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Abstract— Finite-time stabilization (FTS) and finite-time
boundedness (FTB) control with input constraints are con-
sidered for linear discrete-time time-invariant systems. Design
methods of state feedback and observer-based output feedback
FTS/FTB controllers that satisfy input constraints are proposed
based on reachable sets in finite-time period. Less conservative
design method of controllers for the maximum magnitude of
input signals is also given. Numerical examples are shown to
illustrate the proposed design methods.

I. INTRODUCTION

Finite-time stability (FTS) requires that the state of a

system does not exceed a certain bound during a specified

time interval for given bound on the initial state. While

Lyapunov stability is used to deal with the behavior of a

system within a sufficiently long (or infinite) time interval,

FTS is used to deal with the behavior of a system within

a finite (or very short) time interval. Therefore there are

real applications such as operations of missiles and space

vehicles from an initial point to a final point in a specified

time interval. The concept of FTS is also extended to that of

finite-time boundedness (FTB) by introducing an exogenous

input and sufficient conditions for FTB are also given [1],

[2]. Sufficient conditions for the existence of state feedback

laws that guarantee FTB of a closed-loop system are given

for linear continuous-time systems [1], [3] and for linear

discrete-time systems [2]. Moreover sufficient conditions for

the existence of output feedback controllers that guarantee

FTS and FTB of a closed-loop system are given both for

linear continuous-time and discrete-time systems [1]. In

finite-time control problems, boundedness of the physical

state of a system is of interest from the practical point of

view and finite-time stabilization with observer-based output

feedback controllers is considered for both linear continuous-

time systems [2] and discrete-time systems [4].

In the above literatures on finite-time control, input signals

could be larger as time has passed. Since trajectories do not

always converge to the origin, input signals by state feedback

laws could be larger and exceed a physical limitation on

control. Similar situations may arise in the case of output

feedback control. Input constraints in finite step are required

to finite-time control from practical viewpoint. As far as

Lyapunov stability, there are literatures on input constraint

conditions using LMI [5], [6], [7]. However, any constraint

conditions of finite-time period have not been discussed. In

this paper, we give sufficient conditions for the existence
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of FTB (or FTS) controllers that satisfy a N -step input

constraint using reachable sets in finite-time steps. The

obtained sufficient conditions are reduced to LMI conditions.

This paper is organized as follows. Section II gives pre-

liminary results on FTB state feedback controller design

without input constraints. An extension to observer-based

output feedback controller design is also given. In section

III, N -step input constraint is defined and state feedback

controller design with input constraint is discussed. Section

IV discusses output feedback controller design with input

constraint. Section V gives numerical examples. Finally,

section VI concludes with remarks.

Notations: Let Mj be j-th row of a matrix M . N0 =
{0, 1, 2, . . .}.

II. PRELIMINARY RESULTS

Consider

x(k + 1) = Ax(k) + B1w(k) + B2u(k), x(0) = x0, (1)

w(k + 1) = Sw(k), w(0) = w0, (2)

y(k) = Cx(k) (3)

where x ∈ R
n is the state, w ∈ R

m1 is the disturbance

generated by the exosystem (2), u ∈ R
m2 is the control

input, y ∈ R
p is the measurement and all matrices are of

compatible dimensions. The following concepts are known.

Definition 2.1 ([2]): For given positive definite matrix Γ,

0 ≤ δx < ε and N ∈ N0, if xT (k)Γx(k) < ε, k = 1, . . . , N
whenever xT

0 Γx0 ≤ δx, then the system x(k + 1) = Ax(k)
with x(0) = x0 is said to be finite-time stable (FTS) with

respect to (δx, ε, Γ, N).

Definition 2.2 ([4]): For given positive definite matrix Γ,

Π, 0 ≤ δx < ε, 0 ≤ δw and N ∈ N0, if xT Γx(k) < ε, k =
1, . . . , N whenever xT

0 Γx0 ≤ δx and wT
0 Πw0 ≤ δw, then the

system x(k+1) = Ax(k)+B1w(k) and w(k+1) = Sw(k)
with x(0) = x0 and w(0) = w0 is said to finite-time bounded

(FTB) with respect to (δx, δw, ε, Γ, Π, N).

