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Abstract— The Google search engine employs the so-called
PageRank algorithm for ranking the search results. This
algorithm quantifies the importance of each web page based
on the link structure of the web. In this paper, we continue
our recent work on distributed randomized computation of
PageRank, where the pages locally determine their values by
communicating with linked pages. In particular, we propose
a distributed randomized algorithm with limited information,
where only part of the linked pages is required to be contacted.
This is useful to enhance flexibility and robustness in compu-
tation and communication.

Index Terms— Distributed computation, Link failures, Multi-
agent consensus, PageRank algorithm, Randomization, Stochas-
tic matrices

I. INTRODUCTION

The performance of search engines heavily relies on the

capability of listing search results so that users can quickly

have access to the desired information. One effective and

objective way to quantify the importance or popularity of the

web pages is by simply examining the link structure of the

web. The so-called PageRank algorithm at Google follows

such an idea and ranks pages higher when they have links

from more important pages (see, e.g., [3], [4], [22]).

To execute the PageRank algorithm, however, the size of

the web poses serious difficulties. Google is said to have

over 8 billion web page indices and moreover computes

the PageRank in a centralized fashion. In view of the

rapid growth of the web, it is critical to develop more

efficient computational methods. In this regard, a line of

current research is towards distributed computation of the

PageRank. In [28], block structures in the web are exploited

to apply Markov chain methods while the work of [1]

utilizes techniques from Monte Carlo simulation. In [7],

[21], the application of numerical analysis methods known

as asynchronous iterations [2] is discussed. Other works

include [20], where adaptive methods allocate computational

resources depending on the rate of convergence.

In our recent papers [16], [17], we developed a distributed

randomized approach for the PageRank computation; for

recent advances on probabilistic methods in systems and con-

trol, see [25]. The approach is distributed in that each page

computes its own PageRank value locally by communicating

with the pages that are connected by direct links. That is,

each page exchanges its value with the pages to which it links

and those linked to it. Randomization is with respect to the

time that each page decides to initiate the communication.
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The time is randomly chosen and is independent among

the pages. Hence, there is no need of a fixed order among

the pages or a leader agent that specifies the pages to start

updates. It is also stressed that relatively small communi-

cation and computation are required for the agents. On the

other hand, in [18], we considered a centralized scheme for

computing the bounds on the PageRank values when the web

data contains uncertainties.

In this paper, we further explore the approach of [16],

[17] to enhance flexibility and robustness under limited in-

formation. Specifically, we are interested in situations where

each page initiating an update contacts only part of its linked

pages. We continue to work in the probabilistic setting, and

such pages are determined in a random manner. The links

not used for communication at the time of updates will

be referred to as the failing links. This feature would be

useful, for example, when the computation/communication

load among the pages must be reduced, but the rate of

updates should be kept at the same level. In this respect,

this scheme is more flexible than that in [17] because in

addition to the the rate of updates for each page, the rate

for link selection may be specified. Another situation where

this algorithm can be applied is when communication is

unreliable due to link failures and/or packet losses. In such

a case, it may not be possible to contact all linked pages at

the same time. The algorithm from our previous work does

not function in this case and thus exhibits lack of robustness.

A simple way to model packet losses is to consider them as

an outcome of Bernoulli random processes. This approach

has been widely adopted in the field of networked control

as well as consensus; see, for example, [8]–[10], [13]–[15],

[23]. This model of unreliable channels can be incorporated

into the proposed scheme of the paper.

As discussed in [16], it is important to note that the pro-

posed distributed randomized approach has been motivated

by the recent development in the multi-agent problems. This

aspect is exploited in this paper as well. In particular, among

the many works in this field, our approach has strong ties

with the stochastic versions of the consensus problems (e.g.,

[5], [11], [24], [26], [27]). From the viewpoint of consensus,

it is natural to treat the web as a network of agents capable of

local computation as well as communication with neighbors.

It is further emphasized that there are similarities at the

technical level. In the algorithm for PageRank computation

with link failures, stochastic matrices play a crucial role, but

in a slightly different form than consensus problems.

The organization of this paper is as follows: We first

provide an overview of the PageRank problem in Section II.

This is followed by Section III, where we summarize the

distributed approach of [16], [17]. In Section IV, we present
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a distributed algorithm which allows for link failures and

prove its convergence to the PageRank values. The results

are illustrated through a numerical example in Section V.

