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Abstract – This paper deals with the problem of fault

diagnosis for a class of chemical reactions taking place

in jacketed batch reactors. An integrated diagnosis scheme,

using redundant temperature measurements and a bank of

state observers, is adopted to detect, isolate and identify

faults. A unified framework is developed to take into account

faults affecting sensors, actuators and process. In order to test

the effectiveness of the approach, a detailed simulation case

study is developed.

Keywords – Fault diagnosis, adaptive observers, chemical

batch reactors.

I. INTRODUCTION

In chemical processes, the occurrence of faults may affect

efficiency of the process (e.g., lower product quality) or,

in the worst scenarios, could lead to fatal accidents (e.g.,

temperature run-away). Hence, in the last two decades, the

problem of on-line fault detection and isolation has become a

major issue in chemical engineering. Several fault diagnosis

(FD) approaches have been proposed for processes operating

mainly in steady-state conditions (e.g., continuous reactors).

Application of these techniques to batch chemical processes

are usually difficult, because of their nonlinear dynamics

and intrinsically unsteady operating conditions. Also, in

batch processes full state measurements and exact parameters

knowledge are usually not available. Actuators (e.g., electric-

power failures, pump failures, valves failures), process (e.g.,

abrupt variation of the heat transfer coefficient, side reactions

due to impurities in the raw materials) and sensors are the

main sources of failures in chemical processes.

In model-based approaches to FD [1] the measurements

of a set of process variables are compared to the correspond-

ing estimates, predicted via the mathematical model of the

system. By comparing measured and estimated values, a set

of variables sensitive to the occurrence of faults (residuals)

are generated; by processing the residuals, the faults can be

detected (i.e., the presence of faults can be recognized), iso-

lated (i.e., faulty components are determined) and identified

(i.e., magnitude of the faults is estimated). Estimation of

monitored process variables requires a model of the system

(diagnostic observer) to be operated in parallel to the process.

To the purpose, Luenberger observers [2], [3], Unknown

Input Observers [4] and Extended Kalmann Filters [5] have

been mostly used in fault detection and identification for

chemical processes and plants. In [6] a geometric approach

for a class of nonlinear systems is presented and applied to
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a polymerization process. In [7] a robust observer is used

for sensor faults detection and isolation in chemical batch

reactors, while in [8] the robust approach is compared with

an adaptive observer for actuator fault diagnosis. Recently,

in [9] the actuator fault detection for continuous reactors is

achieved via a nonlinear filter, that uses the available state

to simulate the system evolution in the absence of faults.

Since perfect knowledge of the model is rarely a reasonable

assumption, soft computing methods, integrating quantitative

and qualitative modeling information, have been developed

to improve the performance of FD observer-based schemes

for uncertain systems (see, e.g., [10]). Major contributions

to observer-based approaches can be found in [11], where

fault isolation is achieved via a bank of observers, while

identification is based on the adoption of on-line interpolators

(e.g., ANNs whose weights are updated on line).

Most of previous approaches focus on a particular class

of failures. A major contribution of this paper is the devel-

opment of a framework in which diagnosis of both sensor,

actuator and process faults can be achieved in an integrated

framework. As for sensor faults, the approach in [7] is

adopted, i.e., redundant temperature sensors are considered

both in the reactor vessel and in the cooling jacket; then, two

diagnostic observers are designed to generate a set of resid-

uals achieving fault detection and isolation. The estimates

provided by the observers and the corresponding sensor

measures are processed so as to recognize the faulty sensor

and output an healthy measure. In order to achieve process

and actuator fault diagnosis, the healthy measure is used to

feed a bank of observers. The first observer in the bank is

used to detect the occurrence of process/actuator faults, while

the other observers are aimed at isolating and identifying

faults via an adaption mechanism. Remarkably, the proposed

diagnostic scheme is developed for a wide class of reactive

systems, characterized by irreversible non-chain reactions,

taking place in jacketed batch reactors. The main structural

properties of the algorithms combined in this FD scheme

(e.g., estimation errors convergence, faults detectability and

isolability) are provided. A simulation case study, referred

to a polymerization reactive scheme, is developed to test the

effectiveness of the proposed approach in the presence of

several classes of faults.