For the system (1) and (2), we also consider state feedback

controllers

u(k) = Fx(k). (4)

Then the closed-loop system (1), (2) and (4) is given by

x(k + 1) = AF x(k) + B1w(k), x(0) = x0 (5)

and (2) where AF = A+B2F . Then we have the following

result.

Lemma 2.1 ([2]): The system (5) and (2) is FTB with

respect to (δx, δw, ε, Γ, Π, N) if there exist positive
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definite matrices Q1 ∈ R
n×n, Q2 ∈ R

m1×m1 , a matrix

L ∈ R
m2×n and a scalar γ ≥ 1 such that





−Q1 AQ1 + B2L B1

(AQ1 + B2L)T −γQ1 0
BT

1 0 ST Q2S − γQ2



 < 0, (6)

δx

λmin(Q̃1)
+ λmax(Q̃2)δw <

ε

γN

1

λmax(Q̃1)
(7)

where Q̃1 = Γ
1

2 Q1Γ
1

2 and Q̃2 = Π− 1

2 Q2Π
− 1

2 . In this case

the feedback gain F is given by F = LQ−1
1 .

Remark 2.1: If we set S = 0 and δw = 0 in (6) and (7),

then we can also derive sufficient conditions for FTS [2].

For the system (1)-(3), we consider output feedback con-

trollers of the form

x̂(k + 1) = Ax̂(k) + B2u(k) − K[y(k) − Cx̂(k)], (8)

x̂(0) = 0,

u(k) = F x̂(k)

where F and K are matrices of compatible dimensions. In

the finite-time control problems, boundedness of the physical

state of the system is of interest, from practical point of view,

we want to find a controller (4) such that the system

x(k + 1) = AF x(k) + B1w(k) − B2Fe(k),

w(k + 1) = Sw(k)

is FTB with respect to (δx, δw, ε, Γ, Π, N) where e = x −
x̂. To find such observer-based output feedback controllers,

we assume that a state feedback controller u(k) = Fx(k),
which makes the system (1) and (2) FTB with respect to

(δx, δw, ε, Γ, Π, N) (or the system (1) with w ≡ 0 FTS with

respect to (δx, ε, Γ, N)) exists and has been designed.

The closed-loop system (1)-(3) and (8) can be written as

x(k + 1) = AF x(k) + BF (k)w̃(k), x(0) = x0,

w̃(k + 1) = S̃w̃(k), w̃(0) =
[

wT
0 xT

0

]T (9)

where

BF =
[

B1 −B2F
]

, w̃ =

[

w
e

]

, S̃ =

[

S 0
B1 AK

]

and AK = A + KC. For e = 0, the system (9) is FTB (or

FTS) while the presence of a nonzero e may bring the norm

of the state x(k) outside the bound ε. Hence we want to

design an observer gain K in (8) such that the FTB property

of the system (5) and (2) is not lost in the presence of the

estimation error. Note that the bound in the initial condition

of the exosystem in (9) satisfies

wT
0 Πw0 + xT

0 Γx0 ≤ δw + δx.

Then if the system (9) is FTB with respect to (δx, δw +
δx, Γ, diag{Π, Γ}, N), then the closed-loop system (1)-(3)

and (8) is FTB with respect to (δx, δw, Γ, Π, N).

Lemma 2.2 ([4]): If there exist positive definite matrices

P1, R ∈ R
n×n, P2 ∈ R

m1×m1 , and a matrix M ∈ R
n×p,

and a scalar γ ≥ 1 such that








AT
F P1AF − γP1 AT

F P1B1

BT
1 P1AF H2

(−B2F )T P1AF (−B2F )T P1B1

0 RB1

AT
F P1(−B2F ) 0

BT
1 P1(−B2F ) BT

1 R
H3 (RA + MC)T

RA + MC −R









< 0, (10)

[

λmax(P̃1) + λmax(R̃)
]

δx + λmax(P̃2)δw

<
ε

γN
λmin(P̃1), (11)

then an observer-based output feedback controller (8) makes

the system (1)-(3) FTB with respect to (δx, δw, Γ, Π, N)
where

H2 = BT
1 P1B1 + ST P2S − γP2,

H3 = (−B2F )T P1(−B2F ) − γR,

P̃1 = Γ− 1

2 P1Γ
− 1

2 , P̃2 = Π− 1

2 P2Π
− 1

2 , R̃ = Γ− 1

2 RΓ− 1

2 .

