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Abstract— This paper presents a Dubins model based strat-
egy to determine the optimal path of a Miniature Air Vehicle
(MAV), constrained by a bounded turning rate, that would
enable it to fly along a given straight line, starting from an
arbitrary initial position and orientation. The method is then
extended to meet the same objective in the presence of wind
which has a magnitude comparable to the speed of the MAV.
We use a modification of the Dubins’ path method to obtain the
complete optimal solution to this problem in all its generality.

I. INTRODUCTION

Optimal path planning is an important area of interest

in the field of Unmanned Air Vehicle (UAV) and robotics.

In the classical work by Dubins [1], the smooth shortest

path for fixed initial and final positions and orientations has

been obtained geometrically. Reeds and Shepp [2] solved a

similar problem using advanced calculus in which a vehicle

can move forward as well as backward. Boissonnat et al.

[3] proved the same result as Dubins using the powerful

Pontryagin’s minimum principle. Shkel and Lumelsky [4]

classified Dubins path for different sets of initial and final

configurations. Thomaschewski [5] solved a Dubins problem

where terminal direction is not prescribed. McGee et al.

[6],[7] used Dubins path to explore the problem of finding

an optimal path for an UAV in wind condition. Nelson

et al. [8] propose a method of straight line path-following

and circular path-following by an MAV in the presence of

wind, based on a vector field approach. However, the path

followed by the MAV is not optimal. In [9] optimal path

for MAV in the presence of wind is derived for the case

when the MAV is situated sufficiently away from the straight

line path. Osborne et al. [10] solved a problem of waypoint

following by an UAV in the presence of wind. Wong et al.

[11] determine C-C-C class paths for an UAV performing

target touring, using a hybrid algorithm to solve a parameter

optimization problem for path planning. Ceccarelli et al. [12]

addressed the problem of controlling an MAV for the purpose

of obtaining a video footage of a set of known ground targets

in the presence of known constant wind. McNeely et al. [13]

present results on the existence and uniqueness of minimum

time solution for a Dubins vehicle flying in a general time-

varying wind vector field. Stolle et al. [14] solved a problem

where an UAV is equipped with a nose mounted camera for

an observation of ground targets in the presence of wind.

The contribution of the present paper is to obtain a solution

for the optimal path followed by an MAV in both wind and
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windless environment for the case where the terminal straight

line path is specified but not the final position. The solution is

based upon a modification of the Dubins method to account

for free final position that lies on the desired straight line.

II. ABSENCE OF WIND CONDITION

In this section we present a time optimal trajectory for an

MAV from its known initial position (x0, y0) and orientation

(χ0) to its final position that lies on the given straight line

in the absence of wind (see Fig. 1 (a)). Without any loss

of generality, one can assume the final straight line and

orientation to be the Y axis of the coordinate system. Hence,

we have the final orientation, χf = 0, and final x coordinate,

xf = 0. The Y coordinate of the final position (yf ) is free.

In Dubins’ paper [1] it is shown that the shortest path

consists of three consecutive path segments of the Dubins

set, D, which includes six paths D={LSL, RSR, RSL, LSR,

RLR, LRL}, where left and right turn with minimal allowed

radius of turn (r) are denoted by L and R, respectively, and

the straight line path segment is denoted by S.

Initial orientation can be any angle (−π ≤ χ0 ≤ π) (see

Fig. 1 (b)) and the MAV can be situated at any position,

but without loss in generality, we will discuss those cases

when the MAV is situated on the left side of the terminal

straight line path. We will divide all the possible cases into

sixteen categories (see Table I) based on the required change

in orientation angle and distance from the initial to the final

X-coordinate.

For the sake of clarity, we discuss in detail the cases when

initial orientation is less than π/2 and the MAV is situated

on the left side of the straight line. For other cases results

will be given without detailed analysis due to lack of space.

The variable yij is used to denote the Y-coordinate of the

final point on the straight line path, that yields the optimal

air path. The notations lij is used to describe the total length

corresponding to minimum air path, where i represents the

quadrants (i = 1, ..., 4) and j represents the particular class

of path in the Dubins set as given in Table II.

A. I-LP (First Quadrant, Long Path)

1) Type of path: In [4] it has already been proved that for

two given points in a plane, each with the prescribed

direction of motion, the optimal time path is CSC and

not CCC for the long path case. Here ‘C’ stands for a

circular turn either to the right (R) or to the left (L).