II. MODELING

Let us consider a jacketed batch reactor, in which the

following general irreversible non-chain reactions network

takes place, where Ai denotes the i-th chemical species,

νi,h ≥ 0 is the stoichiometric coefficient of the reaction
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Ai → Ah and Ap+1 is the final product:

A1→ν1,2A2

A1→ν1,3A3 A2→ν2,3A3

...
...

A1→ν1,p+1Ap+1 A2→ν2,p+1Ap+1 . . . Ap→νp,p+1Ap+1.

Assuming first-order kinetics and perfect mixing, the mass

balances give, for h = 1, . . . , p (the summation on the right-

hand side is absent for h = 1)

Ċh = −kh(Tr)Ch +

h−1∑

i=1

νi,h ki,h(Tr)Ci , (1)

where Tr is the reactor temperature ([K]), Ch is the

concentration ([mol m−3]) of the chemical species Ah,

ki,h(Tr) (h = 2 . . . p) is the rate constant of the reaction

Ai → Ah, obtained via the Arrhenius law ki,h(Tr) =
k0i,h

exp
(
−Eai,h

/RTr

)
, Eai,h

is the activation energy ([J

mol−1]) of each reaction, k0i,h
is the corresponding pre-

exponential factor ([s−1]) and R is the universal gas constant

([J mol−1 K−1]); moreover, the lumped overall rate constants

of the reactions of disappearance, ki(Tr), are defined, for

each reactant, as ki(Tr) =
∑p+1

h=i+1
ki,h(Tr) , which are

strictly positive if the corresponding chemical species, Ai,

are involved at least in one reaction. It can be shown [13] that

the rate constants are bounded, i.e., 0 < k i,h ≤ ki,h(Tr) ≤

ki,h and 0 < k i ≤ ki(Tr) ≤ ki, ∀Tr .

The energy balance in the reactor gives

Ṫr = q(xM , Tr) −
US (Tr − Tj)

Vrρrcpr

, (2)

where xM = [C1 . . . Cp]
T

is the vector of reactants con-

centrations, T is the temperature of the fluid in the jacket,

Vr is the reactor volume ([m3]), ρr is the density of the

reacting mixture ([kg m−3]), cpr is the mass heat capacity

of the reactor contents ([J kg−1 K−1]), U ([J m−2 K−1 s−1])

is the heat transfer coefficient, S ([m2]) is the heat transfer

area, and q is given by

q(xM , Tr) =
1

ρrcpr

p∑

i=1

p+1∑

h=i+1

(−∆Hi,h)ki,h(Tr)Ci , (3)

where ∆Hi,h ([J mol−1]) is the molar enthalpy change of

each reaction.

Under the assumption of perfect mixing, the energy bal-

ance in the jacket yields

Ṫ =
US (Tr − T)

Vρcp

+
(Tin − T)

V

F , (4)

where V is the jacket volume, ρj is the density of the fluid

in the jacket, cp is the mass heat capacity of the fluid in

the jacket, F ([m3 s−1]) and Tin are the flow rate and the

temperature of the fluid entering the jacket, respectively.

In order to rewrite the whole model in the form of state

equations, let define the (p + 2) × 1 state vector x =
[C1 . . . Cp Tr T]

T
, and the control input u = Tin. It is

assumed that only temperature sensors in the jacket and in

the reactor vessel are present. Hence, the output vector is

given by y = [Tr T]
T

= xE . Then, Eqs. (1), (2) and (4)

can be rewritten in the following state-space form
{

ẋ = A(y)x + b(y, u) + η(x, u)

y = C x + n ,
(5)

where

A(y) =

[
AM (y) Op×2

AM,E(y) AE

]
,

Op×2 denotes the p × 2 null matrix, and

AM (y) =




−k1(y1) 0 . . . 0
ν1,2 k1,2(y1) −k2(y1) . . . 0

...
...

...
...