Finally, in Section VI, concluding remarks are given.

Notation: For vectors and matrices, inequalities are used to

denote entry-wise inequalities: For X,Y ∈ R
n×m, X ≤ Y

implies xij ≤ yij for i = 1, . . . , n and j = 1, . . . , m; in

particular, we say that the matrix X is nonnegative if X ≥ 0
and positive if X > 0. A probability vector is a nonnegative

vector v ∈ R
n such that

∑n
i=1 vi = 1. By a stochastic matrix,

we refer to a column-stochastic matrix, i.e., a nonnegative

matrix X ∈ R
n×n with the property that

∑n
i=1 xij = 1 for

j = 1, . . . , n. Let 1 ∈ R
n be the vector with all entries equal

to 1 as 1 := [1 · · · 1]T . Similarly, S ∈ R
n×n is the matrix

with all entries being 1. The norm ‖·‖ for vectors is the

Euclidean norm. The spectral radius of the matrix X ∈ R
n×n

is denoted by ρ(X). For a discrete set D, its cardinality is

given by |D|.

II. THE PAGERANK PROBLEM

The PageRank problem is now briefly described based on,

e.g., [3], [4], [22].

Consider a network of n web pages indexed from 1 to n.

The network is represented by the directed graph G = (V, E).
Here, V := {1, 2, . . . , n} is the set of vertices corresponding

to the web page indices while E ⊂ V × V is the set of

edges representing the links among the pages. The vertex i
is connected to the vertex j by an edge, i.e., (i, j) ∈ E , if

page i has an outgoing link to page j, or in other words,

page j has an incoming link from page i.
The objective of the PageRank algorithm is to assign some

measure of importance to each web page. The PageRank

value, or simply the value, of page i ∈ V is a real number

denoted by x∗
i ∈ [0, 1]. The values are ordered: x∗

i > x∗
j

implies that page i is more important than page j.

The pages are ranked according to the rule that a page

having links from important pages is also important. This is

done in such a way that the value of one page equals the

sum of the contributions from all pages that have links to it.

Specifically, we define the value of page i by

x∗
i =

∑

j∈Li

x∗
j

nj
,

where Li := {j : (j, i) ∈ E}, i.e., this is the set of page

indices that are linked to page i, and nj is the number of

outgoing links of page j. It is customary to normalize the

total of all values as
∑n

i=1 x∗
i = 1.

Let the values be in the vector form as x∗ ∈ [0, 1]n. Then,

the PageRank problem can be restated as

x∗ = Ax∗, x∗ ∈ [0, 1]n,
n

∑

i=1

x∗
i = 1, (1)

where the link matrix A = (aij) ∈ R
n×n is given by

aij :=

{

1
nj

if j ∈ Li,

0 otherwise.
(2)

The value vector x∗ is a nonnegative unit eigenvector corre-

sponding to the eigenvalue 1 of A. In general, however, for

this eigenvector to exist and then to be unique, it is sufficient

that (i) the so-called dangling nodes, which are pages having

no links to others, do not exist, and (ii) the web as a graph

is strongly connected1.

To simplify the issue regarding dangling nodes, we rede-

fine the graph by bringing in artificial links. As a result, the

link matrix A becomes a stochastic matrix, having at least

one eigenvalue equal to 1.

The web is known not to be strongly connected in general.

To avoid this problem, a modified version of the values has

been introduced in [3] as follows: Let m ∈ (0, 1), and let

the modified link matrix M ∈ R
n×n be defined by

M := (1 − m)A +
m

n
S. (3)

This matrix is clearly positive and is also stochastic being a

convex combination of two stochastic matrices A and S/n.

By the Perron-Frobenius Theorem [12], there exists a unique

positive eigenvector for the eigenvalue 1. Hence, we redefine

the value vector x∗ by using M in place of A in (1) as

x∗ = Mx∗, x∗ ∈ [0, 1]n,
n

∑

i=1

x∗
i = 1. (4)

We note that in the original paper [3], a typical value for m
is chosen as m = 0.15. This value will be employed in the

rest of the paper.