As the straight line path is situated on the right side

of the MAV, it will reach the desired path earlier if it

takes a right turn first. Now the question is whether
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TABLE I

POSSIBLE CASES

Long Path Medium Path Short Path Very Short Path
(xf − x0) > 4r 2r < (xf − x0) ≤ 4r r < (xf − x0) ≤ 2r 0 ≤ (xf − x0) ≤ r

Q I I-LP I-MP I-SP I-VSP
(0 < χ0 ≤ π/2)

Q II II-LP II-MP II-SP II-VSP
(−π/2 < χ0 ≤ 0)

Q III III-LP III-MP III-SP III-VSP
(−π < χ0 ≤ −π/2)

Q IV IV-LP IV-MP IV-SP IV-VSP
(π/2 < χ0 ≤ π)

Final position
and orientation
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0
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χ
0
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(x
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0
)

(xf, . )
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Fig. 1. (a) The geometry of initial and final configurations (b) Definition
of quadrants

TABLE II

TABLE FOR ‘j’

j Dubins path type

0 L
1 RSL
2 RL
3 LR
4 LSL
5 SL

the optimal path is of the RSL type or RSR type. If

the MAV takes a left turn just before a distance r from

the desired line, the path will be shorter than that of

RSR type. This is because, in the RSR case, the MAV

crosses the desired line and enters the right side and

then takes a right turn to come back to the desired line

with the desired final orientation. So, the optimal path

will be of RSL type if χ0 is less than π/2, otherwise

it will be of SL type.

2) Length of the path: For the configuration given in

Figure 2, we arbitrarily fix the final point on the

straight line. To get the minimum path among all

feasible RSL path we have to minimize the total path

length. Total path length (l) is given by,

l = s + (rα + rγ) (1)

where, s is the length of the straight line path and

 (a,b)

(m,n)

(x0,y0)

αχ
0

γ

β

χ
0

θs

(xf,yf)

θ

Y

Y'

Fig. 2. Dubins’ RSL path for initial orientation (χ0) < π/2 and final
orientation (χf ) = 0.

(rα + rγ) is the total length of the two arcs.

To calculate the straight line path (s) we do the

following: The center of the first circle is

(a, b) = (x0 + r cos χ0, y0 − r sin χ0) (2)

Center of the second circle is

(m,n) = (xf − r cos χf , yf + r sin χf ) (3)

Length of the straight line path will be

s =
√

(a − m)2 + (b − n)2 − 4r2 (4)

For this problem xf = 0 and χf = 0. So s will be
√

(x0 + r cos χ0 + r)2 + (y0 − yf − r sin χ0)2 − 4r2

To calculate the arc length we consider Figure 2, from

which we will get, total arc length=(α + γ)r, where

α = γ − χ0 , γ = π/2 + θ − β

and

θ = sin−1

{

(2r)/
√

(a − m)2 + (b − n)2
}

,

β = sin−1

{

(n − b)/
√

(a − m)2 + (b − n)2
}
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Fig. 3. First quadrant: Long Path (I-LP) case

So, total arc length=(π + 2θ − 2β − χ0)r. The length

of the path traveled by the MAV will be

l = s + (π + 2θ − 2β − χ0)r (5)

To get minimum path length, we differentiate l with

respect to yf ,

dl

dyf

= − (b − n)

s
+

2r[−(a − m)s + 2r(b − n)]

s[(a − m)2 + (b − n)2]
= 0

(6)

Solving this equation we will get (b − n) = ±2r, but

for this configuration (b − n) < 0, so we get

n = b + 2r (7)

since χf = 0, hence the Y-coordinate of the final

position of MAV on the straight line that yields the

optimal path is

yfmin = y0 − r sinχ0 + 2r (8)

So, the minimum length of the optimal path (lmin)

(Fig. 3) in this case is obtained as follows:

a) If path is of RSL type: Total length is, l11 =
(π − χ0)r − x0 − r(1 + cos χ0), which is a sum

of the first arc length (π/2 − χ0)r, the straight

line length −x0 − r(1 + cos χ0) and the second

arc length (π/2)r.
b) If path is of SL type: Total length is, l15 =

(π/2)r − x0 − r.