ν1,p k1,p(y1) ν2,p k2,p(y1) . . . −kp(y1)


 ,

AM,E(y) =

[
a1(y1) . . . ap(y1)

0 . . . 0

]
,

ai(y) =

p+1∑

h=i+1

αi,hki,h(y1) , αi,h =
(−∆Hi,h)

ρrCpr

,

AE =

[
−αrUS αrUS

αUS −αUS

]
, α∗ =

1

V∗ρ∗Cp∗

, (∗ = r, ) .

The vector b in (5) is defined as follows

b(y, u) =

[
0p×1

bE(y, u)

]
, bE(y, u) =

[
0

β(u − y2)

]
,

with β =
F

V

. The output matrix is given by C =

[O2×p I2×2 ], where I2×2 denotes the (2 × 2) identity

matrix. Finally, the ((p + 2) × 1) vector η(x, u) collects

all the model uncertainties (e. g., uncertainties on reaction

dynamics and/or on parameters values, effects of nonideal

mixing and/or heating/cooling, unmodeled heat losses), while

the (2×1) vector n represents noise on temperature measure-

ments. The magnitude of uncertainties can be kept bounded

if suitable modeling and identification techniques are adopted

[14]. Also, sensor noise, as usual, is assumed to be bounded.

Usually, in chemical processes, faults can be classified as

process faults, sensor faults or actuator faults.

A sensor fault can be modeled as an unknown additive

term in the output equation, i.e.,

y = Cx + fs(t) + n , (6)

where the (2 × 1) vector fs(t) collects the unknown faults

profiles affecting, respectively, the vessel and the jacket

temperature measurements.

An actuator fault is generated by a malfunction of the

cooling system and may be modeled as an unknown additive

term affecting the first equation in (5), due to unexpected

variations of the input u with respect to its nominal value

(i.e., the value computed by the reactor control system). A

process fault may be due to unexpected variations of process

parameters (e.g., the heat transfer coefficient, due to foulness

on reactor walls) or unknown/neglected dynamics (e.g., side

reactions due to impurities in the raw materials). In this
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paper, only the process faults affecting the dynamics of the

state variables xE are taken into account and are modeled

as an additive term affecting the first equation in (5) as well.

In sum, the effects of both process and actuator faults on

the system dynamics are taken into account via an additive

term CT fa(t,y, u) in the first equation in (5). As customary

in the literature (see, e.g., [11]), function fa is assumed to

belong to a finite set of m functions, Fa =
{
fa,1 . . . fa,m

}
.

Each fault function in Fa is assumed to be linear in a

parameter vector θi, i.e.

fa,i(t,y, u) = ϕi(t,y, u)θi , ∀i = 1, . . . ,m , (7)

where ϕi is a known (2×mi) regressor matrix, while θi is

a (mi × 1) unknown vector of constant parameters. Matrix

ϕi is assumed norm-bounded for all faults type.

Therefore, in the presence of faults, model (5) becomes

{
ẋ = A(y)x+b(y,u)+CTfa(t,y,u)+η(x,u)

y = Cx+fs(t)+n ,
(8)

where it is assumed that fs(t) and fa(t,y, u) are null before

the occurrence of a fault at t = tf , i.e., fs(t) = 0 and

fa(t,y, u) = 0 for t < tf .

The above model includes the case in which a sensor and a

process/actuator fault occur during the same batch operation.

Otherwise, occurrence of multiple process/actuator faults

(i.e., of different types) and/or of multiple sensor faults (i.e.,

different sensors are subject to failures) is not considered.

III. SENSOR FAULT DIAGNOSIS

It is assumed that a duplex sensor architecture is adopted

for the plant. Namely, two temperature sensors (hereafter

labeled as Sr,1 and Sr,2) providing measurements of Tr, and

two providing measurements of T (hereafter labeled as S,1

and S,2) are available. Hence, two observers are adopted for

sensor fault diagnosis. Observer SM1 uses the measurements

provided by Sr,1 and S,1, i.e., ySM1 = (yr,1 y,1)
T

.

Observer SM2, uses the measurements provided by Sr,2 and

S,2, i.e., ySM2 = (yr,2 y,2)
T

.