In this case the observer gain K is given by K = R−1M .

Remark 2.2: If we set S = 0 and δw = 0 in (10) and

(11), then we can also derive sufficient conditions for the

existence of observer-based output feedback FTS controllers

[4].

III. STATE FEEDBACK CONTROLLER DESIGN WITH

INPUT CONSTRAINTS

Consider N -step input constraints such that

|uj(k)| ≤ umax
j , j = 1, . . . , m2, k = 0, 1, . . . ,N (12)

where N ∈ N0 is a design parameter satisfying 0 ≤ N ≤ N .

Then we want to design FTB state feedback controllers (4)

satisfying (12) for the system (1) and (2). Using reachable

sets of the state given by Lyapunov-like functions, we

estimate the maximum magnitude of the input signals.

Theorem 3.1: There exist state feedback FTB controllers

that satisfy (12) for the system (1) and (2) if there exist

positive definite matrices Q1 ∈ R
n×n, Q2 ∈ R

m1×m1 , a

matrix L ∈ R
m2×n, scalars γ ≥ 1 and λi > 0, i = 1, 2,

such that (6), (7) and
[

(umax
j )2/dN Lj

LT
j Q1

]

≥ 0, j = 1, . . . , m2 (13)

where

dN =



















δx

λmin(Q̃1)
, N = 0,

γN

[

δx

λmin(Q̃1)
+ λmax(Q̃2)δw

]

, N ≥ 1,

Q̃1 = Γ
1

2 Q1Γ
1

2 and Q̃2 = Π− 1

2 Q2Π
− 1

2 . In this case the

feedback gain F is given by F = LQ−1
1 .

Proof: See the appendix.
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To obtain more numerically tractable sufficient conditions

for FTB with input constraints, we assume Q1 and Q2 in

Theorem 3.1 satisfy

λ1I < Q̃1 < I, Q̃2 < λ2I (14)

and
[ ε

γN
− λ2δw δ

1

2

δ
1

2 λ1

]

> 0. (15)

Then using Shur complement formula for (15), we obtain

δx

λ1
+ λ2δw <

ε

γN
.

Hence

δx

λmin(Q̃1)
+ λmax(Q̃2)δw

<
δx

λ1
+ λ2δw <

ε

γN
<

ε

γN

1

λmax(Q̃1)
, (16)

which satisfies (7). Using (16), we can take an upper bound

on dN such as

d̄N := εγN−N > dN , N ≥ 1

and

d̄0 :=
δx

λ1
>

δx

λmin(Q̃1)
= d0.

If we assume Q1 and L satisfy
[

(umax
j )2/d̄N Lj

LT
j Q1

]

≥ 0, j = 1, . . . , m2 (17)

then (13) holds. In particular, for N = 0, we may assume

Q1, L and λ1 satisfy
[

λ1(u
max
j )2/δx Lj

LT
j Q1

]

≥ 0, j = 1, . . . , m2.

Corollary 3.1: There exist state feedback FTB controllers

that satisfy (12) for the system (1) and (2) if there exist

positive definite matrices Q1 ∈ R
n×n, Q2 ∈ R

m1×m1 , a

matrix L ∈ R
m2×n, scalars γ ≥ 1 and λi > 0, i = 1, 2 such

that (6), (14), (15) and (17) where

d̄N =

{

δx/λ1, N = 0,

εγN−N , N ≥ 1,

Q̃1 = Γ
1

2 Q1Γ
1

2 and Q̃2 = Π− 1

2 Q2Π
− 1

2 . In this case the

feedback gain F is given by F = LQ−1
1 .

Corollary 3.2: There exist state feedback FTS controllers

that satisfy (12) for the system (1) with w ≡ 0 if there exist

a positive definite matrix Q ∈ R
n×n, a matrix L ∈ R

m2×n,

scalars γ ≥ 1 and λ > 0 such that
[

−Q AQ + B2L
(AQ + B2L)T −γQ

]

< 0,

λI < Q̃ < I, 1 <
1

γN

ε

δx

λ,

[

λ(umax
j )2/(γN δx) Lj

LT
j Q

]

≥ 0, j = 1, . . . , m2

where Q̃ = Γ
1

2 QΓ
1

2 . In this case F is given by F = LQ−1.

