x4)

J
+

K

J
(x1 − x3) +

1

J
u (63)

with the following regions

P41 =

{[
x1

x2

x3

x4

]∣
∣
∣
∣
− π < x1 < −

2π

7
, x2 ∈ R, x3 ∈ R, x4 > 0

}

P42 =

{[
x1

x2

x3

x4

]∣
∣
∣
∣
−

2π

7
< x1 <

2π

7
, x2 ∈ R, x3 ∈ R, x4 > 0

}

P43 =

{[
x1

x2

x3

x4

]∣
∣
∣
∣

2π

7
< x1 < π, x2 ∈ R, x3 ∈ R, x4 > 0

}

P44 =

{[
x1

x2

x3

x4

]∣
∣
∣
∣
− π < x1 < −

2π

7
, x2 ∈ R, x3 ∈ R, x4 < 0

}

P45 =

{[
x1

x2

x3

x4

]∣
∣
∣
∣
−

2π

7
< x1 <

2π

7
, x2 ∈ R, x3 ∈ R, x4 < 0

}

P46 =

{[
x1

x2

x3

x4

]∣
∣
∣
∣

2π

7
< x1 < π, x2 ∈ R, x3 ∈ R, x4 < 0

}

(64)

Now, a PWP control of third order in x1, first order in x2,

first order in x3 and third order in x4 is designed. Consider-

ing the Lyapunov function V4(x1, x2, x3, x4) = 1
2x2

1+
1
2 (x2+

2x1)
2 + 1

2 (x3 − γ2(x1, x2))
2 + 1

2 (x4 − γ3(x1, x2, x3))
2 and

solving the SOS feasibility problem (39) for the PWP system

(63), the PWP controller is computed. The polynomials are

not shown due to lack of space.

Fig. 2 shows the states of the nonlinear system in feedback

connection with the PWP controller with the initial condition

x0 = [π 0 0.8π 0]T. It can be seen in the figure that the

system trajectories converge to the origin.

V. CONCLUSIONS

In this paper, the strict feedback form for PWP systems

was first introduced. Then backstepping controller synthesis

for this large class of PWP systems was formulated as an

SOS program, which is a convex program. The synthesis

problem was addressed in two cases: SOS Lyapunov func-

tions for PWP systems with discontinuous vector fields and

PWP Lyapunov functions for PWP systems with continuous

vector fields. One of the main advantages of the proposed
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Fig. 2. State variables of the nonlinear model - PWP controller

method is that it addresses for the first time PWP systems

with discontinuous vector fields regardless of possible attrac-

tive sliding modes.
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