Both the observers have the following form (hereafter i =
1, 2)

{ ˙̂xSMi = A(ySMi) x̂SMi+b(ySMi, u)+LsỹSMi

ŷSMi = Cx̂SMi ,
(9)

where x̂SMi denotes the vector of the state estimates; ŷSMi

and ỹSMi = ySMi − ŷSMi denote the vectors of output

estimates and output estimation errors, respectively; Ls is a

(p + 2) × 2 matrix of positive gains defined as follows

Ls =

[
LM

LE

]
, LM =




l1 0
l2 0
...

...

lp 0


 , LE =

[
lr 0
0 l

]
.

Convergence properties of the state estimation error

x̃SMi = x− x̂SMi, in the absence of faults, can be analyzed

by considering the estimation error dynamics, derived in

view of Eqs. (5) and (9)
{

˙̃xSMi = As,i(ySMi) x̃SMi + δSMi(x, u)

ỹSMi = Cx̃SMi + n ,
(10)

where As,i = A − LsC and δSMi = η + Lsn. It

can be shown [13] that, in the absence of uncertainties

and sensor noise, there exists a set of observer gains such

that the state estimation error x̃SMi of the observer (9) is

globally uniformly convergent to 0 as t → ∞. Moreover, the

convergence is exponential. As for the behavior of the state

estimation error in the presence of uncertainties and noise,

in [13] it is proven that if η and n are bounded (see Section

II), then the output estimation error is bounded, i.e.,

∃ µ̄s,i > 0 : ‖ỹSMi(t)‖ ≤ µ̄s,i , ∀t ≥ t0 , (11)

where t0 is the initial time and the bound µ̄s,i depends

on the initial estimation error, x̃SMi(t0), the magnitude of

uncertainties and sensor noise, η and n, and the largest

(negative) eigenvalue of AE − LE . It is worth noticing

that the bound could be, in principle, determined if all

the constants needed to compute it are known or, at least,

estimated with reasonable accuracy. Nevertheless, such a

bound may be quite conservative, and thus, in practice,

useless. However, the bound can be reduced if a suitable

gain matrix LE is chosen and a good initial guess of the

state is available [13].

Detection of the occurrence of sensor faults can be

achieved on the basis of the following residuals:

rSr
=

yr,1 − yr,2

µs,r

, rS
=

y,1 − y,2

µs,

, (12)

where µs,r and µs, are normalization factors to be properly

determined by evaluating the effect of noise and disturbances

on temperature measurements (in the absence of faults).

Hence, if Sr (S) is affected by a fault, the absolute value

of rSr
(rS

) is expected to exceed a certain threshold. The

normalization factors are to be selected so as to set the

threshold to 1. Hence, a possible choice is given by 2n̄,

since |y∗,1(t) − y∗,2(t)| ≤ 2n̄ for all t (∗ = r, ).
For isolation purposes (i.e., determination of the faulty

sensor), two other residuals must be defined

rSM1 =
ỹSM1

µs,1

, rSM2 =
ỹSM2

µs,2

, (13)

where µs,1 and µs,2 are normalization factors. According

to (11), a possible choice for the normalization factors is

µs,i = µ̄s,i, although they may be chosen by evaluating the

effect of uncertainties and sensor noise, e.g., on the basis of

available experimental data. By virtue of these normalization

factors, the thresholds on the residuals can be set to 1 and

the norm of residual vectors can be used to isolate faults. In

fact, the output of the SM1 observer is not affected by faults

on Sr,2 and S,2, while the output of the SM2 observer is

not affected by faults on Sr,1 and S,1. Hence, if the norm of

rSM1 (rSM2) exceeds the threshold, a fault is declared on

either Sr,1 or S,1 (either Sr,2 or S,2), depending on which
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detection residual (i.e., rSr
or rS

) exceeds the threshold.

In sum, a fault can be declared and, eventually, isolated,

provided that simultaneous faults on different sensors do not

occur during the same batch operation.