IV. OBSERVER-BASED OUTPUT FEEDBACK

CONTROLLER DESIGN WITH INPUT CONSTRAINTS

Here the input constraints are discussed for observer-

based output feedback controller design. Due to the output

feedback controllers (8), reachable sets of the state are

not available to estimate the maximum magnitude of the

inputs. In contrast with the state feedback case, we focus

on searching reachable sets of the estimated state. We

assume that a state feedback controller u(k) = Fx(k),
which makes the system (1) and (2) FTB with respect to

(δx, δw, ε, Γ, Π, N) (or the system (1) with w ≡ 0 FTS

with respect to (δx, ε, Γ, N)) and satisfies (12) exists and has

been designed. Thanks to the observer-based output feedback

controllers (8), it is not required to impose the 0-step input

constraints because

uj(0) = Fj x̂(0) = 0, j = 1, . . . , m.

Thus we may consider N -step input constrains for N ≥ 1.

The subsequent results represent design methods of observer-

based output feedback FTB (FTS) controllers with N -step

input constrains for N ≥ 1.

Theorem 4.1: There exist output feedback FTB con-

trollers (8) that satisfy (12) for the system (1)-(3) if there

exist positive definite matrices P1, R ∈ R
n×n, P2 ∈

R
m1×m1 , a matrix M ∈ R

n×p, scalars γ ≥ 1 and µ > 1
such that (10), (11),

[

(umax
j )2/(µdN ) Fj

FT
j R

]

≥ 0, j = 1, . . . , m2, (18)

µP1 ≥ P1 + R (19)

where

dN = γN
{[

λmax(P̃1) + λmax(R̃)
]

δx + λmax(P̃2)δw

}

,

P̃1 = Γ− 1

2 P1Γ
− 1

2 , P̃2 = Π− 1

2 P2Π
− 1

2 and R̃ = Γ− 1

2 RΓ− 1

2 .

In this case the observer gain K is given by K = R−1M .

Proof: See the appendix.

To obtain more numerically tractable sufficient conditions

for FTB with input constraints, we assume P1, P2 and R in

Theorem 4.1 satisfy

λ1I < P̃1 < λ2I, 0 < R̃ < λ3I, 0 < P̃2 < λ4I, (20)

(λ2 + λ3)δx + λ4δw < εγ−Nλ1. (21)

and

µλ1 > λ2 + λ3. (22)

Then we have
[

λmax(P̃1) + λmax(R̃)
]

δx + λmax(P̃2)δw

< (λ2 + λ3)δx + λ4δw < εγ−Nλ1

< εγ−Nλmin(P̃1) (23)

and

µP̃1 > µλ1I > (λ2 + λ3)I > P̃1 + R̃

1173



which satisfy (11) and (19), respectively. Using (23), we can

take upper bounds on dN such as

λ1d̄N = λ1εγ
N−N = γN (εγ−Nλ1)

> γN
{[

λmax(P̃1) + λmax(R̃)
]

δx + λmax(P̃2)δw

}

= dN

where d̄N := εγN−N . For this upper bound, if we assume

R and β satisfy
[

β(umax
j )2/d̄N βFj

βFT
j R

]

≥ 0, j = 1, . . . , m2, (24)

then (18) holds where β = µλ1.

Corollary 4.1: There exist output feedback FTB con-

trollers (8) that satisfy (12) for the system (1)-(3) if there

exist positive definite matrices P1, R ∈ R
n×n, P2 ∈

R
m1×m1 , a matrix M ∈ R

n×p and scalars γ ≥ 1, β > 0
and λi > 0, i = 1, 2, 3, 4, such that (10), (20)-(22) and (24)

where d̄N = εγN−N , P̃1 = Γ− 1

2 P1Γ
− 1

2 , P̃2 = Π− 1

2 P2Π
− 1

2

and R̃ = Γ− 1

2 RΓ− 1

2 . In this case the observer gain K is

given by K = R−1M .

Remark 4.1: If the LMI problem in Corollary 4.2 has a

feasible solution, then µ > 1 holds since β > λ2 + λ3 > λ1

from (20) and (22).