3) The point at which the optimal path will meet the

straight line path (yfmin):

a) If path is of RSL type: y11 = y0 − r sin χ0 + 2r
b) If path is of SL type: y15 = y0 + r

B. I-MP (First Quadrant, Medium Path)

For this configuration, there are many types of optimal

Dubins paths when we vary yf (see Fig. 4) along the straight

line.

(i) When b −
√

3r2 − a2 − 2ar < yf < b +√
3r2 − a2 − 2ar there is no RSL type path, and the

optimal path is either LSL or RSR type.

(ii) When yf = b ±
√

3r2 − a2 − 2ar the optimal path is

of RL type.

y
f1
=b+(3r2-a2-2ar)

1/2

(x0,y
0
)

y
f2
=b-(3r2-a2-2ar)

1/2

(a,b) (-r,b) (0,b)

Y

Y'

χ
0

Fig. 4. First quadrant: Analysis for medium path (I-MP) case

χ
0

(x0,y0)

Fig. 5. First quadrant: Medium Path (I-MP) case

(iii) For other values of yf , the optimal path is of RSL or

LSL type.

However, among all these possible paths, minimum path

length is of RSL (SL, if χ0 = π/2) type (see Fig. 5) and

expressions for the total length of the path and expressions

for yfmin remain the same as in I-LP.

C. I-SP (First Quadrant, Short Path)

With reference to Fig. 6 we get,

1) Optimal path will be RSL (SL, if χ0 = π/2) if

at that point the orientation is more than χ011. The

expressions for lmin and yfmin will remain same as

in the I-LP case.

2) Optimal path will be RL1 if at that point the orientation

is less than or equal to χ011, where χ011 is given by,

χ011 = cos−1 {(−x0 − r)/r} (9)

and the switching angle at which the MAV changes its

turning strategy from right (R) to left (L) is denoted

by γ1a, where,

γ1a = cos−1 {(x0 + r + r cos χ0)/2r} (10)

RL1 type path consists of two arc length; the length of

the first arc is (γ1a − χ0)r and the second arc length

is γ1ar. So the minimum length of the path is, l1
12

=
(2γ1a−χ0)r. The expression for yfmin is, y1

12
= y0−

r sinχ0 + 2r sin γ1a
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χ
011

Fig. 6. First quadrant: Short path (I-SP) case

χ012

Fig. 7. First quadrant: Very Short Path (I-VSP) case

D. I-VSP (First Quadrant, Very Short Path)

With reference to Fig. 7 we get,

1) Optimal path will be RL1 type if orientation at that

point is less than χ012.

2) If orientation at that point is of a value exactly same

as χ012 then optimal path will be of L type. Total

length is, l10 = χ012r, and the expression for yfmin

is, y10 = y0 + r sin χ012.

3) If orientation is more than χ012 optimal path will be

of LR1 type, where,

χ012 = cos−1 {(x0 + r)/r} (11)

and the switching angle at which the MAV changes its

turning strategy from left (L) to right (R) is denoted

by γ2a, where,

γ2a = cos−1 {(−x0 + r + r cos χ0)/2r} (12)

LR1 type path consists of two arc length; the length

of the first arc is (γ2a +χ0)r, the length of the second

arc length is γ2ar. Total length is, l1
13

= (2γ2a +χ0)r.

The expression for yfmin is, y1

13
= y0 + r sin χ0 +

2r sin γ2a.

E. All Quadrants and Orientations

The results for optimal path for all orientations is listed

in the Table III, where,

TABLE III

ALL PATH TYPE WITH ITS LENGTH

Path Type Length yfmin Range
of Path of χ0

I-LP,I-MP RSL l11 y11 χ0 6= π/2
SL l15 y15 χ0 = π/2

I-SP RSL l11 y11 χ0 > χ011( 6=
π
2
)