When a sensor fault (occurring at t = tf ) affects one of

the sensors in the couple {Sr,i, S,i} (i = 1, 2), the following

equality holds

ỹSMi = C x̃SMi + fs(t) + n , ∀t ≥ tf . (14)

As shown in [13], a sufficient condition ensuring correct

sensor fault isolation is given by

∃t > tf :

∥∥∥∥∥

∫ t

tf

ΦE(t, τ)LEfs(τ)dτ +fs(t)

∥∥∥∥∥ ≥ µ̄s,i+µs,i ,

(15)

where ΦE(t, t0) = exp ((AE − LE)(t − t0)). In fact, the

above condition guarantees that ‖rSMi‖ = ‖ỹSMi‖/µs,i

exceeds 1 at least for a time instant after the occurrence

of the fault, thus signaling the presence of the fault. In other

words, condition (15) matches with the intuitive idea that

faults can be detected only if their magnitude overcomes

the effect of the uncertainties. Of course, (15) may result

too conservative, especially if the bounds are overestimated;

however, it has the merit of showing how sensitivity to faults

may be affected by uncertainties and noise.

Thanks to redundant temperature measurements, the batch

can be brought to completion even in the presence of a sensor

fault, provided that a suitable voting of the healthy signal is

performed. The logic of the Voter/Monitor (the sub-system

which votes the healthy signal) is described in the following

procedure:

Step 1. Compute the detection residuals defined in (12), then:

(i) If the residuals do not exceed the fixed thresholds (no

fault condition), vote the signal given by the average of

the two sensors (standard duplex measure).

(ii) If a threshold is exceeded (fault condition), check the

isolation residuals defined in (13), so as to decide if the

faulty signal can be isolated; in this case determine the

healthy signal.

Step 2. If, in the case (ii), faults isolation is not achieved (i.e.,

both rSM1 and rSM2 are below the respective thresholds),

a missed isolation is declared. In this case, the weighted

average of the signals provided by the physical and virtual

sensor is voted. The weighted average is computed as the

arithmetic mean of the measured variable and the output of

the sole observer not signaling the occurrence of the fault.

IV. ACTUATOR AND PROCESS FAULT DIAGNOSIS

The healthy measure, obtained via the diagnostic system

described above, is used to feed a bank of m + 1 observers

providing process/actuator fault detection and isolation. One

observer plays the role of detection observer, i.e., determines

the occurrence of an actuator or process fault. Other m
observers, corresponding to the m different fault types, are

used for isolation and identification.

The detection observer has the form
{

˙̂xa = A(y) x̂a + b(y, u) + Laỹa

ŷa = C x̂a ,
(16)

where y is given by the healthy measure voted by the

diagnostic system, ỹa = y − ŷa and La is a matrix gain

of the same form as Ls. In the absence of faults, the state

estimation error dynamics has the same form (10), i.e.,
{

˙̃xa = Aa(y) x̃a + δa(x, u)

ỹa = Cx̃a + n ,
(17)

where x̃a = x − x̂a, Aa = A − LaC and δa = η +
Lan. Convergence and boundedness properties of the state

estimation error are the same established in the previous

Section. In detail, in the presence of bounded uncertainties

and noise, the output estimation error is bounded, i.e.,

∃ µ̄a > 0 : ‖ỹa(t)‖ ≤ µ̄a , ∀t ≥ t0 . (18)

A fault is declared when the norm of the residual vector

rd =
ỹa

µa

, (19)

exceeds a suitably defined threshold. The factor µa, as usual,

is a normalization factor that has to be selected in such a way

that threshold can be set to 1. Of course, a possible choice for

the normalization factor µa is represented by µ̄a. A sufficient

condition for detectability of a fault occurring at t = tf is

given by [13]

∃t > tf :

∥∥∥∥∥

∫ t

tf

ΦE(t, τ)fa(τ,y(τ), u(τ)) dτ

∥∥∥∥∥ ≥ µ̄a + µa .