Because of the large dimension of the link matrix M ,

the computation of the value vector x∗ relies on the power

method. That is, x∗ is computed through the recursion

x(k + 1) = Mx(k)

= (1 − m)Ax(k) +
m

n
1, (5)

where x(k) ∈ R
n and the initial condition x(0) ∈ R

n is

a probability vector. Notice that the second equality can be

established because both A and M are stochastic matrices.

The following lemma shows that, using this method, we

can asymptotically find the value vector (e.g., [12]).

Lemma 2.1: For any initial condition x(0), in the update

scheme (5) using the modified link matrix M , it holds that

x(k) → x∗ as k → ∞.

We now comment on the convergence rate of this scheme.

Denote by λ1(M) and λ2(M) the largest and the second

largest eigenvalues of M in magnitude. Then, for the power

method applied to M , the asymptotic rate of convergence

depends on the ratio |λ2(M)/λ1(M)|. Since M is a positive

stochastic matrix, we have λ1(M) = 1 and |λ2(M)| < 1.

Furthermore, it is shown in [22] that the structure of the link

matrix M leads us to the bound

|λ2(M)| ≤ 1 − m. (6)

For the value m = 0.15, the asymptotic rate of convergence

is bounded by 0.85.

1A directed graph is said to be strongly connected if for any two vertices
i, j ∈ V , there is a sequence of edges which connects i to j.
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III. DISTRIBUTED RANDOMIZED APPROACH

In this section, we summarize the distributed randomized

algorithm for computing the PageRank values from [16],

[17]. This approach is the basis for the computation scheme

proposed in Section IV.

Consider the web with n pages described in Section II.

The basic protocol employed in this scheme is as follows:

At each time k, the page i initiates its PageRank value update

(i) by sending its value to the pages to which it is linked and

(ii) by requesting the pages that link to it for their values. All

pages involved here update their values based on the newly

available information.

These updates can take place in a fully distributed and

randomized manner. The decision to make an update is a

random variable. In particular, this is determined under a

given probability α ∈ (0, 1] at each time k, and hence, the

decision can be made locally at each page. The probability

α is however a global parameter, and all pages in the web

use the same value.

Formally, the proposed distributed update scheme is de-

scribed as follows. Let ηi(k) ∈ {0, 1}, i = 1, . . . , n, be i.i.d.

Bernoulli processes given by

ηi(k) =

{

1 if page i initiates an update at time k,

0 otherwise

for k ∈ Z+, where their probability distributions are specified

by the probability α as

α = Prob
{

ηi(k) = 1
}

. (7)

The process ηi(k) is generated at the corresponding page

i, and when its value is 1, then the page will follow the

protocol outlined above so that an update is initiated. Let

η(k) := [η1(k) · · · ηn(k)] be the notation in a vector form.

Now, consider the distributed update scheme given by

x(k + 1) = (1 − m̂)Aη(k)x(k) +
m̂

n
1, (8)

where x(k) ∈ R
n is the state whose initial condition satisfies

x(0) ≥ 0 and
∑n

i=1 xi(0) = 1; m̂ ∈ (0, 1) is the parameter

used instead of m in the centralized case in (5). In particular,

we take

m̂ =
[1 − (1 − α)2]m

1 − m(1 − α)2
. (9)

The distributed link matrices Aq for q ∈ {0, 1}n are given

as follows:

(

Aq

)

ij
:=











aij if qi = 1 or qj = 1,

1 −
∑

h: qh=1 ahj if qi = 0 and i = j,

0 if qi = qj = 0 and i 	= j,

i, j ∈ V. (10)

Clearly, there are 2n such matrices. They have the property

that (i) if qi = 1, then the ith column and the ith row are the

same as those in the original link matrix A, (ii) if qi = 0,

then the ith diagonal entry is chosen so that the entries of

the ith column add up to 1, and (iii) all other entries are 0.

Hence, these are constructed as stochastic matrices.

In this scheme, each page i also computes the time average

of its own state xi. Let y(k) be the average of the sample

path x(0), . . . , x(k) as

y(k) :=
1

k + 1

k
∑

ℓ=0

x(ℓ), k ∈ Z+. (11)

We say that, for the distributed update scheme, the PageR-

ank value x∗ is obtained through the time average y if, for

each initial condition x(0), y(k) converges to x∗ in the mean-

square sense as follows:

E
[

∥

∥y(k) − x∗
∥

∥

2
]

→ 0, k → ∞. (12)

This type of convergence is known as ergodicity for stochas-

tic processes.