SL l15 y15 χ0 = π/2
RL1 l1

12
y1

12
χ0 ≤ χ011

I-VSP RL1 l1
12

y1

12
χ0 < χ012

L l10 y10 χ0 = χ012

LR1 l1
13

y1

13
χ0 > χ012

II-LP,II-MP RSL l21 y21 all χ0 in QII

II-SP RSL l21 y21 χ0 < χ021

RL1 l1
22

y1

22
χ0 ≥ χ021

II-VSP RL1 l1
22

y1

22
all χ0 in QII

III-LP,III-MP LSL l34 y34 all χ0 in QIII

III-SP LSL l34 y34 χ0 > χ031

L l30 y30 χ0 = χ031

RL2 l2
32

y2

32
χ0 < χ031

III-VSP RL2 l2
32

y2

32
χ0 < χ032

RL1 l1
32

y1

32
χ0 ≥ χ032

IV-LP,IV-MP LSL l44 y44 all χ0 in QIV

IV-SP LSL l44 y44 χ0 < χ041

L l40 y40 χ0 = χ041

LR1 l1
43

y1

43
χ0 > χ041

IV-VSP LR1 l1
43

y1

43
all χ0 in QIV

l11 = (π − χ0)r − x0 − r(1 + cos χ0)

y11 = y0 − r sin χ0 + 2r

γ1a = cos−1 {(x0 + r + r cos χ0)/2r}
l1
12

= (2γ1a − χ0)r

y1

12
= y0 − r sin χ0 + 2r sin γ1a

χ011 = cos−1 {(−x0 − r)/r}
χ012 = cos−1 {(r + x0)/r}
γ2a = cos−1 {(−x0 + r + r cos χ0)/2r}
l1
13

= (2γ2a + χ0)r

y1

13
= y0 + r sin χ0 + 2r sin γ2a

l15 = (π/2)r − x0 − r

y15 = y0 + r

l10 = rχ012

y10 = y0 + r sin χ012

l1j = l2j for j = 1, 2

y1j = y2j for j = 1, 2

χ021 = − cos−1 {(−x0 − r)/r}
γ1b = −π + cos−1 {(−x0 − r − r cos χ0)/2r}
l2
32

= (2γ1b + 2π − χ0)r

y2

32
= y0 − r sin χ0 + 2r sin γ1b

l1
32

= (2γ1a − χ0)r

y1

32
= y0 − r sin χ0 + 2r sin γ1a

χ031 = −π + cos−1 {(−x0 − r)/r}
χ032 = −π + cos−1 {(x0 + r)/r}

l34 = (2π + χ0)r − x0 − r(1 − cos χ0)

y34 = y0 + r sin χ0
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Fig. 8. Representation of airspeed (va), ground speed (vg) and wind speed
(vw).

l30 = (2π + χ031)r

y30 = y0 + r sin χ031

χ041 = π − cos−1{(−x0 − r)/r}
l40 = χ041r

y40 = y0 + r sin χ041

l44 = χ0r − r − x0 + r cos χ0

y44 = y0 + r sin χ0

l1
43

= (2γ2a + χ0)r

y1

43
= y0 + r sin χ0 + 2r sin γ2a

III. PRESENCE OF WIND CONDITION

Consider the simple kinematic model given in Fig. 8. The

problem is defined for fixed wing MAV which cannot make

instantaneous arbitrary movement. The control input here is

the turning rate, χ̇, which is assumed to be bounded by |χ̇| <
χ̇max. The speed of the vehicle is va which is the air speed,

the wind speed is vw with an angle θ with respect to the

vertical axis and we define q = va/vw. We assume that

wind speed and speed of the vehicle are constant. Let,

X = [x y χ]
T

(13)

then,

Ẋ = [va sin χ + vw sin θ va cos χ + vw cos θ χ̇]
T

(14)

This problem can be formulated in the way similar to McGee

et al. [6]. An MAV approaching a straight line in wind

condition can be considered as a virtual target straight line

moving with an equal and opposite velocity to the wind

acting on it in a situation where the wind is absent. The

airpath is defined as the path traveled by the MAV with

respect to the moving air frame and ground path is the path

with respect to the ground. So, in this problem formulation,

the MAV will follow its optimal air path to meet its virtual

final point situated on the virtual target straight line (VTSL)

and the reformulated model will be as follows:

Ẋ = [va sin χ va cos χ χ̇]
T

(15)

where the initial position and orientation, Xi, is given. Final

orientation is the same as χf and the final position for this

reconstructed problem is

xd = xf − vwt sin θ yd = yf − vwt cos θ

where, t is the minimum time it takes for the MAV to meet

with its virtual final point and dij is the distance traveled by

the virtual final point in time t.