(20)

After a fault has been detected, isolation and identifica-

tion are achieved via m nonlinear adaptive observers. Each

observer is designed in such a way to be insensitive to a

particular type of fault. In fact, the i-th observer (hereafter

i = 1, . . . ,m) has the form
{ ˙̂xi =A(y)x̂i+b(y, u)+La,iỹi+CT f̂a,i(t,y, u)

ŷi = Cx̂i ,
(21)

where La,i is a gain matrix having the same structure as

La and Ls, y is given by the healthy measure voted by

the sensor diagnostic system, ỹi = y − ŷi and f̂a,i is an

estimate of the i-th fault, that, in view of (7) can be obtained

as follows

f̂a,i(t,y, u) = ϕi(t,y, u) θ̂i , (22)

where θ̂i is an estimate of the unknown parameter vector.

The adaptive law for θ̂i is derived by using a Lyapunov

synthesis approach [13]

˙̂
θi = λ−1

i ϕT
i (t,y, u)ỹi , (23)

where λi is a positive gain. In order to ensure f̂a,i = 0 prior

to the detection of the fault, the initial value of θ̂i is set to

zero and the parameters update is activated only after a fault

is detected.
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In the presence of the i-th fault (i.e., fa = fa,i) the state

estimation error, x̃i, of the i-th observer (21) is given by
{

˙̃xi = Aa,i(y) x̃i + CT ϕi(t,y, u)θ̃i + δa,i(x, u)

ỹi = Cx̃i + n ,
(24)

where x̃i = x − x̂i, θ̃i = θi − θ̂i, Aa,i = A − La,iC

and δa,i = η + La,in. In the absence of uncertainties and

sensor noise, if the rate constants are bounded, there exists

a set of observer gains such that the state estimation error

x̃i of the observer (21) is globally uniformly convergent

to 0 as t → ∞ and the parameter estimation error θ̃i is

uniformly bounded for every t. Remarkably, in the presence

of bounded uncertainties and sensor noise, boundedness of

θ̃i is no longer guaranteed. A sufficient condition to achieve

boundedness is given by the persistency of excitation [15],

which is often difficult to meet in practice. Otherwise, the

update law (23) can be modified by adopting the so-called

projection operator [16].

To achieve faults isolation, the following residuals are

computed

ra,i =
ỹi

µa,i

, i = 1, . . . ,m (25)

where, as usual, µa,i are normalization factors selected in

such a way to set the thresholds to 1. If the i-th fault occurs,

the norms of all the residuals but the residual ra,i exceed

their thresholds.

It is worth remarking that, when a fault different from the

m types considered in the design of the bank of observers

occurs, it can be only detected but not isolated and identified.

In [13] is shown that, in the presence of bounded uncer-

tainties and noise, a bound on the output estimation error

can be found , i.e.,

∃ µ̄a,i > 0 : ‖ỹi(t)‖ ≤ µ̄a,i , (26)

provided that the fault estimation error ϕiθ̃i is guaranteed to

be bounded. If µ̄a,i can be estimated, it represents a possible

choice for the normalization factor µa,i.

In the presence of the the same fault, the state estimation

error, x̃l, of the l-th observer (l 6= i) is given by




˙̃xl = Aa,l(y) x̃l + CT
(
ϕi(t,y, u)θi − ϕl(t,y, u)θ̂l

)

+η(x, u)

ỹl = Cx̃l + n .
(27)

A sufficient condition for isolability of the i-th type of

process/actuator fault is given by the two inequalities

∀ l = 1, . . . ,m (l 6= i) , ∃t > tf :
∥∥∥∥∥

∫ t

tf

ΦE(t, τ)
(
ϕi(τ,y,u)θi−ϕl(τ,y,u)θ̂l

)
dτ

∥∥∥∥∥≥ µ̄a,l+µa,l,

(28)

and

‖ỹi(t)‖ ≤ µ̄a,i , ∀t > tf , (29)

since they guarantee that all the residuals ‖ra,l(t)‖ =
‖ỹl(t)‖/µa,l (l 6= i) exceed their respective thresholds at

least for a time instant, while the i-th residuals keeps below

its threshold.

A final issue to be considered regards decoupling of

sensor fault diagnosis from process/actuator fault diagnosis.