For completeness, we restate the main result of [17].

Theorem 3.1: Consider the distributed update scheme in

(8). For any update probability α ∈ (0, 1], the PageRank

value x∗ is obtained through the time average y as in (12).

We comment on the distributed update scheme described

above. This scheme can be implemented decentrally. This

can be seen in the expression (8), where it is clear that each

page communicates only with those pages sharing direct

links. Such links correspond to the nonzero entries of the

link matrix A. The parameter α determines the probability

of the updates to occur and thus the necessary load of

communication among the pages. At page i, the amount of

computation is fairly small: The update requires weighted

additions of its own value xi, the values xj from the linked

pages, and the constant m̂/n; also the time average yi is

computed.

This distributed update scheme can also be viewed as

a generalization of the original centralized scheme (5) in

Section II. By using the update probability of α = 1, all

pages initiate their updates at all times. In this case, we have

η(k) ≡ [1 · · · 1] and thus, the distributed link matrix Aη(k)

is equal to the original A. Furthermore, the parameter m̂
coincides with m.

IV. A DISTRIBUTED SCHEME WITH LINK FAILURES

In this section, we extend the distributed approach to

handle the situation where only part of the links are used for

communication each time a page initiates an update. That

is, we examine how an update can be carried out when

not all values from the linked pages are available; we say

that link failures occur in this case. We continue to work

in the probabilistic setting and assume that such links are

randomly selected. This scheme would be useful when the

communication load among the pages must be reduced or

when some pages cannot be reached because of link failures

and/or packet losses.

The set of failing links where no communication takes

place at time k is denoted by ∆(k). This is a subset of the

edges that link to or from the pages initiating the updates;

we denote such a set by Eη(k), which is formally defined by

Eq :=
{

(i, j) ∈ E : qi = 1 or qj = 1
}

, q ∈ {0, 1}n. (13)
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For the set ∆(k) at time k, we assume that if (i, j) ∈ ∆(k)
and (j, i) ∈ Eη(k), then (j, i) ∈ ∆(k) for (i, j) ∈ Eη(k). This

represents symmetry in the link failures; if a link from one

page to another is failing at time k, then the link in the other

direction between these pages must be failing as well. The

set ∆(k) is a random process specified by the link failure

probability δ ∈ [0, 1) under the probability distribution

δ = Prob
{

(i, j) ∈ ∆(k) | η(k) = q
}

,

∀(i, j) ∈ Eq, q ∈ {0, 1}n, k ∈ Z+. (14)

This shows that the links through which information of other

pages is not transmitted are probabilistically selected under

a fixed probability. Such a distribution for link failures has

been employed in the context of networked control and

consensus with limited information; see, e.g., [8]–[10], [13]–

[15], [23].

To take account of the set ∆(k) of failing links, consider

the distributed update scheme given by

x(k + 1) = (1 − m̂)Aη(k),∆(k)x(k) +
m̂

n
1, (15)

where x(k) ∈ R
n, the initial condition x(0) ≥ 0 satisfies

∑n
i=1 xi(0) = 1, and m̂ ∈ (0, 1) is the parameter used

instead of m in the centralized case. The matrices Aq,D for

q ∈ {0, 1}n and D ⊂ Eq are the distributed link matrices

with link failures.

The objective here is to design this distributed update

scheme by finding the appropriate link matrices Aq,D and

the parameter m̂ so that the PageRank values are computed

through the time average y of the state x. We follow an

approach similar to that in Section III and, in particular,

construct the link matrices so that they possess the stochastic

property.

A. Distributed link matrices and their average

The first step in the design is to introduce the distributed

link matrices and analyze their properties.

Let the distributed link matrix with link failures be given

as follows:

(

Aq,D

)

ij
:=























0 if (j, i) ∈ D,

(Aq)ij if (j, i) /∈ D

and i 	= j,

1 −
∑

h∈V, h �=j
(j,h)/∈D

(Aq)hj if i = j

(16)

for q ∈ {0, 1}n, D ⊂ Eq, and i, j ∈ V . Note that by

definition, (i, i) /∈ Eq for any i and q.