A. Generation of minimum time path

Under no wind condition, the long path and short path

cases can be classified clearly. But in the presence of wind,

it is not clear exactly how much distance will be traveled by

the VTSL till the MAV achieves its goal. So, the nature of

the optimal path is unknown to us. We will discuss in detail

how the Dubins airpath switches from one type to another

in the presence of wind.

From the discussion on the no wind case for the first

quadrant, we know that the optimal air path can be one of

the following set, {RSL, SL, RL1, L, LR1} of Dubins path.

Now we will derive the optimal airpath for the reformulated

problem. Then, from the state equation, we can get the

ground path. These will be illustrated in the simulation

results given in Section IV.

Let the VTSL be at a position S1 when MAV achieves its

goal (see Fig. 9(a)). As shown in this figure, the S1 line is

a common tangent of two circles, one at the initial position

and the other at the final position. The position of S1 is

important here because if finally the virtual target straight

line cannot cross this position and stays to the right side of

this position, the optimal path will be of RSL or SL (if χ0 =
π/2) type. If finally the virtual target straight line crosses

this S1 position and goes to the left side of this position (for

example, position of S3) then the optimal airpath can be one

of three paths: {RL1, L, LR1}.

From Fig. 9(b) it is clear that if VTSL reaches S1 position

at the final time then, by taking only one left turn, the MAV

can achieve its goal. But if finally VTSL lies on the right

side of S1, air path is of RL1 type, otherwise air path is of

LR1 type.

B. Algorithm for checking path type in the wind case

We will discuss the algorithm for the case when χ0 is in

first quadrant. For all other quadrants, we can apply the same

procedure to derive the optimal paths.

1) If

−x0 − r cos χ0 − r > {(π − χ0)rvw sin θ} /va (16)

then the airpath is of RSL type and its length is,

ql11/(q + sin θ)
2) If

−x0 − r cos χ0 − r ≤ {(π − χ0)rvw sin θ} /va (17)

a) If

−x0 − r + r cos χ0 > {χ0vwr sin θ} /va (18)

then airpath is RL1 with length (2γw11a − χ0)r;

where, γw11a is defined in the same way as γ1a
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Fig. 9. (a) First quadrant: Wind case for RSL and RL1 path (b) First
quadrant: Wind case for RL1, L and LR1

after replacing x0 by x0 + d12a sin θ, and d12a is

solution of the following equation,

cos
qd12a + rχ0

2r
−d12a sin θ

2r
−cos γ1a = 0 (19)

b) if

−x0 − r + r cos χ0 = {χ0vwr sin θ} /va (20)

then airpath is of L type and its length is rχ0.

c) if

−x0 − r + r cos χ0 < {χ0vwr sin θ} /va (21)

then airpath is LR1 and its length is, (2γw12a +
χ0)r Where, γw12a is defined in the same way

as γ2a after replacing x0 by x0 + d13a sin θ, and

d13a is solution of the following equation,

cos
qd13a − rχ0

2r
+

d13a sin θ

2r
−cos γ2a = 0 (22)

IV. SIMULATION RESULTS

Simulation results are given for the wind case with one

value of orientation but for two different x0 positions. We

have used r = 10, Va = 20, y0 = 0, χ0 = π/4, χf = 0, xf =
0, and wind parameters are Vw = 5, θ = π/6. RSL and

RL1 airpaths and corresponding ground paths to achieve the

desired straight line that lies on Y axis are shown in Fig. 10

(a) and (b) for initial X position −50 and −15 respectively.

This is only a representative solution obtained from the

analysis given in this paper. It is possible to obtain the

solution to the optimal path profile for all orientations and

positions of the MAV.

V. CONCLUSIONS AND FUTURE WORK

The central idea developed in this paper is to direct an

MAV to its optimal path that would enable it to fly along a

given straight line. We have considered those cases when the

MAV is placed anywhere with any orientation. The results

−50 −40 −30 −20 −10 0
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30

Y
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(a)
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Y
 a

x
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X axis

ground path

air path

(b)

Fig. 10. First quadrant (a) RSL path (b) RL1 path

obtained are general and the problem is solved completely

in all its generality.

The ideas can be extended to terminal paths that are not

necessarily straight lines (for example this can be circular).
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