Namely, in order to make the observer (9), adopted to

generate the sensor fault isolation residuals, insensitive to

process/actuator faults, the observer dynamics (9) is modified

as 



˙̂xSMi = A(ySMi) x̂SMi + b(ySMi, u)

+LsỹSMi + CT f̂a(t,y, u) ,

ŷSMi = Cx̂SMi ,

(30)

where CT f̂a(t,y, u) is an estimate of the isolated pro-

cess/actuator fault, i.e., if the i-th fault has been detected

and isolated, then f̂a(t,y, u) = f̂a,i(t,y, u).

V. CASE STUDY

A case study has been developed to test the effectiveness

of the proposed approach on a simulation model built in the

Matlab/Simulink c© environment. A reaction process for the

production of resol-type phenolic resins has been considered.

This reaction under upset conditions, such as loss of cooling,

can accelerate and cause temperature and pressure to increase

(run away conditions) [17]. Here, a detailed model (89

reaction and 13 compounds) of the reaction process is used

to build a realistic simulation model, while the simplified

reaction scheme A1 → A2 → A3 → A4, which has been

identified in [14], is used to design the control scheme and

the diagnostic observers, where A1 represents the phenol,

A2 is a mixture of mono- and dimethylolphenols, A3 is the

trimethylolphenol and A4 is a mixture of poliphenols.

The model-based temperature controller proposed in [12]

is adopted. A first-order linear dynamics (with a time con-

stant equal to τ = 3 [s]) between the commanded control

input (computed by the controller) and the real temperature

of the water entering the jacket is introduced, but not

modeled in the design of the controller and of the observers.

The relevant parameters of the reactor and jacket models

are summarized in Table I.

Parameter value

k01,2 , k02,3 , k03,4 2.41 · 107, 1.20 · 104, 1.23 · 102 [s−1]

Ea1,2 , Ea2,3 , Ea3,4 77.8, 58.3, 43.8 [kJ mol−1]

∆H1,2, ∆H2,3, ∆H3,4 −40.6, −10.5, −21.4 [kJ mol−1]

U 0.72 [kJ s−1 K−1 m−2]

S 15.96 [m2]

F 0.1 [m3 s−1]

Vr , V 6, 1.73 [m3]

ρr cpr 1.9 · 103 [kJ m−3 K−1]

ρ cp 4.19 · 103 [kJ m−3 K−1]

C1(0), C2(0), C3(0) 4200, 0, 0 [mol m−3]

Tr(0), T(0) 293, 310 [K]

TABLE I

SIMULATION PARAMETERS.

Three actuator/process faults have been considered in

the simulations (i.e., m=3): variation of the heat transfer

coefficient (fault type 1), fault on the heat isolation of the
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cooling jacket (fault type 2) and fault on the cooling system,

i.e., actuator fault (fault type 3). The gain matrices of all the

diagnostic observers have been set as

Ls =

[
LM

LE

]
, LM =




1 · 10 0
5 · 102 0
1 · 10−1 0


 , LE =

[
1 0
0 1

]
.
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Fig. 1. Sensor Tj,2 and cooling system faults: detection and isolation
residuals for the sensor fault.
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Fig. 2. Sensor Tj,2 and cooling system faults: detection residual and
estimate of the actuator fault.
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Fig. 3. Sensor Tj,2 and cooling system faults: isolation residuals for the
actuator fault.

A simulation in which both a sensor and an actuator

fault occur during the same batch has been developed. First,

an abrupt freezing of the measured signal of sensor T,2

occurs at time tf,1 = 3000 [s]; then, an actuator fault, with

magnitude of 10 [K], affecting the cooling system occurs

at time tf,2 = 12000 [s]. Figure 1 shows that the residuals

rSMi (i = 1, 2), rSr
and rS

are able to detect and isolate the

sensor fault. Figure 2 shows that the actuator fault is correctly

detected (i.e., the norm of the detection residual vector rd

exceeds its threshold) and identified (i.e., the magnitude of

the fault is correctly estimated). Figure 3 reports the isolation

residuals: only the norm of residual r3 remains always below

the threshold, therefore the fault is isolated as a fault of third

type.

Finally, it can be noticed that residuals rSMi, rSr
and rS

are insensitive to the actuator fault, while residuals rd and

rl (l = 1, 2, 3) are insensitive to the sensor fault.
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