Corollary 4.2: There exist output feedback FTS con-

trollers (8) that satisfy (12) for the system (1) with w ≡ 0 and

(3) if there exist positive definite matrices P1, R ∈ R
n×n,

a matrix M ∈ R
n×p, scalars γ ≥ 1, β > 0 and λi > 0,

i = 1, 2, 3, such that








−γP1 0 0 AT
F P1

0 −γR HT
32 (−P1B2F )T

0 H32 −R 0
P1AF −P1B2F 0 −P1









< 0

(20), (21) with δw ≡ 0, (22) and (24) where M32 =
RA + MC, d̄N = εγN−N , P̃1 = Γ− 1

2 P1Γ
− 1

2 and R̃ =
Γ− 1

2 RΓ− 1

2 . In this case the observer gain K is given by

K = R−1M .

V. NUMERICAL EXAMPLE

Consider the system (1)-(3) where

A =

[

1 2.1
−1 −1

]

, B1 =

[

1 0
0 1

]

, B2 =

[

−1
1

]

,

S =

[

0.8 0.6
−0.6 0.8

]

, C =
[

2 1
]

.

We shall design state feedback FTB controllers by Corol-

lary 3.1 and output feedback FTB controllers by Corollary

4.2, respectively. To find feasible solutions of LMIs in the

corollaries, we use YALMIP [8] and SeDuMi [9] on Matlab.

We first design state feedback controllers (4) which make

the system FTB with respect to (δx, δw, ε, Γ, Π, N) =
(1, 1, 20, I2, I2, 5). We set γ = 1.2 in Corollary 3.1 and

we design two cases N = 0 and 5: We shall design

state feedback FTB controllers with 0-step and 5-step input

constraint. In the 0-step design with umax = 2.0, we obtain

F =
[

0.9299 1.4923
]

. In the 5-step design with umax =

−5 0 5
−5

0

5

x
1

x
2

Fig. 1. Reachable sets and input constraints: The inner and outer solid
ellipsoids represent xT Γx ≤ δx and xT Γx < ε, respectively. The dotted
ellipsoid and lines represent a reachable set E0 from (25) and an input
constraint |Fx| ≤ 2.0 by Corollary 3.1 at N = 0. The dashed ellipsoid
and lines represent E5 and |Fx| ≤ 7.0 by Corollary 3.1 at N = 5.

−40 −20 0 20 40

−20

−10

0

10

20

estimated x
1

e
s
ti
m

a
te

d
 x

2

Fig. 2. Reachable sets of the estimated state and input constraints: The
dashed ellipsoid and lines represent a reachable set E2 from (32) and an
input constraint |Fx| ≤ 27.0 by Corollary 4.2 at N = 2.

7.0, we obtain F =
[

0.8548 1.3997
]

. The reachable sets

and the input constraints of the both designs are shown in

Fig. 1. We can see that the reachable sets are inside of the

input constraints.

We also design output feedback controllers (8) which

makes the system FTB with respect to (1, 1, 60, I2, I2, 2).
Using Lemma 2.1 a state feedback gain F is given by

F =
[

1.0004 1.5300
]

which make the system FTB with

respect to (1, 1, 60, I2, I2, 2). We set γ = 1.4 in Corollary 4.2

and we shall design output feedback FTB controllers with 2-

step input constraints. In the 2-step design with umax = 27.0,

we obtain K =
[

−0.7071 0.6389
]T

and µ = 22.5202.

The reachable set and the input constraints of the design are

shown in Fig. 2. We can see that the reachable set of the

estimated state is inside of the input constraints.

VI. CONCLUSIONS

We have proposed FTS/FTB control with input constraints

for linear discrete-time time-invariant systems. In order to
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evaluate the maximum magnitude of control input signals,

we estimate reachable sets of the state from the initial time

to a required finite step imposing input constraints. On the

basis of such knowledge, we have proposed state feedback

FTS/FTB controller design methods which conditions are

reduced to LMIs. Reachable sets of the estimated state are

also analyzed to construct observer-based output feedback

FTS/FTB controllers. Numerical examples have been shown

to illustrate the proposed FTB state/output feedback design

methods.