By the definition of link failures, if the link (j, i) ∈ E is

failing, then the (i, j) entry of the link matrix must be equal

to zero. The link matrices defined above take account of

such zero entries, but are still designed to be stochastic. This

property is critical in showing the convergence of the scheme.

In practice, this structure implies that if page j initiates an

update and sends its value to page h over a link that is

potentially failing, it must know whether page h received

the value (and used it for its own update) or not. This can

be observed in the (j, j) entry in (16) since it consists of the

(h, j) entry of Aq .

We now analyze the average dynamics of the distributed

update scheme determined by the link matrices just intro-

duced. We define the average link matrix by

A := E
[

Aη(k),∆(k)], (17)

where E[ · ] is the expectation with respect to the processes

η(k) and ∆(k). This matrix A is nonnegative and stochastic

because all Aη(k),∆(k) share this property.

The following proposition shows that the average link

matrix A has a clear relation to the original link matrix A.

Proposition 4.1: (i) The average link matrix A given

in (17) can be expressed as

A =
[

1 − δ − (1 − δ)(1 − α)2
]

A

+
[

δ + (1 − δ)(1 − α)2
]

I. (18)

(ii) There exists a vector z0 ∈ R
n
+ which is an eigenvector

corresponding to the eigenvalue 1 for both matrices A
and A.

B. Mean-square convergence of the distributed scheme

In order to show the convergence property of the dis-

tributed update scheme, we now introduce the modified

version of the link matrices. First, we rewrite the update

scheme of (15) in its equivalent form as

x(k + 1) = Mη(k),∆(k)x(k), (19)

where the matrices Mq,D for q ∈ {0, 1}n and D ⊂ Eq are

given by

Mq,D := (1 − m̂)Aq,D +
m̂

n
S. (20)

These matrices are called the modified distributed link ma-

trices. This equivalent form of (19) can be obtained because

the link matrices Aq are stochastic matrices; thus, the state

x(k) remains a probability vector for all k, which implies

Sx(k) ≡ 1.

Also, let the average matrix of Mη(k),∆(k) be

M := E[Mη(k),∆(k)]. (21)

Here, the distributed link matrices are positive stochastic

matrices, which means that the average matrix M enjoys

the same property.

The next step in designing the update scheme is to deter-

mine the parameter m̂. The specific aim here is to show that

the average of the modified distributed link matrices and the

link matrix M from (3) share an eigenvector corresponding

to the eigenvalue 1. Since such an eigenvector is unique for

M , it is necessarily equal to the value vector x∗.

Similarly to the case in Section III, the parameter m̂ is

chosen differently from m in the centralized scheme. Let m̂
be given by2

m̂ =

[

1 − δ − (1 − δ)(1 − α)2
]

m

1 − m
[

δ + (1 − δ)(1 − α)2
] . (22)

2Recall that the parameter m is chosen to be m = 0.15 in this paper.
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The next lemma states an important property regarding the

modified link matrices for this value m̂.

Lemma 4.2: The parameter m̂ in (22) and the average link

matrices M in (21) have the following properties:

(i) m̂ ∈ (0, 1) and m̂ ≤ m.

(ii) M = m̂
mM +

(

1 − m̂
m

)

I .

(iii) The value x∗ in (4) is the unique eigenvector of the

average matrix M corresponding to the eigenvalue 1.

We can show by (iii) in the lemma that, in an average

sense, the distributed update scheme asymptotically obtains

the correct values. More precisely, we have E[x(k)] =

M
k
x(0) → x∗ as k → ∞.

We are now ready to state the main result of this paper.

Theorem 4.3: Consider the distributed scheme with link

failures in (15). For any update probability α ∈ (0, 1] and

link failure probability δ ∈ [0, 1), the PageRank value x∗ is

obtained through the time average y in (11) as E
[∥

∥y(k) −

x∗
∥

∥

2]
→ 0, k → ∞.

The proof follows along similar lines as that for Theo-

rem 3.1 in [17]. Specifically, one way to establish the con-

vergence property is by the general Markov chain results of,

e.g., [6]. Another approach is to employ the proof developed

in the papers [16], [17] by adapting it to the current update

scheme. This proof is found to be useful to study the rate

of convergence and to include an update termination feature.

Under this termination feature, each page is allowed to stop

its update when an approximate value is obtained; this is

important because computation as well as communication

loads can be reduced.