APPENDIX

PROOF OF THEOREM 3.1

From (6) and (7), the system (5) and (2) is FTB with

respect to (δx, δw, ε, Γ, Π, N). Then for V (x(k), w(k)) =
xT (k)Q−1

1 x(k) + wT (k)Q2w(k), V (x(k + 1), w(k + 1)) <
γV (x(k), w(k)) and V (x(k), w(k)) < γkV (x(0), w(0)) for

k ≥ 1. Then we have

xT (k)Q−1
1 x(k) < γk

[

xT
0 Q−1

1 x0 + wT
0 Q2w0

]

≤ dk

for k ≥ 1. For k = 0, we have

xT
0 Q−1

1 x0 ≤
δx

λmin(Q̃1)
= d0.

Since the control input depends on the state, it is required

to analyze reachable sets of the state for every time in

{0, 1, . . . , N}. Define reachable sets of the state by

Ek :=
{

z ∈ R
n | zT Q−1

1 z < dk

}

, k ∈ {1, . . . ,N},

E0 :=
{

z ∈ R
n | zT Q−1

1 z ≤ d0

}

.
(25)

From γ ≥ 1 and

xT
0 Q−1

1 x0 ≤ d0 ≤ γ0

[

1

λmin(Q̃1)
δx + λmax(Q̃2)δw

]

,

dk ≤ dk+1 holds for k ≥ 0. Then we can see the relation

E0 ⊆ E1 ⊆ · · · ⊆ EN . Thus we obtain

∪k=0,1,...,NEk = EN . (26)

Using (26), for N ≥ 1, we have

max
k∈{0,1,...,N}

|uj(k)|2

= max
k∈{0,1,...,N}

|(LQ−1
1 x(k))j |

2

≤ max
z∈∪k=0,1,...,NEk

|(LQ−1
1 z)j|

2

= max
z∈EN

|(LQ−1
1 z)j |

2

≤ max
‖(dN Q1)

− 1

2 z‖2=1

∣

∣

∣

(

d
1

2

NLQ
− 1

2

1

[

(dNQ1)
− 1

2 z
])

j

∣

∣

∣

2

= max
‖(dN Q1)

− 1

2 z‖2=1

∣

∣

∣

(

d
1

2

NLQ
− 1

2

1

)

j

[

(dNQ1)
− 1

2 z
]
∣

∣

∣

2

≤ max
‖(dN Q1)

− 1

2 z‖2=1

∥

∥

∥

[(

d
1

2

NLQ
− 1

2

1

)

j

]T ∥

∥

∥

2

2

∥

∥

∥
(dNQ1)

− 1

2 z
∥

∥

∥

2

2

=
∥

∥

∥

[(

d
1

2

NLQ
− 1

2

1

)

j

]T ∥

∥

∥

2

2

=
∥

∥

∥

[

d
1

2

NLjQ
− 1

2

1

]T ∥

∥

∥

2

2

= dNLjQ
−1
1 LT

j .

Applying Schur complement formula to (13), we obtain

max
k∈{0,1,...,N}

|uj(k)|2 ≤ dNLjQ
−1
1 LT

j ≤ (umax
j )2

for j = 1, . . . , m2. For N = 0, we have

|uj(0)|2 = |(F x̂(0))j |
2 ≤ max

z∈E0

|(Fz)j |
2 ≤ d0LjQ

−1
1 LT

j

for j = 1, . . . , m2. Using Schur complement formula to (13)

again, we obtain

|uj(0)|2 ≤ d0LjQ
−1
1 LT

j ≤ (umax
j )2

and we have the assertion.

PROOF OF THEOREM 4.1

From (10) and (11), the system (9) is FTB with respect to

(δx, δw + δx, ε, Γ, diag{Π, Γ}, T ). Then for

V (x(k), w(k), e(k))
= xT (k)P1x(k) + wT (k)P2w(k) + eT (k)Re(k),

we have

V (x(k + 1), w(k + 1), e(k + 1)) < γV (x(k), w(k), e(k))

and

V (x(k), w(k), e(k)) < γkV (x(0), w(0), e(0)), k ≥ 1.