We have remarks on the asymptotic rate of convergence

for the average state E[x(k)]. Similarly to the discussion in

Section II, the convergence rate is dominated by the second

largest eigenvalue λ2(M) in magnitude. By (6) and (ii) in

Lemma 4.2, this eigenvalue can be bounded as

|λ2(M)| =
m̂

m
|λ2(M)| + 1 −

m̂

m

≤
1 − m

1 − m
[

δ + (1 − δ)(1 − α)2
] .

It is clear that this bound is a monotonically decreasing

function of α and a monotonically increasing function of

δ. That is, higher probability α in updates and/or smaller δ
results in faster average convergence. Faster convergence is,

nevertheless, realized by additional computation and com-

munication, which are affected by both α and δ.

V. NUMERICAL EXAMPLE

In this section, we present a numerical example to verify

the efficacy of the results.

We generated a web with 1,000 pages (n = 1, 000), where

the links among the pages were randomly determined. The

first ten pages are designed to have high PageRank values

and are linked from over 90% of the pages. For other pages,

the numbers of links are between 2 and 333. The parameter

m was taken as m = 0.15.

0 2000 4000 6000 8000
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E
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o
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Time  k

Fig. 1. The error e(k) in the PageRank: ‖e(k)‖1 for the original scheme
without link failures (dashed line), the original scheme (dash-dot line), and
for the proposed scheme (solid line); ‖e(k)‖∞ for the proposed scheme
(dotted line).

Simulations were carried out using three algorithms: The

first one is the original distributed scheme in Section III,

which is run without any link failures and is for reference.

The second one is the same original scheme, but failing links

are present, that is, when some values from linked pages are

not available, they are considered to be zero. The last one is

the proposed update scheme with link failures in Section IV.

For all three cases, the probability of update for the pages

was taken as α = 0.01 throughout the simulation.

First, we executed the three algorithms with the link failure

probability δ = 0.02. Sample paths of the state x were

computed from time 0 to 8,000. The initial state x(0) was

taken the same for all algorithms and was randomly chosen

as a probability vector. We computed the error e(k) :=
y(k) − x∗ in the PageRank value estimate. In Fig. 1, we

show the ℓ1 norm of e(k). The original scheme without

link failures (dashed line) and the proposed scheme (solid

line) have comparable performance; the difference is minor

and actually is not visible in the plot. In contrast, for the

original scheme with failing links, the error almost stops

decreasing and stays at a relatively high level of 0.1. This is

interesting because the probability δ of link failures is quite

small, but has a significant effect. One reason for this is that

the original link matrices are in effect no longer stochastic.

As a result, the final value y(k) at k = 8, 000 for this

scheme is not a probability vector and, in fact, we obtained
∑

i yi(k) = 0.900. We also plotted in Fig. 1 the ℓ∞ norm

of the error e(k) for the proposed case. This corresponds

to the maximum individual error. We observe that it rapidly

decreases.

In Fig. 2, the values computed for the first twenty pages

are plotted. The true PageRank values are given by ×, and the

final values of yi(k) at k = 8, 000 for the original scheme

with link failures are marked as △ and and those for the

proposed scheme are shown by ©. Overall, the errors for

the proposed scheme are fairly small.

Finally, we examined the case where the probability of

link failures is δ = 0.1. We generated sample paths similarly

1980
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Fig. 2. The PageRank values x∗

i
(marked as ×), yi from the original

scheme with link failures (marked as △), and yi from the proposed scheme
(marked as ©) for i = 1, . . . , 20, at k = 8, 000.

to the first case and, in Fig. 3, the errors in the PageRank

estimation are given. Also, in this case, we obtained good

performance for the proposed scheme (solid line) as the error

is only slightly larger than the original scheme without failing

links (dashed line). When failure is present, the original

scheme does not converge, and in fact, the error grows (dash-

dot line).

VI. CONCLUSION

In this paper, we studied extensions of the distributed

randomized approach for the PageRank computation pro-

posed in [16], [17]. We considered the effect of link failures

under which not all the links are used for communication

in the update. This scheme is, in particular, useful to model

failures in the network as well as to reduce the communica-

tion/computation load for the pages. In future research, we

will address issues related to aggregation of webpages for

PageRank computation [19].
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