Then we have

xT (k)P1x(k) + wT (k)P2w(k)

+(x(k) − x̂(k))T R(x(k) − x̂(k))

< γk
[

xT
0 P1x0 + wT

0 P2w0 + xT
0 Rx0

]

≤ dk (27)

for k ≥ 1. Since the control input depends on the estimated

state, we need to analyze a reachable set of the estimated

state for every step in {0, 1, . . . ,N}. For k ∈ {1, . . . ,N},

using (32), we may consider an optimization problem as

follows:

min
x,x̂,w

−x̂T Rx̂

s.t. f(x, x̂, w) := xT P1x + wT P2w
+(x − x̂)T R(x − x̂) − d′k ≤ 0

(28)

where d′
k < dk . If we have a solution of the problem

(28), then we can obtain an upper bound on x̂(k)T Rx̂(k)
for k ∈ {1, . . . ,N}. It is known that strong duality holds

for nonconvex quadratic optimization problems with sig-

nal quadratic constraint and their Lagrange dual problems

[10] under Slater’s constraint qualification. In this case, the

constraint in (28) is a convex set, so that there exists a

(x, x̂, w) with f(x, x̂, w) < 0. Thus the constraint satisfies

the qualification. The Lagrangian of (28) is

L(x, x̂, w, µ) = −x̂T Rx̂ + µf(x, x̂, w), µ ≥ 0

and the dual function is

g(µ) = inf
x=x∗,x̂=x̂∗,w=w∗

L(x, x̂, w, µ)

=

{

−µdk, (19),
−∞, otherwise
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where (19) and µ > 1 make

∂2

∂p2
L(x, x̂, w, µ) =





2µ(P1 + R) −2µR 0
−2µR 2(µ − 1)R 0

0 0 2µP2





positive semidefinite. Also, the points

p∗ =
[

(x∗)T (x̂∗)T (w∗)T
]T

,

which achieve the infimum of L, satisfy

P1x
∗ + R(x∗ − x̂∗) = 0, (29)

x̂∗ + µ(x∗ − x̂∗) = 0, (30)

w∗ = 0 (31)

from ∂L/∂p = 0. Using (29)-(31), we have

L(x∗, x̂∗, w∗, µ)
= −(x̂∗)T Rx̂∗ + µ(x∗)T P1x

∗ + µ(w∗)T P2w
∗

+µ(x∗ − x̂∗)T R(x∗ − x̂∗) − µd′k
= −(x̂∗)T Rx̂∗ + µ(x∗)T P1x

∗ − (x∗ − x̂∗)T Rx̂∗ − µd′k
= µ(x∗)T P1x

∗ − (x∗)T Rx̂∗ − µd′k
= −µd′k.

Then the Lagrange dual problem of (28) is

max
µ=µ∗

−µd′k s.t. (19).

Since the optimal value of the dual problem is −µ∗d′k, it is

also the optimal value of the problem (28). Thus we obtain

x̂T (k)Rx̂(k) ≤ µ∗d′k < µ∗dk, k = 1, . . . ,N .

Define reachable sets of the estimated state by

Ek :=
{

z ∈ R
n | zT Rz < µ∗dk

}

, k ∈ {1, . . . ,N}. (32)

Since γ ≥ 1, dk ≤ dk+1 holds for k ≥ 1. Then we have

E1 ⊆ · · · ⊆ EN

and

∪k=1,...,NEk = EN .

For N ≥ 1 we have

max
k∈{0,1,...,N}

|uj(k)|2 = max
k∈{0,1,...,N}

|(Fx(k))j |
2

≤ max
z∈∪k=1,...,NEk

|(Fz)j |
2

= max
z∈EN

|(Fz)j |
2

= max
‖(µ∗dN )−

1

2 R
1

2 z‖2=1

|(Fz)j |
2

≤ µ∗dNFjR
−1FT

j .

Applying Schur complement formula to (18), we obtain

max
k∈{0,1,...,N}

|uj(k)|2 ≤ µ∗dNFjR
−1FT

j ≤ (umax
j )2

for j = 1, . . . , m2. Hence we have the assertion.

REFERENCES

[1] F. Amato, M. Ariola, M. Carbone, and C. Cosentino, Finite-time

control of linear systems: A survey in current trends in nonlinear
systems and control: In honor of Petar Kokotovic and Turi Nicosia.
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